Structural and functional insights into the periplasmic detector domain of the GacS histidine kinase

controlling biofilm formation in Pseudomonas aeruginosa

Ahmad Ali-Ahmad^{1*}, Firas Fadel, Corinne Sebban-Kreuzer, Moly Ba, Gauthier Dangla Pélissier, Olivier Bornet, Françoise Guerlesquin, Yves Bourne, Christophe Bordi, Florence Vincent

Table S1: Strains	s used in	this	stud	ly
-------------------	-----------	------	------	----

Strains	Relevant characteristics	Source
E. coli		T 1 11 /
DH5α	endA1 hsdR1/ supE44 thi-1 recA1 gyrA relA1 Δ(lacZYA-argF)U169 deoR (phi 80lacZ Δ M15)	Lab collection
CC118(\lpir)	Host strain for pKNG101 replication, $\Delta(ara-leu) araD \Delta lacX74 galE$ galK phoA20 thi-1 rpsE rpoB argE(Am) recA1 Rf ^R (λ pir)	Lab collection
BL21 DE3	fhuA2 [lon] ompT gal (λ DE3) [dcm] Δ hsdS λ DE3 = λ sBamHI0 Δ EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 Δ nin5	Lab collection
P. aeruginosa		
РАК	Wild type	63
$PAK\Delta gacS$	PAK deletion mutant for <i>gacS</i> gene	31
$PAKgacS\Delta_{PD}$	PAK deletion mutant for the periplasmic domain of <i>gacS</i> gene	This study
$PAKgacS_{R944}$	Point chromosomal mutant R94A of gacS gene in PAK	This study
$PAKgacS_{H974}$	Point chromosomal mutant H97A of gacS gene in PAK	This study
PAKgacS _{D1104}	Point chromosomal mutant D110A of gacS gene in PAK	This study
PAKgacS _{H124A}	Point chromosomal mutant H124A of gacS gene in PAK	This study
PAKgacS _{H1334}	Point chromosomal mutant H133A of gacS gene in PAK	This study
PAKgacS _{W150A}	Point chromosomal mutant W150A of gacS gene in PAK	This study
PAKARetS	PAK deletion mutant for <i>retS</i> gene	14
PAKattB::rsmY-lacZ	PAK strain with <i>rsmY-lacZ</i> inserted at <i>attB</i> sites	17
PAKattB::rsmZ-lacZ	PAK strain with <i>rsmZ</i> -lacZ inserted at attB sites	17
PAK∆gacSattB∷rsmY-lacZ	PAK∆gacS strain with rsmY-lacZ inserted at attB sites	17
PAK∆gacSattB∷rsmZ-lacZ	PAK $\Delta gacS$ strain with rsmZ-lacZ inserted at attB sites	17
$PAK\Delta gacS_{PD}attB::rsmY-lacZ$	PAK $\Delta gacS_{PD}$ strain with <i>rsmY-lacZ</i> inserted at <i>attB</i> sites	This study
$PAK\Delta gacS_{PD}attB::rsmZ-lacZ$	PAK $\Delta gacS_{PD}$ strain with <i>rsmZ-lacZ</i> inserted at <i>attB</i> sites	This study
PAKgacS _{R94A} attB::rsmY-lacZ	PAK $gacS_{R944}$ strain with rsmY-lacZ inserted at attB sites	This study
PAKgacS _{R94A} attB::rsmZ-lacZ	PAK $gacS_{R944}$ strain with <i>rsmZ</i> -lacZ inserted at attB sites	This study
PAKgacS _{H97A} attB::rsmY-lacZ	PAKgacS _{H97A} strain with rsmY-lacZ inserted at attB sites	This study
PAKgacS _{H97A} attB::rsmZ-lacZ	PAKgacS _{H97A} strain with rsmZ-lacZ inserted at attB sites	This study
PAKgacS _{D110A} attB::rsmY-lacZ	PAKgacS _{D110A} strain with rsmY-lacZ inserted at attB sites	This study
PAKgacS _{D110A} attB::rsmZ-lacZ	PAKgacS _{D110A} strain with rsmZ-lacZ inserted at attB sites	This study
PAKgacS _{H124A} attB::rsmY-lacZ	PAKgacS _{H124A} strain with rsmY-lacZ inserted at attB sites	This study
PAKgacS _{H124A} attB::rsmZ-lacZ	PAKgacS _{H124A} strain with rsmZ-lacZ inserted at attB sites	This study
PAKgacS _{H133A} attB::rsmY-lacZ	PAKgacS _{H133A} strain with rsmY-lacZ inserted at attB sites	This study
PAKgacS _{H133A} attB::rsmZ-lacZ	PAKgacS _{H133A} strain with rsmZ-lacZ inserted at attB sites	This study
PAKgacS _{W150A} attB::rsmY-lacZ	PAKgacS _{W150A} strain with rsmY-lacZ inserted at attB sites	This study

