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 1 

Abstract 2 

Background 3 

The human gut microbiome can modulate metabolic health and affect insulin resistance, and may 4 

play an important role in the etiology of gestational diabetes mellitus (GDM). Here, we compared 5 

the gut microbial composition of 43 GDM patients and 81 healthy pregnant women via whole-6 

metagenome shotgun sequencing of their fecal samples collected at 21-29 weeks, to explore 7 

associations between GDM and the composition of microbial taxonomic units and functional genes. 8 

Results 9 

Metagenome-wide association study (MGWAS) identified 154,837 genes, which clustered into 129 10 

metagenome linkage groups (MLGs) for species description, with significant relative abundance 11 

differences between the two cohorts. Parabacteroides distasonis, Klebsiella variicola, etc., were 12 

enriched in GDM patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp. 13 

and Eubacterium spp. were enriched in controls. The ratios of the gross abundances of GDM-14 

enriched MLGs to control-enriched MLGs were positively correlated with blood glucose levels. 15 

Random Forest model shows fecal MLGs have excellent discriminatory power to predict GDM 16 

status.  17 

Conclusions 18 

Our study discovered novel relationships between gut microbiome and GDM status, and suggested 19 

that changes in microbial composition may potentially be used to identify individuals at risk for 20 

GDM.  21 

 22 

 23 

 24 

Keywords: Gut microbiome, gestational diabetes mellitus, metagenome-wide association. 25 
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Background 1 

The increasing prevalence of gestational diabetes mellitus (GDM), and its subsequent health 2 

outcomes, are a significant public health concern and a major challenge for obstetric practice [1]. 3 

GDM represents a heterogeneous group of metabolic disorders [2] which affects 3-14% of 4 

pregnancies, and 20-50% of these affected women are expected to develop type 2 diabetes（T2D）5 

within 5 years [3, 4]. Emerging evidence has revealed a link between the gut microbiome and human 6 

metabolic health including T2D [5, 6], leading us to hypothesize that the gut microbiome may 7 

impact gestational metabolism and development of GDM. 8 

Microbial dysbiosis in the human gut may be an important environmental risk factor for abnormal 9 

host metabolism, as recently exemplified in studies of obesity and T2D (reviewed by Karlsson, et. 10 

al) [7]. A study using an experimental animal model revealed that reduced numbers of 11 

Bifidobacteria led to enhanced endogenous lipopolysaccharide production, endotoxemia, and 12 

associated obesity and insulin resistance [8]. In humans, excessive weight gain and obesity in 13 

pregnancy resulted in deteriorated glucose tolerance and increased risk of GDM [9, 10]. Prevotella 14 

copri and Bacteroides vulgatus have been identified as the main species driving the association 15 

between biosynthesis of branched-chain amino acids, insulin resistance, and glucose intolerance 16 

[11]. Bacteroides spp. and Staphylococcus aureus are significantly more abundant in overweight 17 

women than in normal-weight women [12].  18 

While the majority of previous studies have focused on associations between intestinal microbiota 19 

and obese states or T2D [6, 13-15], some recent studies have sought to characterize microbiota 20 

changes during pregnancy, with the goal of providing novel insights into the relationship between 21 

microbiota changes during pregnancy and potential metabolic consequences [16]. Studies based on 22 

sequencing of 16S ribosomal RNA have revealed novel relationships between gut microbiome 23 

composition and the metabolic hormonal environment in overweight and obese pregnant women in 24 

early gestation [17]. Koren et al. found that maternal gut microbiota changed from first to third 25 

trimesters, with a decline in butyrate-producing bacteria and increased Bifidobacteria, 26 

