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1 Supplementary Methods
1.1 Multidimensional arrays notation and definitions
Multidimensional arrays (tensors) generalize vectors (1D array) and matrices (2D array) to arrays of higher dimensions, three
or more. Such arrays can be used to perform multidimensional factor analysis and decomposition and are of interest to many
scientific disciplines1, 2.

Below, we introduce basic concepts and notation (we refer the reader to Supplementary Table 1 ).
Vectors, matrices and tensors. Vectors and matrices are denoted using boldface lower- and upper-case letters, respectively.

For example x ∈RI and X ∈RI×J represent a vector and a matrix, respectively. A tensor X ∈RI×J×K is a 3D array of real
numbers whose elements (i, j,k) are referred to as X(i, j,k) or xi jk. The individual dimensions of a tensor are referred to as
modes (1st mode, 2nd mode, and so on).

Tensor slices and mode-n vectors. Slices are used to address a tensor along a single dimension and are obtained by fixing
the index of one dimension of the tensor while letting the other indices vary. For example, in a 3D tensor X ∈RI×J×K , we
identify horizontal (i), lateral ( j) and frontal (k) slices by holding fixed the corresponding index of each array dimension (see
Supplementary Fig. 1a-top). Tensors can be also addressed in any dimension by means of mode-n vectors. These vectors are
obtained by holding all indices fixed except one (Supplementary Fig. 1a-bottom).

Subtensors and tensor unfolding. A subset of indices in any mode identifies a volume also referred as to a subtensor. For
example, in Fig. 1d, we identify a volume by collecting slices in the 3rd mode. In addition, a tensor can be converted into a
matrix by re-arranging its entries (unfolding). The mode-n unfolded matrix, denoted by X(n) ∈RIn×Īn , where Īn = ∏m 6=n Im
and whose entry at row in and column (i1−1)I2 · · · In−1In+1 · · · IN + · · ·+(iN−1−1)IN + iN is equal to xi1i2...iN . For example,
mode-2 unfolding builds the matrix X(2) where its columns are the mode-2 vectors of the tensor and the rows are vectorized
versions of the lateral slices, i.e. spanning dimensions with indices i and k (see Supplementary Fig. 1b).

Tensor by matrix product. By generalization of matrix multiplication, a tensor can be multiplied by a matrix in a specific
mode, only if their size matches. Given a tensor X ∈RI1×I2···×IN and a matrix A ∈RJ×In , the mode-n product

Y = X×n A ∈RI1×···×In−1×J×In+1···×IN (11)

is defined by: yi1···in−1 jin+1···iN = ∑
In
in=1 xi1···in···iN a jin , with ik = 1,2, ..., Ik (k 6= n) and j = 1,2, ...,J. Supplementary Fig. 1c

illustrates a 3D tensor by matrix product operation (2nd mode, Y = X×2 A).
Tucker decomposition. Low-rank matrix approximation can be generalized to tensors by Tucker decomposition3. For

example, X ∈RI1×I2×I3 , can be approximated by:

X≈G×1 A1×2 A2×3 A3, (12)

where ×n is the mode-n tensor-by-matrix product. G ∈ RR1×R2×R3 is the core tensor and An ∈ RIn×Rn are factor matrices.
Such a decomposition guarantees data compression when the core tensor is much smaller than the original, i.e. Rn� In (see
Supplementary Fig.1d-top).

Sparse Decomposition: Tensors can be approximated also by sparse decomposition4, 5. In this case, compression can be
achieved independently of the size of G as long as sparsity is sufficiently high (see Supplementary Fig.1d-bottom).
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Supplementary Fig. 1. (a) Examples of frontal (light blue), lateral (yellow) and horizontal (red) slices of 3D tensor (top),
and examples of mode-n vectors (bottom). (b) Illustration of the mode-2 unfolded matrix X(2). (c) Tensor-by-matrix product
(example of product in mode-2). (d) The classical Tucker decomposition (top;3) allows representing a 3D tensor X ∈RI1×I2×I3

as the product of a core tensor (green) G ∈RR1×R2×R3 by factor matrices An ∈RIn×Rn (red, yellow and light blue). Data
compression is achieved by considering very small (dense) core tensors G, meaning that Rn� In. The sparse Tucker
Decomposition (bottom;4). The core tensor G is large but sparse. Data compression is achieved because of the sparsity of the
core tensor. See Supplementary Table 1 for additional information about notation and mathematical definitions.
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Table 1. Mathematical notation and definitions for multidimensional arrays (tensors) and their decomposition.