Table S2: NMR and refinement statistics of the GacSp structure. Structural statistics and restraint violations of the 20 selected structures representative of GacSp in solution at 298K.

Restraints used for the calculation	
NMR distance and dihedral restraints	
Effective distance restraints	1299
Short-range ≤(i-j 1)	613
Medium-range $<<(1 i-j 5)$	278
Long-range, i-j ≥5	408
Average number of restraints per	0.49
residue	9.48
Dihedrals	94
Hydrogen bonds	27
Structure statistics	
Distance restraint violation>0.5Å	0
CNS potential energy (kcal/mol)	
E _{total}	-4077.645
E _{bond}	89.358
E _{angle}	485.937
Edihedral	1398.193
E _{VdW}	-1046.495
E _{electric}	-8029.448
Average ensemble RMSD Å	
Backbone (residues 38-164)	0.95
Heavy atoms (residues 38-164)	1.44
Ramachandran plot %*	
Most favorable region	68.1
Additiona allowed region	27.4
Generous allowed region	3.5
Disallowed region	0.9
PDB ID: 507J	

* Calculated using PROCHECK program implanted in PDBsum server

Table S3: Plasmids used in this study

Plasmids	Relevant characteristics*	Source
pLic03	Vector containing T7 promoter with pBR322 origin of replication, Km ^R	64
pLic03_GacSsp	pLic03 carrying the Nt-6his tagged GacSsp subdomain DNA region	This study
PCR2.1	TA cloning vector for PCR products, LacZα ColE1 f1 ori, Ap ^R , Kam ^R	Invitrogen
PKNG101	Suicide vector in P. aeruginosa; SacB, Sm ^R	65
pKRK2013	$\operatorname{Tra}^{+}\operatorname{Mob}^{+}\operatorname{Km}^{+}$	Lab collection
pKNG101 $\Delta gacS_{PD}$	Mutator plasmid for GacS periplasmic domain deletion in gacS gene, Sm^{R}	This study
pKNG101gacS _{R94A}	Mutator plasmid for point mutation R94A in gacS gene, Sm ^R	This study
pKNG101gacS _{H97A}	Mutator plasmid for point mutation R97A in gacS gene, Sm ^R	This study
pKNG101gacS _{D110A}	Mutator plasmid for point mutation D110A in gacS gene, Sm ^R	This study
pKNG101gacS _{H124A}	Mutator plasmid for point mutation H124A in gacS gene, Sm ^R	This study
pKNG101 <i>gacS_{H133A}</i>	Mutator plasmid for point mutation H133A in gacS gene, Sm ^R	This study
pKNG101gacS _{W150A}	Mutator plasmid for point mutation W150A in gacS gene, Sm ^R	This study
miniCTX-lacZ	TC lacZ+; self-proficient integration vector with tet, V-FRT-attPMCS, ori, int, and oriT	66
miniCTX-rsmY-lacZ	Promoter region of $rsmY$ gene inserted into miniCTX-lacZ, Tc ^R	17
miniCTX-rsmZ-lacZ	Promoter region of <i>rsmZ</i> gene inserted into miniCTX- <i>lacZ</i> , Tc ^R	17

