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Supplementary material 1: Technical details of multivariate and network random effects meta-

analysis models 

Standard (univariate) random effects meta-analysis 

A standard random effects meta-analysis combines the study estimates of a single parameter of 
interest (e.g. a treatment effect) in order to estimate the average parameter value (denoted by  ) 
and the standard deviation of the parameter values (denoted by  ) across studies. The term 
‘random’ denotes that the true parameter value in an individual study can vary randomly about 
the average value due to unexplained heterogeneity. If Yi and var(Yi) denote the parameter 
estimate and its variance in study i, then assuming within-study and between-study normal 
distributions, a random effects meta-analysis is: Yi   N(  ,var(Yi) +    ).   

Multivariate random effects meta-analysis 

A multivariate random effects meta-analysis generalises the standard approach, by allowing for 
multiple correlated parameter estimates to be combined per study, typically by assuming within-
study and between-study multivariate normal distributions. For example, in the fibrinogen 
example a bivariate random effects meta-analysis will jointly synthesise ‘fully’ adjusted log hazard 
ratio estimates (YiF) and partially adjusted estimates (YiP), whilst accounting for within-study and 
between-study correlations, to give a summary result for each (   and   , say) and corresponding 
estimates of between-study standard deviation (   and   ). Within-study correlation refers to the 
association between two parameter estimates in the same study, and is caused by the same 
individuals contributing related data toward each outcome. Between-study correlation indicates 
the strength of association between true parameter values across studies, and is caused by 
differences across studies in patient and study characteristics modifying the true values in a 
related way. In the fibrinogen example, high within-study correlation arises due to the same 
patient data contributing to both ‘fully’ and partially adjusted estimates, whilst high between-
study correlation arises because studies with a higher than average ‘fully’ adjusted effect will also 
have a higher than average partially adjusted effect. Between-study correlations are estimated in 
the meta-analysis, but within-study correlations need to be obtained for each study prior to fitting 
the meta-analysis. Options have been proposed for dealing with missing within-study correlations, 
including an alternative approach to multivariate meta-analysis that models an ‘overall’ 
correlation, which is an amalgamation of the within and between-study correlations.1-3 

Network meta-analysis 

Network meta-analysis of multiple treatment comparisons can be expressed using various 
approaches, depending on the data available. If there are only two treatments per trial (i.e. one 
treatment comparison), then the simplest approach is a standard meta-regression, which 
regresses the treatment effect estimates against indicator variables that represent particular 
treatment effects in relation to a chosen reference treatment. This can be extended to a 
multivariate meta-regression to accommodate trials with multiple treatment comparisons.4 5 . 
When the number of events and patients per treatment group are available per study, a 
hierarchical logistic regression with random effects can be used to model the binomial data 
directly within trials. Similarly a hierarchical linear regression or Poisson regression with random 
effects could be used to model continuous outcomes or rates directly. For all approaches, 
indicator variables are required to model treatment comparisons relative to a particular reference 
group, and the model framework must preserve the clustering of patients within trials; 
approaches that ignore this are inappropriate, as they break the original randomisation within 
each trial.6-8 7 9 For example, in the logistic regression approach, a separate intercept per trial is 
needed. 
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Estimation of the models  

We consider the random effects approach more plausible than assuming a fixed (common) effect, 
and so use random effects models for all our examples. For all the above models, there are many 
different methods to estimate each   and  , and subsequent confidence intervals, including 
frequentist and Bayesian approaches. In the examples within the paper, we used restricted 
maximum likelihood (REML) within a frequentist (classical) statistical framework, with confidence 
intervals accounting for the uncertainty of variance estimates, via the ‘mvmeta’ and ‘network’ 
packages within Stata.10 11 7 8 12-15  Further, mainly for pragmatic reasons, our network meta-
analyses assume a common   for each treatment comparison. As in a standard meta-analysis, the 
relative magnitude of heterogeneity can be expressed using multivariate extensions of the I-
squared statistic, to give the percentage of the total variability that is due to between-study 
heterogeneity,16 and estimates of between-study standard deviation ( ).  