X, A, w, b A tensor, a matrix, a vector and a scalar

xi1i2...iN , ai j, wi Entries of a tensor, a matrix and a vector

X(:, j,k), X(i, :,k), X(i, j, :) Mode-1, mode-2 and mode-3 vectors are obtained by fixing all but one index

X(i, :, :), X(:, j, :), X(:, :,k) Horizontal, lateral and frontal slices are obtained by fixing all but two indices

X(n) ∈RIn×I1I2···In−1In+1···IN Mode-n unfolding of tensor X ∈ RI1×I2×···×IN whose entry at row in and column (i1 −
1)I2 · · · In−1In+1 · · · IN + · · ·+(iN−1−1)IN + iN is equal to xi1i2...iN

Y = X×n A ∈RI1×···×In−1×J×In+1···×IN tensor by matrix product (in mode-n) where yi1···in−1 jin+1···iN = ∑
In
in=1 xi1···in···iN a jin

X≈G×1 A1×2 A2×3 A3
Tucker decomposition: a 3D tensor X ∈ RI1×I2×I3 is represented as the product of a core array G ∈
RR1×R2×R3 by factor matrices An ∈RIn×Rn

x = vec(X) ∈RI1I2···IN Vectorization of tensor X ∈RI1×I2×···×IN with the entry at position i1 +∑
N
k=2[(ik−1)I1I2 · · · Ik−1] equal to

xi1i2···iN
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1.2 Mathematical Modeling of dMRI signals
Measured dMRI signals depend on the combination of multiple cellular compartments within the brain tissue6 (e.g., neurons,
astrocytes and oligodendrocytes). The dMRI signal is generally modeled as the linear combination of two components. One
component describes the directional diffusion signal and is presumably related primarily to the direction of the neuronal axons
wrapped in myelin sheaths (white matter). This signal is often referred to as anisotropic diffusion. The other component
describes isotropic diffusion (non-directional) and is presumably related to the combination of signals originating from the rest
of the cellular bodies within the brain tissue. Below we introduce the equations we used to model the dMRI signal in relation to
these compartments.

dMRI measurements are collected with and without a diffusion sensitization magnetic gradient. Such gradient allows
the dMR image intensity to vary depending on water diffusion along a single direction. Generally multiple dMR images are
collected for each brain location by varying this diffusion-sensitization gradient (i.e., by sequentially orienting the gradient
along several gradient directions). The measured signal depends on a combination of parameters such as diffusion gradient
strength and duration. Below we denote the diffusion sensitization gradient strength with the scalar b and direction with the
unit-norm vector θθθ ∈R3.

For a given sensitization strength b and diffusion direction θθθ , the measured dMRI signal at each location within a brain
(voxel v) can be computed using the following equation7, 8:

S(θθθ ,v)≈ w0S0(v)e−A0 + ∑
f∈v

w f S0(v)e−bθθθ
T Q f ,vθθθ , (13)

where f is the index of the candidate white-matter fascicles in the voxel, S0(v) is the non diffusion-weighted signal in voxel v
and A0 is the isotropic apparent diffusion (diffusion in all directions). The value θθθ

T Q f ,vθθθ > 0 gives us the apparent diffusion
at direction θθθ generated by fascicle f . Q f ,v ∈R3×3 is a symmetric and positive-definite matrix called diffusion tensor9. The
diffusion tensor Q f ,v allows a compact representation of the diffusion signal measured with dMRI. Usually, Q f ,v is represented
by an 3D-ellipsoid as shown in Supplementary Fig. 2a, which can be mathematically defined with the equation:

Q f ,v = [u1 u2 u3]

[
sa 0 0
0 sr1 0
0 0 sr2

][ u1
u2
u3

]
, (14)

where un ∈R3×1 are the unit-norm orthogonal vectors that correspond to the semi-axes of the diffusion tensor ellipsoid, and
sa, sr1 , sr2 define the axial and radial diffusivity of the tensor, respectively. In the simplest version of the model, sa = 1 and
sr1 = sr2 = 0, which means that diffusion is restricted to the main axis direction (stick model)8, 10.