Proteobacteria, and lactic-acid producing bacteria [16]. Further, transplants of fecal material 27 

obtained during different trimesters were sufficient to confer different phenotypes in mouse models, 28 

with third-trimester fecal transplants leading to increased adiposity and inflammation [16]. These 29 

studies suggest that pregnancy is associated with major shifts in the gut microbiome which may 30 
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play an important role in observed increases in gestational inflammation, thereby potentially 1 

contributing to development of GDM. However, studies focusing on changes in the gut microbiome 2 

during pregnancy and development of GDM have not been reported so far.  3 

Metagenomic shotgun sequencing, in which the full complement of genes present in the 4 

microbiome are sequenced, can furnish information about the relative abundance of genes in 5 

functional pathways and at all taxonomical levels [18]. In this study, we used whole-metagenome 6 

shotgun sequencing analyses of the gut microbiome during pregnancy to explore associations 7 

between GDM and the composition and abundance of microbial taxonomic units and functional 8 

genes. The objective was to obtain a comprehensive understanding of the connections between gut 9 

microbiome and the development of GDM. 10 

 11 

Data description 12 

Whole-metagenome shotgun sequencing was used to test gut microbial composition in fecal 13 

samples from 43 GDM patients and 81 healthy pregnant women based on the Illumina HiSeq2000 14 

platform in BGI-Shenzhen, China. We constructed a paired-end library with insert size of 350 base 15 

pairs (bp) for every sample, and sequenced with 100bp read length from each end. Sequencing reads 16 

for fecal samples were independently processed for quality control and host sequences removal 17 

based on an in-house pipeline (see Methods), and a total of 795 Gbp high quality metagenomic data 18 

(average per sample, 6.4 Gbp) were generated for further analysis. We performed de novo assembly 19 

and gene calling for data of each sample and constructed a non-redundant gene catalogue of all 20 

pregnant women fecal samples containing 4,344,984 genes. This gene catalogue provided a suitable 21 

reference for metagenomic gene quantification, microbial diversity analysis, and metagenome-wide 22 

association study for the pregnant women fecal samples. 23 

 24 

Results 25 

Comparison of the gut microbiota between GDM patients and healthy pregnant women 26 

First, we explored potential differences in the gut microbiome between 43 GDM patients and 81 27 

healthy pregnant women. We obtained 795.3 Gb of high-quality data (6.4 ± 1.3 Gb per sample) via 28 

metagenomic shotgun sequencing of their fecal samples to perform this analysis. When we 29 

quantified the microbial (alpha) diversity within each subject, the GDM patients showed 30 
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significantly lower gene count and Shannon index compared with the healthy pregnant women (P1 

＜0.05 for both indexes, Mann-Whitney U test).We then aligned the sequencing reads (43.8%) 2 

against available microbial genomes from the National Center for Biotechnology Information and 3 

generated taxonomic composition for all samples at the taxonomic levels of phylum, class, order, 4 

family, genus and species. Multivariate analysis based on Bray–Curtis distances between microbial 5 

genera revealed significant differences between GDM patients and healthy controls (Figure 1a). We 6 

then performed the Mann–Whitney U test to identify phylogenetic differences between GDM 7 

patients and healthy controls. Abundance at the phylum and class levels was similar between GDM 8 

patients and healthy controls; however, the order Clostridiales and the family Coriobacteriaceae 9 

were enriched in healthy controls. At the genus level, GDM patients had a significantly higher 10 

abundance of Parabacteroides, Megamonas and Phascolarctobacterium, while healthy controls 11 

were significantly enriched for Ruminiclostridium, Roseburia, Eggerthella, Fusobacterium, 12 

Haemophilus, Mitsukella, and Aggregatibacter (Figure 1b). We also found a number of bacterial 13 

species that differed significantly between GDM patients and healthy controls, consistent with the 14 

genus level observations (Table S2). These findings suggest dysbiosis of the gut microbiota among 15 

GDM patients. 16 

 17 

Identification of GDM-associated markers from gut microbiome 18 

To explore detailed signatures of the gut microbiome in GDM patients and heathy controls, we 19 

constructed a non-redundant gene catalogue consisting of 4.34 million genes, which allowed an 20 

average reads mapping rate of 79.5% for sequenced samples. We identified 154,837 genes that 21 

displayed significant abundance differences between the two groups (Mann-Whitney U test, q<0.05) 22 