*Ap^R ampicillin resistance, Sm^R streptomycin resistance, TC^R tetracyclin resistance, Km^R Kanamycin

Table S4: Oligonucleotides used in this study

Names	Oligonucleotides $(5' \rightarrow 3')$
Proteins production	
UpGacS _{PD}	TACTTCCAATCAATGATGCGCGCCCAGTTGATCGAG
DnGacS _{PD}	TATCCACCTTTACTGTTATTATATCCGCGCAGCAGAGTCCCG
Point chromosomal	
mutations	
UpUGacS _{R94A}	CTACTTATGGTACCCGGGCGTCGCAAGCCGAATCCGCC
UpDGacS _{R94A}	CATGGGCGAG <u>GGC</u> TTCCTGGCGG
DnUGacS _{R94A}	CCGCCAGGAA <u>GCC</u> CTCGCCCATG
DnDGacS _{R94A}	CCTGCAGGTCGACGGATCGCCAGAGGCCAGTTCGTCCA
UpUGacS _{H97A}	CTACTTATGGTACCCGGGCGTCGCAAGCCGAATCCGCC
UpDGacS _{H97A}	GCTTGGCCCGGC <u>GC</u> GGGCGAGGCGTTCC
DnUGacS _{H97A}	GGAACGCCTCGCCC <u>GC</u> GCCGGGCCAAGC
DnDGacS _{H97A}	CCTGCAGGTCGACGGATCGCCAGAGGCCAGTTCGTCCA
UpUGacS _{D110A}	CTACTTATGGTACCCGGGGGATTGATTAGCAATCGTG
UpDGacS _{D110A}	CATGCTCAAATGGCTGGC <u>CG</u> CGCCGGCCGGGCGACGG
DnUGacS _{D110A}	CCGTCGCCCCGGCCGGCG <u>CG</u> GCCAGCCATTTGAGCATG
DnDGacS _{D110A}	CCTGCAGGTCGACGGATCGCCTCCTTGCGCGCCAGG
UpUGacS _{H124A}	CTACTTATGGTACCCGGGCGTCGCAAGCCGAATCCGCC
UpDGacS _{H124A}	AAGAACCGGTAGCAGGAA <u>CGC</u> CGTGGTGTCCAGTTCGGTG
DnUGacS _{H124A}	CACCGAACTGGACACCACG <u>GCG</u> TTCCTGCTACCGGTTCTT
DnDGacS _{H124A}	CCTGCAGGTCGACGGATCATGTTGGCGAGGAACTCGGACT
UpUGacS _{H133A}	CTACTTATGGTACCCGGGCGTCGCAAGCCGAATCCGCC
UpDGacS _{H133A}	GTGGCGCCGGACAGGCTGTG <u>CGC</u> GCGGCCAAGAACCGGTA
DnUGacS _{H133A}	TACCGGTTCTTGGCCGC <u>GCG</u> CACAGCCTGTCCGGCGCCAC
DnDGacS _{H133A}	CCTGCAGGTCGACGGATCGCAGGTTGGTGAAACCGAGGAT
UpUGacS _{W150A}	CTACTTATGGTACCCGGGAACGTATGGCCGGGGAGC
UpDGacS _{W150A}	CGACAGTTCCAGTTCGAC <u>TGC</u> GCCGAGTACGCGCTCGTC
DnUGacS _{W150A}	GACGAGCGCGTACTCGGC <u>GCA</u> GTCGAACTGGAACTGTCG
DnDGacS _{W150A}	CCTGCAGGTCGACGGATCCGCGGGCTGAGCTCGCTC
Deletion mutant	
$UpU\Delta gacS_{PD}$	CG <u>GGATCC</u> CTTCGGCAGATAATCGTCGG
$UpD\Delta gacS_{PD}$	CGTGGTGCGACCCGCGCTCGATCAACTGGG
$DnU\Delta gacS_{PD}$	CGAGCGCGGGTCGCACCACGGGACTCTGCTGC
$DnD\Delta gacS_{PD}$	CG <u>GGGCCC</u> ATTTCTGGATGGTCGTGAGG
RT-qPCR	
uvrDUp	CACGCCTCGCCCTACAGCA
uvrDDn	GGATCTGGAAGTTCTCGCTCAGC
avoSUn	