2 Supplementary Results
2.1 Tensor decomposition of the Linear Fascicle Evaluation model
The LiFE10 method predicts the demeaned diffusion signal y ∈RNθθθ Nv in all voxels (v = 1,2, . . . ,Nv) and gradient directions
(θθθ 1,θθθ 2, . . . ,θθθ Nθθθ

) using the following equation (see Methods for its derivation). Each column in matrix M (Methods, equation
4) contains the diffusion signal contribution from a single fascicle at all voxels and gradient directions. Vector w ∈RN f contains
the weights associated to each fascicle’s contribution.

Vector y and matrix M are composed by a vertical concatenation of Nv block vectors yv ∈RNθθθ and matrices Mv ∈RNθθθ×N f ,
where each block corresponds to a particular voxel v (see Supplementary Fig. 2c):

y1
y2
...

yNv

≈


M1
M2

...
MNv

w, (15)

Thus, in each voxel we have the following linear model: yv ≈Mvw. Matrix Mv can be factorized as follows

Mv ≈ M̂v = DΦΦΦv, (16)

where matrix D ∈RNθθθ×Na is a dictionary of diffusion predictions whose columns (atoms) correspond to precomputed fascicle
orientations, and ΦΦΦv ∈RNa×N f is a sparse matrix whose non-zero entries (ΦΦΦv(a, f ) ) indicate the orientation of fascicle f in
voxel v approximated by atom a. The dictionary atoms were created by uniformly sampling the azimuth (α) and elevation
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(β ) of an idealized unit-norm sphere representing the space of putative fascicles directions (Supplementary Fig. 2f). More
specifically, the entries of the dictionary were computed as follows:

D(θθθ ,a) = e−bθθθ
T Qaθθθ − 1

Nθ
∑
θ

e−bθθθ
T Qaθθθ , (17)

where Qa is a diffusion tensor that approximates Q f ,v. At voxels where a fascicle is straight enough, the diffusion signal is
approximated by addressing only one atom (one orientation), however for curved fascicles at a voxel its diffusion signal is
approximated by a linear combination of few atoms in the dictionary. However, matrix ΦΦΦv follows the constraint

∑
a

ΦΦΦv(a, f ) = S0(v). (18)

By inserting equation (16) into equation (15), and transforming the approximated full matrix M̂ of the original LiFE model10

into a tensor M̂ ∈RNa×Nv×N f (stacking block matrices Mv as lateral slicesa), we demonstrate that the following decomposition
holds:

M̂ =ΦΦΦ×1 D, (19)

where ΦΦΦ ∈RNa×Nv×N f is obtained by stacking all individual voxels matrices ΦΦΦv (v = 1,2, . . . ,Nv) into the lateral slices of ΦΦΦ.
Finally, using equations (4) and (19), the full LiFET model can be written as (Fig. 2a):

Y≈ΦΦΦ×1 D×3 wT , (20)

where matrix Y ∈RNθθθ×Nv is obtained by stacking vectors yv (v = 1,2, . . . ,Nv) as columns, ΦΦΦ ∈RNa×Nv×N f is a sparse core
tensor and w ∈RN

f is the vector of weights (see Supplementary Fig. 2e). This model is an example of application of Sparse
Tucker Decomposition (see Methods,4). In the article we refer to this model as LiFET (see Fig. 2a).

2.2 Comparison of the weights estimated by LiFEM and LiFET
In equation (13), we introduced a measure that quantifies the difference between two weights vectors w and ŵ. Weights vectors
are sparse and their entries indicate which fascicles in the connectome contribute (non-zero) or not (zero) to predict the diffusion
signal. Fig. 2c, bottom panel, shows a global comparison of the vector of weights estimated by LiFE and LiFET as defined in
equation (13).