(Figure S1 shows the P-value distribution between GDM patients and healthy pregnant women for 23 

all genes tested). About 68% of these genes were clustered into 129 metagenomic linkage groups 24 

(MLGs) (Table S3), which allowed species level description for the microbiome differences. The 25 

71 MLGs enriched in GDM patients included Parabacteroides distasonis, Klebsiella variicola, 26 

Catenibacterium mitsuokai, Coprococcus comes and Citrobacter spp., whereas the 58 MLGs 27 

enriched in healthy pregnant women included Methanobrevibacter smithii, Alistipes spp. (A. shahii, 28 

A. senegalensis), Bifidobacterium spp. (B. animalis, B. pseudocatenulatum) and Eubacterium spp. 29 

(E. siraeum, E. eligens). The GDM-enriched and control enriched MLGs were highly positively 30 
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interconnected within each group; however, only few negative connections were found between the 1 

two groups (Figure 2). Notably, GDM-enriched MLGs of Enterobacteriaceae, including K. 2 

variicola, E. coli, Enterobacter cloacae and Citrobacter spp., were closely linked (correlation 3 

coefficients >0.40 between each other), representing a cooperative promoting function of 4 

Enterobacteriaceae to GDM development. Of particular interest, we also observed that the relative 5 

abundance of Enterobacteriaceae was positively associated with pre-pregnancy body mass index 6 

(PBMI, Figure S2). 7 

 8 

Correlations between maternal blood glucose levels and gut microbiota 9 

In order to explore the potential clinical paths by which changes in the microbiome might lead to 10 

GDM, we investigated whether the MLGs can affect blood glucose tolerance. The ratios of the gross 11 

abundances of GDM-enriched MLGs to those of control-enriched MLGs were obviously positively 12 

correlated with blood glucose levels during the second trimester of pregnancy (Figure 3), indicating 13 

that dysbiosis of the microbiome has a significant relationship with GDM status. Several GDM-14 

enriched MLGs [e.g. GDM67, GDM64, P. distasonis (GDM1), K. variicola (GMD41) and E. rectale 15 

(GDM34)] were positively correlated with blood glucose levels, while most control-enriched MLGs 16 

were negatively correlated with blood glucose levels (Figure 4a). At the species level, Eggerthella 17 

spp., Megamonas spp., Allofustis seminis and several species in Lachnospiraceae and 18 

Parabacteroides were positively correlated with glucose tolerance, while several Alistipes spp. were 19 

negatively correlated with glucose tolerance (Figure 4b). 20 

 21 

Functional characterization of gut microbiota in GDM 22 

Next, we utilized KEGG pathway comparisons to explore potential differences in the functional 23 

composition of the microbiome of GDM patients vs. controls. Although the functional composition 24 

of GDM patients and controls were highly similar (Figure 5a), the microbiome of GDM patients 25 

showed a greater abundance in pathways of membrane transport and energy metabolism, while the 26 

microbiome of controls had higher abundance in amino acid metabolic pathways. We also found 27 

that the KEGG modules, including the phosphotransferase system (PTS) and lipopolysaccharide 28 

(LPS) biosynthesis and export systems, were associated with glucose tolerance levels (Figure 5b). 29 

 30 
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Gut microbiota-based prediction of GDM 1 

Finally, we utilized random forest models to assess the predictive ability of MLGs and species 2 

abundance profiles for GDM status. We found that certain 20 MLGs provided the best 3 

discriminatory power, as indicated by the area under the ROC curve (AUC) 0.91 (95% CI 0.87-4 

0.96), which was higher than that achieved using species profiles with this model (the best AUC 5 

was 0.80; 95% CI 0.73-0.86) using 40 species (Figure 6a). The increased AUC for the MLG-based 6 

model may be due to the fact that MLGs furnish taxonomic and functional information for unknown 7 

or unanalyzable species. Bacterial species providing the highest discriminatory power were 8 

primarily members of the Bacteroides or Parabacteroides genera (Figure 6b-c), consistent with our 9 

observation that Parabacteroides is the predominant genus accounting for differences in the gut 10 

microbiome between GDM patients and controls (Figure 1b). Although PBMI is a predictor of GDM, 11 

it did not substantially improve the performance of MLGs. (Figure 6d and Figure S3).  12 