exoSUp

exoSDn

vgrG1bUp

vgrG1bDo

CTCTACACCGGCATTCACTA CTTCACTACCTGTTCAGCCT CCATTTCTACGACTGGCACA GGGTAGTCGTACAAGCG

Figure S1

Figure S1: Effect of overexpression of full length LadS on biofilm formation in PAK, PAKAgacS and PAKAgacS Δ_{PD} strains. The pBBRladS plasmid containing the *ladS* HK gene (dark bar) and the corresponding pBBRMCS4 empty cloning vector (light bar) were conjugated in the PAK, PAK $\Delta gacS\Delta_{PD}$ or PAK $\Delta gacS$ strains. (a) Biofilm production in glass tubes was illustrated (upper panel) and quantified after crystal violet-staining (lower panel). Levels of biofilm production represent mean values and standard deviations obtained from three independent experiments. (b) Activities of the *rsmZ*–lacZ transcriptional chromosomal fusions were monitored after 6 hours of growth (OD600nm \approx 2) and corresponding β -galactosidase activities are expressed in Miller units and correspond to mean values (with error bars) obtained from three independent experiments. Wilcoxon-Mann-Whitney tests were performed and **, *** and ns referred to p<0.01, p<0.001 and non significant difference, respectively.

Figure S2: Phylogenetic tree of the Pseudomonas GacS periplasmic domain. The sequences are named according to the nomenclature adopted for *P. aeruginosa*. We calculated 1000 bootstrap replicates: bootstrap values > 0.5 (I.E 50 %) are indicated on branches. The main branch containing the *P. aeruginosa* GacS protein is highlighed in red, and the red and blue stars denote the position of the GacS periplasmic domain of *P. aeruginosa* and *P. fluorescens*, respectively.

Figure S3: SEC-MALS elution profile of GacS_{PD}. The elution profile of GacS_{PD} sample (blue line) and the estimated molecular weight (MW) (red line) reveals a dominant single population with an estimated molecular weight of 15000 Da.

Figure S4

Figure S4: Structural comparison. Overall view of $GacS_{PD}$ (top left) and 7 structural homologues, viewed in a similar orientation, namely the detection domain of PhoQ from *S. typhimurium*, DcuS from *E. coli*, CitA from *K. pneumonia*, CusS from *E. coli*, PYP from *H. halophila*, the sensor domain of Histidine Kinase from *C. perfringens* and the methyl-accepting domain GSU0582 from *G. sulfurreducens*.

Figure S6: Superimposition of 1 H, 15 N-HSQC spectra of GacS_{PD} (in red) and GacS_{PD} R94A/H97A (a), H124A (b), H133A (c) (in grey). The samples were prepared in 50 mM potassium phosphate pH 7, 150mM NaCl. The protein concentration of samples was 150 μ M. The spectra were recorded at 298K on a 600MHz NMR spectrometer.

Table S5: Molecules used for ligand binding assays with $GacS_{PD}$

Fumarate
Succinate
Pyruvate
Tartrate
Acetate
Citrate
Pyrroloquinoline quinone
Malic acid
L/D-Lactate
Glutamate
N-acetyl Glutamate
Glutamine
Arginine
Homoserine
O-Succinyl-L-homoserine
Putrescine
Spermidine
α-Ketoglutaric acid
Malonic acid
Formate
Glucose
Gluconate
Glutaraldehyde
Reduced/Oxydized
Glutathion
Thiamine
Guanosine diphosphate
(GDP)
Leucine
γ-aminobutyric acid
(GABA)
Fructose
Ions: Ni^{2+} , Mg^{2+} , Fe^{2+} ,
$Zn^{2+}, Mn^{2+}, Ca^{2+}$