Hereafter, we perform additional detailed analyses on the difference between these vectors. The observed error between the
vectors w and ŵ can, in theory, be the result of: (1) each model assigning non-zero weights to a different subset of fascicles; (2)
non-zero weights being assigned to the same subset of fascicles but their magnitude differs in the two models; (3) a combination
of (1) and (2). This difference is important because it would indicate that either LiFEM and LiFET select very different fascicles
(1) or the same fascicles (2). The case in (1) would indicate a potential bias in LiFET. We explicitly quantified which one of
these three cases contributed to the observed error in the weights. To do this, we defined two subsets of weight-fascicles indices.
Those that have non-zero values in both models, common-fascicles indices (Supplementary Fig. 2j, orange) and those that
have non-zero values in one model but not in the other, different-fascicles indices (Supplementary Fig. 2j, green and blue).

We define the vectors of common-fascicles as wc and ŵc, and different-fascicles as wd and ŵd (see Supplementary Fig.
2j). We demonstrate that the square of the error of the weights (Methods, equation 13) is:

e2
w = e2

wc + e2
wd
, (21)

where e2
wc =

‖wc−ŵc‖2
‖w‖2 and e2

wd
= ‖wd‖2
‖w‖2 + ‖ŵd‖2

‖w‖2 are the squared errors associated to the common- and different-fascicles,
respectively.

2.3 Encoding a connectome into LiFET
Encoding a brain connectome information into the LiFET model involves the computation of the dictionary matrix D and the
sparse tensor ΦΦΦ.

The dictionary matrix D need to be computed first by fixing the total number of atoms Na to be used, i.e. by setting
the minimum incremental unit ∆ = π/L for the spherical coordinates which create a regular grid (see Supplementary Fig.
2f). Thus, by increasing the parameter L we increase the resolution which has two main consequences: 1) reduces the

aNote that the M̂ is the transposed mode-3 unfolded matrix of tensor M̂, i.e M̂ = M̂T
(3). We use this unfolding operation to compute the LiFET model error

eM, see Fig. 2c, top panel.
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approximation error (see section 2.5 and Supplementary Fig. 2g-i), and 2) increases the size of the model (see section 2.6).
We have demonstrated that by using L = 360, we obtained a very accurate approximation and a substantial reduction in storage
requirements.

By computing the sparse tensor ΦΦΦ we encode the information of fascicles in a connectome into our decomposed model.
More specifically, the sparse tensor is computed slice by slice (mode-3), i.e. by looking at one fascicle in the connectome at a
time. Each fascicle f is composed by a set of nodes connected, so for each one of the nodes we need: 1) to identify the voxel
index v in which the node is located, and 2) find the atom index a having the spatial orientation of that fascicle. Finally, for
each fascicle node we set a non-zero entry within the sparse tensor ΦΦΦ as follows:

ΦΦΦ(a,v, f ) = 1. (22)

After encoding all the fascicles nodes into the sparse tensor ΦΦΦ, we impose the constraint stated in equation (18) by applying the
following normalization:

ΦΦΦ(:,v, f ) = S0(v)
ΦΦΦ(:,v, f )

∑a ΦΦΦ(a,v, f )
∀(v, f ). (23)

2.3.1 Comparison between the multidimensional encoding framework with the standard fascicles representation
It is standard to represent fascicles as an ordered series of x, y, z coordinates. Each coordinate represents one fascicle node
and each fascicle is composed of multiple nodes. Nodes are spaced anything between 0.1 to 1 mm. Our multidimensional
encoding framework capture fascicles in a manner that is similar but different from the standard method. Below, we discuss
the properties of the multidimensional encoding framework and advantages and potential disadvantages as compared to the
standard representation.

• Storage: Supplementary Fig. 2n compares the computer memory required by MatLab the fascicles using our framework
and the standard method. We plot: (i) the sparse core tensor ΦΦΦ and (ii) the vectors of 3D points (fiber group). It is
noted that, the sparse core tensor requires slightly more memory than the standard format. This is the case because
whereas each fascicle node is represented in the standard format by three double precision floating-point numbers, the
array encoding in MatLab uses four double precision floating point numbers. This is due to the sparse-array MatLab
implementation (Tensor Toolbox11, 12). However, as we discuss below, our tensor encoding allows for very efficient
computations.

• Efficient signal prediction model Our first application in the manuscript shows that by using the encoding framework
allows discretizing the orientations of diffusion-prediction kernels by using dictionary of pre-computed diffusion tensors.
This discretization allows saving memory when predicting the signals as compared to the original LiFE model based on
matrices (LiFEM)10.