An alternative option is a Bayesian approach, which is a natural way to account for all parameter 
uncertainty, to make predictions and to derive (joint) probabilistic statements regarding the 
multiple effects of interest. The Bayesian approach combines the likelihood of the observed data 
with prior probability distributions for the unknown parameters (e.g. treatment effects and 
between-study variances), to obtain a joint posterior probability distribution of the parameters 
from which inferences are made. The prior distributions should reflect prior beliefs about possible 
values of the unknown parameters and can be used to incorporate various sources of uncertainty. 
It is common for “non-informative” or “flat” prior distributions to be used for unknown 
parameters, aiming that posterior results should not be influenced by the prior distribution (only 
the data). However, assessing sensitivity to the choice of such prior distributions is 
recommended.17 18 Informative prior distributions based on external (empirical) evidence are also 
available.19 

Software 

Software for multivariate meta-analysis is available in various statistical packages, including 
mvmeta in Stata10 and mvmeta in R20, and via PROC MIXED in SAS.21 Network meta-analysis is 
often implemented in WinBUGS using, for example, code available at 
http://www.nicedsu.org.uk/. Dedicated software is also available, such as network and 
network_graphs in Stata11 22 and netmeta in R.23  

  

http://www.nicedsu.org.uk/
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Supplementary material 2: Forest plot for the meta-analyses of the ‘fully’ adjusted effect of 

fibrinogen.

 

Each solid point denotes the hazard ratio estimate for that study, with its size proportional to the 

number of patients in that study, and the corresponding horizontal line denotes the confidence 

interval. The centre of the diamond denotes the summary hazard ratio, and the width of the 

diamond provides its 95% confidence interval.   
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Supplementary material 3: Percentage study weights in the network meta-analysis and 

overall summary results, where treatment A is the reference group; as shown by Riley et al.
24

 

 
Percentage study weights in the network meta-

analysis 
 

 
B vs A C vs A D vs A E vs A F vs A G vs A H vs A 

 

Study 1 81.14 0.01 97.70 26.67 18.44 0.53 0.01 
 

Study 2 0.02 58.05 0 0.01 0 0.23 90.34 
 

Study 3 0 0.35 0 0 0 0 0.06 
 

Study 4 0 0.14 0 0 0 0 0.02 
 

Study 5 0 0.15 0 0 0 0 0.02 
 

Study 6 0 39.18 0 0 0 0.15 6.33 
 

Study 7 0 0.25 0 0 0 0 0.04 
 

Study 8 0 0.43 0 0 0 0 0.07 
 

Study 9 0 0.33 0 0 0 0 0.05 
 

Study 10 0.05 0 0.55 0.02 0.01 0 0 
 

Study 11 10.58 0 0.99 3.48 46.54 0.07 0 
 

Study 12 0.13 0.07 0.01 0.04 0.03 19.36 0.01 
 

Study 13 0 0.03 0 0 0 0 0.18 
 

Study 14 0 0.05 0 0 0 0 0.29 
 

Study 15 0 0.03 0 0 0 0 0.18 
 

Study 16 0 0.14 0 0 0 0 0.86 
 

Study 17 0 0 0 67.13 0 0 0 
 

Study 18 5.82 0 0.54 1.91 33.80 0.04 0 
 

Study 19 0.12 0 0.01 0.04 0.68 0 0 
 

Study 20 0.11 0.03 0.01 0.04 0.03 6.72 0 
 

Study 21 0.51 0.12 0.05 0.17 0.12 31.02 0.02 
 

Study 22 0.77 0.09 0.07 0.25 0.17 0 0.56 
 

Study 23 0.49 0.06 0.05 0.16 0.11 0 0.35 
 

Study 24 0.08 0.09 0.01 0.03 0.02 12.07 0.01 
 

Study 25 0.11 0.12 0.01 0.04 0.03 17.24 0.02 
 

Study 26 0.08 0.09 0.01 0.03 0.02 12.55 0.01 
 

Study 27 0 0.14 0 0 0 0 0.36 
 

Study 28 0 0.07 0 0 0 0 0.19 
 

TOTAL 100 100 100 100 100 100 100 
 

SUMMARY 

LOG ODDS 

RATIO 

(s.e.) 

-0.161 

(0.046) 

0.002 

(0.032) 

-0.044 

(0.049) 

-0.156 

(0.080) 

-0.113 

(0.062) 

-0.197 

(0.222) 

0.014 

(0.039) 
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Supplementary material 4: Ranking of antimanic drugs for response and acceptability, based on 

either (a) a network meta-analysis of each outcome separately, and (b) a network meta-analysis of 

both outcomes jointly, accounting for their negative correlation. Treatments located in the darker 

areas of the plots have the worst rankings, and those in the lighter areas have the best rankings.  

 

 

ARI = aripiprazole, ARI = aripiprazole. ASE = asenapine. CBZ = carbamazepine. VAL = divalproex. HAL 

= haloperidol. LAM = lamotrigine. LIT = lithium. OLZ = olanzapine, PBO = placebo. QTP = quetiapine. 

PAL = paliperidone, TOP = topiramate. ZIP = ziprasidone. 
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