• Efficient computation The advantage of our encoding method is that to represent in a compact form the integration
of the dMRI signal, the streamlines and the LiFE model. By virtue of this integration, the sparse tensor representation
makes forward model calculations (based either on the fascicles, data or model) more straightforward by allowing access
to streamlined tensor operations, such as direct indexing operations. This is illustrated in the third and fourth application
in the manuscript.

• Sub-voxel information The encoding framework loses some information on the position of the fascicles within a voxel.
Indeed, when mapping fascicles-nodes to locations in the array ΦΦΦ nodes are assumed to be centered in each voxel. This
approach simplifies most mapping calculations. In practice, the effect of this assumption depends on multiple properties
of the data, such as its resolution and SNR. Future advances in measurement to improve data SNR or resolution are likely
to mitigate the effects of this assumption.

• Fascicle nodes order The sparse tensor representation loses the information about the order of each node in a fascicle.
However, when needed this information can be conveniently mapped using separated vectors storing nodes order. In
addition, in theory the ΦΦΦ array could in principle be extended by adding one dimension to map the node order.

2.4 Fitting the LiFET model
Once the LiFET has been built, the final step to validate a connectome requires finding the non-negative weights that least-square
fit the measured diffusion data. This is a convex optimization problem that can be solved using a variety of Non-Negative Least
Squares (NNLS) optimization algorithms. We used a NNLS algorithm based on first-order methods specially designed for large
scale problems13. Hereafter, we show how to exploit the decomposed LiFET model in the optimization.
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The gradient of the original objective function for the LiFE model can be written as follows:

∇w

(
1
2
‖y−Mw‖2

)
= MT Mw−2MT y, (24)

where M ∈RNθ Nv×N f is the original LiFE model, w ∈RN f the fascicle weights and y ∈RNθ Nv the demeaned diffusion signal.
Because the decomposed version does not explicitly store M, below we describe how to perform two basic operations (y = Mw
and w = MT y) using the sparse decomposition.

2.4.1 Computing y = Mw
The product Mw can be computed in the following way using a tensor by vector product:

Y = M×3 wT , (25)

where the result is a matrix Y ∈RNθ×Nv , a matrix version of the vector y. Using the LiFET model the product is written as
follows:

Y =ΦΦΦ×1 D×3 wT . (26)

In Algorithm 1, we present the steps for computing y = Mw in an efficient way.

Algorithm 1 : y = M times w(Φ,D,w)
Require: Decomposition components (Φ, D and vector w ∈RN f .
Ensure: y = Mw
1: Y = Φ×3 wT ; the result is a large but very sparse matrix (Na×Nv)
2: Y = DY; the result is a relatively small matrix (Nθ ×Nv)
3: y = vec(Y)
4: return y;

2.4.2 Computing w = MT y
The product w = MT y can be computed using LiFET in the following way:

w = MT y = M(3)y =ΦΦΦ(3)(I⊗DT )y, (27)

where ⊗ is the Kronecker product and I is the (Nv×Nv) identity matrix. Equation (27) can be written also as follows4:

w =ΦΦΦ(3)vec(DT Y), (28)

where vec() stands for the vectorization operation, i.e. to convert a matrix to a vector by stacking its columns in a long vector.
Because matrix ΦΦΦ(3) is very sparse, we avoid computing the large and dense matrix DT Y and compute instead only its

blocks that are being multiplied by the non-zero entries in ΦΦΦ(3). This allows maintaining efficient memory usage and limits the
necessary number of CPU cycles. In Algorithm 2, we present the steps for computing w = MT y in an efficient way.

Algorithm 2 : w = Mtransp times y(ΦΦΦ,D,y)
Require: Decomposition components (ΦΦΦ, D) and vector y ∈RNθ Nv .
Ensure: w = MT y
1: Y ∈RNθ×Nv ← y ∈RNθ Nv ; reshape vector y into a matrix Y
2: [a,v, f,c] = get nonzero entries(ΦΦΦ); a(n), v(n), f (n), c(n) indicate the atom, the voxel, the fascicle and coefficient associated to node n, respectively, with

n = 1,2, . . . ,Nn;
3: w = 0 ∈RN f ; Initialize weights with zeros
4: for n = 1 to Nn do
5: w( f (n)) = w( f (n))+DT (:,a(n))Y(:,v(n))c(n);
6: end for
7: return w;
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2.5 Analysis of the LiFET model accuracy
The LiFET model provides an approximation of the original LiFE model. In this section we derive a theoretical upper bound for
the model approximation error eM defined in Methods, equation (12) as a function of the discretization parameter L, such as
lim
L→∞

eM = 0

Let us start by focussing in the approximation error of LiFET model compared to the original LiFE model for a particular
voxel v, fascicle f and gradient direction θθθ . In this case, the error in modeling the diffusion signal is given by:

∆O = |O f (θθθ)−D(θθθ ,a)|, (29)

where O f (θθθ) is the diffusion signal as defined in Methods, equation (6) (we avoided making reference to the voxel v for
clearity) and D(θθθ ,a), defined in equation (17), is the diffusion signal of atom a at gradient direction θθθ = [θx,θy,θz]

T . By
defining v = [vx,vy,vz]

T and va = v+∆v = [vx +∆vx ,vy +∆vy ,vz +∆vz ]
T as the vectors pointing out at the directions of the

fascicle f and its closest dictionary atom a, respectively (see Supplementary Fig. 2f), and using the “stick” model diffusion
tensor, i.e. sa = 1 and sr1 = sr1 = 0 in equation (14), the diffusion tensors of the associated fascicle f and its approximation are:

Q f = vvT and Qa = (v+∆v)(v+∆v)
T . (30)

Now, using equations (6), (17) and (30) into equation (29), we arrive at:

∆O = |∆ f −
1

Nθ
∑
θ

∆ f |, (31)

where ∆ f = | f (v1 +∆v)− f (v)| with f (v) = e−b(θθθ T v)2
.

For a sufficiently small error vector ∆v = [∆vx ,∆vy ,∆vz ]
T , we can approximate ∆ f as follows:

∆ f ≈
∣∣∣∣ ∂ f
∂vx

∣∣∣∣∆vx +

∣∣∣∣ ∂ f
∂vy

∣∣∣∣∆vy +

∣∣∣∣ ∂ f
∂vz

∣∣∣∣∆vz , (32)

≈ 2b|θθθ T v|e−b(θθθ T v)2
(|θx∆vx |+ |θy∆vy |+ |θz∆vz |). (33)

By using the fact that |θθθ T v| ≤ 1, e−b(θθθ T v)2 ≤ 1, ∆vx ,∆vy ,∆vz ≤ ‖∆v‖ ≤ π√
2L

, and ‖θθθ‖1 ≤
√

3‖θθθ‖, we obtain:

∆ f ≤
bπ
√

6
L

. (34)

Finally, by using the equation (34) into equation (31), we obtain an upper bound for the error modeling the diffusion signal of
one fascicle f at one gradient direction in a voxel:

∆O ≤
2bπ
√

6
L

. (35)

In order to establish a theoretical upper bound of the model error (eM, Methods, equation 12) as a function of the
discretization parameter L, we need to find an upper bound of ‖M− M̂‖ and note ‖M‖ is independent of the discretization
parameter L. The upper bound of ‖M−M̂‖2 can be obtained by assuming that all fascicles are composed of a fixed number of
nodes Nn, and adding up over all nodes n, fascicles f and directions θθθ , i.e.

‖M−M̂‖2
F ≤ N f NnNθθθ

(
2bπ
√

6
L

)2

. (36)

Finally, using equation (36) in equation (12) we obtain the following upper bound of the model error:

eM ≤
κ

L
, (37)

where κ =

√
6N f NnNθθθ 2bπ

‖M‖F is a constant (independent of discretization parameter L).
Equation (37) clearly states that the achievable relative error is inversely proportional to the discretization parameter L,

which allows us to make the model as accurate as we want by just increasing the dictionary resolution, i.e. increasing L.
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Finally, we note that this discretization of the diffusion-orientation prediction on the sphere (Supplementary Fig. 2f) is
non-uniform, which in turns leads to a denser discretization around the poles of the sphere. This is the result of using a uniform
sampling along the dimensions of azimuth and elevation. This choice improves efficiency in mapping fascicles-nodes to
dictionary (D) and sparse array (ΦΦΦ) entries.This is because we can use an analytic solution to compute the spherical coordinates
and map the orientation of each fiber at each node onto the sphere, and the corresponding columns in D and entries in ΦΦΦ.

Yet, because of the non-uniform sampling on the sphere, it is in principle possible that the LiFET model could be biased
toward supporting more fascicles closer aligned to the poles of the spheres in D. THis is because at orientation closer to the
poles the dictionary resolution is highest. We performed an explicit test to show whether the discretization biases the model
fit. We compared our original results, both r.m.s error and fascicle weights (w), with new ones obtained by rotating the dMRI
image and fascicles 90 degrees (on the axis x) without rotating dictionary. This manipulation changes the position of the
higher-density sphere sampling poles in relation to the fascicles and dMRI data. If the density affects the model fit we expect
either r.m.s. or w to differ. The test was performed on 8 subjects (HCP3T and STN) using probabilistic tractography (Lmax =
10) and using dictionaries with the fixed density (that is L = 360, corresponding to about Na = 129,241 dictionary entries). The
results of this test are presented in Supplementary Fig. 2o. The results demonstrate a very small effect of the rotation, with
measured less than 0.5% change in r.m.s. error and less than 0.05% change in the assigned weights.

2.6 Analysis of the LiFET model compression factor
Here, we analytically derive the storage requirements of matrix M in LiFE (Supplementary Fig. 2c;10) and its approximation
M̂ through LiFET, decomposed model (Supplementary Fig. 2d). To do so, as in the previous section, we simplify the analysis
by assuming that all fascicles have the same number of nodes Nn and that there are no more than one node per fascicle, per
voxel. Under these ideal assumptions the amount of memory necessary to store each fascicle f in a sparse matrix M is 3Nθθθ Nn,
since using a sparse matrix structure, three numbers are required for each node, i.e. the row-column indices plus the entry value.
Thus the storage cost of M is:

C(M) = O(3NnNθθθ N f ). (38)

Conversely, storing fascicles in the LiFET model requires 4Nn values per fascicle plus the dictionary matrix (i.e. the set of
the non-zero entries and their locations within the tensor ΦΦΦ together with matrix D). Thus the amount of memory required in
LiFET model is:

C(M̂) = O(4NnN f +Nθθθ Na), (39)

where Nθθθ Na is the storage associated with the dictionary matrix D ∈RNθθθ×Na . The Compression Factor can be straightforwardly
computed as follows:

CF =

(
4

3Nθθθ

− Na

3NnN f

)−1

. (40)

Given that, usually 3NnN f � Na, the compression factor can be estimatedb as follows:

CF ≈ 3Nθθθ

4
. (41)

Equation (41) states that the compression factor is proportional to the number of directions Nθθθ , which represents a substantial
reduction in memory requirements for modern datasets.

bWe note that our experimental results in Fig. 2d showed a compression factor slightly lower than the theoretical estimation because the sparse matrix
format implemented in Matlab14 is relatively more efficient than the sparse array format used in the Matlab Tensor Toolbox12
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Supplementary Fig. 2. (a) A diffusion tensor model whose principal axes are given by the spatial orientation of a fascicle
in a voxel v. (b) Linear model at voxel level: diffusion signal prediction for a voxel intersected by two fascicles, f1 and f2, is
shown. Fascicle f1 crosses the voxel from one side to the other and it bends within it, which is modeled as composed by two
nodes (yellow and blue). Fascicle f2 occupies a small portion of the voxel contributing with one diffusion tensor (red). The
total prediction signal is the linear combination of the signals associated to existing fascicles within the voxel. (c) Linear model
for all voxels: LiFE model matrix M10 is obtained by stacking in its columns, the diffusion signal predictions of fascicles. The
predicted diffusion signal in all voxels is obtained as y≈Mw, where w is a sparse vector of weights obtained by solving a
convex optimization problem with non-negativity constraints. (d) Sparse factorization of the diffusion signal in a voxel:
Nonzero columns in block matrix Mv correspond to fascicles passing through v (two in our example). Those columns are
approximated by combining the diffusion prediction of the dictionary atoms (columns of matrix D) with directions closest to
the orientation of the fascicles nodes (yellow, blue and red). Non-zero entries in matrix ΦΦΦv indicate the atoms corresponding to
the nodes in the fascicles f1 and f2 in the example. (e) The LiFET model: the diffusion signal matrix Y ∈RNθ×Nv (directions ×
voxels) is written as a Sparse Tucker Decomposition by using the core Sparse tensor ΦΦΦ ∈RNa×Nv×N f , multiplied in mode-1 by
the dictionary matrix D ∈RNθ×Na and, in mode-3, by the vector of weights w ∈RN f . (f) Error introduced by the discretization:
Left, a regular grid in the sphere is obtained by discretizing the space in spherical coordinates (α,β ). Right, the maximum
distance between the fascicle orientation vector v and its approximation va is inversely proportional to the parameter L, i.e.
‖∆v‖ ≤ π√

2L
.
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Supplementary Fig. 2. (g) Comparison of the global r.m.s error obtained by LiFE and LiFET models. It is clear that for
L≥ 180 LiFET approximates very well the original LiFE model (difference < 1×10−6). (h) Weights error ew versus
parameter L. This plot shows that for L≥ 360 LiFET provides a very good approximation of the LiFE model (ew < 0.2%). (i)
The model error eM in approximating the matrix M with LiFET is inversely proportional to the parameter L as predicted by our
theoretical bound (see equation 37). The function eM ≈ C

L was fitted to the data, which resulted in an estimated value
C = 28.22, and a fitting error equal to 3.03% (relative root squared error). It is noted that, for L≥ 360, we obtained a model
error smaller than 0.1%. (j) By defining common (orange) and different (green and blue) subsets of indices within vectors w
and ŵ, the squared weights error is decomposed as the sum of the squared errors associated to the common and different
fascicles (see equation 21). (k) The squared error for common fascicles e2

wc (top) and different fascicles e2
wd

(bottom) computed
for STN, STN150 and HCP3T datasets are shown. While the total squared e2

w is kept below 0.2%, it is highlighted that it is
larger in the deterministic case compared against to the probabilistic case. However, the error associated to the different
fascicles is very small compared to the common fascicles, which means that essentially both models use almost the same subset
of fascicles. (l) and (m) Model size (GB) scales linearly with the number of directions Nθ and the number of fascicles N f ,
however it increases much faster in the LiFE model compared to the LiFET model. (n) Comparison of memory usage in Matlab
to store a connectome as a fiber group (points in the 3D space) and as a sparse core tensor ΦΦΦ computed on 8 subjects (HCP3T
and STN) using probabilistic tractography (Lmax = 10). It is noted that, even that the core tensor requires moderately more
memory, our decomposed tensor model provides the information on the relation between fascicles and diffusion signal. (o) To
test the existence of a bias due to the non uniform distribution of dictionary elements, we computed the relative error on the
weights ew and difference in rmse values (defined as ‖erms− êrms‖/‖erms‖) by comparing the results with the one obtained by
rotating 90 degrees the diffusion data and the fascicles. These results show that the difference is very small (less than 0.5 % and
0.05 % for the weights and rmse, respectively).
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Supplementary Fig. 3. (b) Major human tracts from LiFE optimized connectomes (fascicles with nonzero weights) using Probabilistic tractography (Lmax = 10) for
two subjects in the STN dataset and two subjects in the HCP3T dataset. Results obtained by repeating the tractography and optimization ten times are shown in different
columns. It is highlighted that connectomes are anatomically discriminable across subjects and datasets (rows) but preserving the anatomy among repetitions of the LiFE
evaluation (columns).
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Supplementary Fig. 3. (c) Major human tracts from LiFE optimized connectomes (fascicles with nonzero weights) using probabilistic (Lmax = 2,4,6,8,10,12),
deterministic (Lmax = 2,4,6,8,10,12) and tensor tracking methods for two subjects in the STN dataset and two subjects in the HCP3T dataset. It is highlighted that
connectomes are anatomically discriminable across subjects and datasets (rows) and across tracking methods.
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Supplementary Fig. 4. The strength of evidence S is a measure of distance between the distributions of r.m.s errors in
voxels for the model with virtual lesion and without virtual lesion (see10 for details). Similarly to the Earth Mover Distance
measure (Fig. 4d), the strength of evidence is positive for the major tracts, which replicates the statistical evidence of major
tracts reported in10.
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