 13 

 14 

 15 

Discussion 16 

In the present metagenomics study, we observed associations between gut microbiome and GDM 17 

status. Specifically, Parabacteroides distasonis, Klebsiella variicola, etc. were enriched in GDM 18 

patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp. and Eubacterium 19 

spp. were enriched in controls. The distribution of MLGs in GDM patients differed from that in the 20 

control group. Functional analysis showed a greater abundance of membrane transport, energy 21 

metabolism pathways, lipopolysaccharide and phosphotransferase systems in the microbiome of 22 

GDM patients, while the microbiome of controls was enriched in the amino acid metabolic pathways 23 

(Figure 7). To our knowledge, this is the first metagenomics study exploring roles of microbiota in 24 

the development of GDM.  25 

Previous studies have shown the GDM-enriched bacteria that observed in our study are involved 26 

in gut flora dysbiosis. For example, GDM-enriched Bacteroides spp. and Parabacteroides 27 

distasonis are considered to be opportunistic pathogens in infectious diseases, with potential for 28 

developing antimicrobial drug resistance [19]. The family Enterobacteriaceae also occurred with a 29 

higher relative abundance in GDM patients than in healthy controls, which indicates a status of gut 30 
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flora dysbiosis that may lead to a series of chronic diseases, such as colitis [20], Crohn's disease and 1 

acute cholecystitis [21]. Previous studies have shown that Enterobacteriaceae instigate 2 

inflammation to induce colitis [20], and the endotoxin–producing bacterium Enterobacter 3 

contributed to the development of obesity in gnotobiotic mice [22]. 4 

The decreased microbes in GDM patients included Bifidobacterium spp. (including B. 5 

pseudocatenulatum, B. animalis and one unclassified MLG), Eubacterium spp. (E. siraeum, E. 6 

eligens and two unclassified Eubacterium MLGs) and Roseburia spp. (Tables S2 and S3). Similar 7 

findings were reported in previous studies on a variety of chronic diseases, including T2D [23], liver 8 

cirrhosis [24], Crohn’s disease [25] and ulcerative colitis [26]. These bacteria can produce lactate or 9 

butyrate, which could regulate gut permeability and induce the gut inflammatory response that 10 

precedes the development of diabetes [27, 28].   11 

Our data demonstrated the ratio of gross abundances of the GDM-enriched to control-enriched 12 

MLGs was positively correlated with blood glucose tolerance levels, suggesting that microbiome 13 

dysbiosis might have a direct association with GDM pathophysiology. Functional analysis showed 14 

that the LPS biosynthesis and export systems were involved in regulation of glucose levels. Previous 15 

studies have shown that the higher systemic LPS levels were associated with low-grade chronic 16 

inflammation in obesity, metabolic syndrome and T2D [8, 29, 30]. Based on current knowledge, the 17 

possible pathways linking LPS levels to glucose metabolism may include the increases in intestinal 18 

permeability, the changes in the relative amounts of gram negative vs. gram positive bacteria and a 19 

low-grade chronic inflammatory state. LPS is a bacterial cell wall component in gram-negative 20 

bacteria and can stimulate an inflammatory response [31, 32]. Gut microbiome dysbiosis can 21 

facilitate LPS entry into the systemic circulation through increasing gut permeability, which leads 22 

to inflammation and metabolic dysfunction [33]. Our results were concordant with a previous report 23 

[23] which found that gut microbiota dysbiosis in T2D was characterized by a decrease in gram-24 

positive butyrate producing Clostridium species that lack LPS and an increase in gram-negative 25 

opportunistic pathogens including some Bacteroidetes and Proteobacteria species that contain LPS. 26 

The functional analysis in the present study found that membrane transport, energy metabolic and 27 

PTS pathways were enriched in the GDM patients. PTS pathways are responsible for transporting 28 

glucose through outer and inner membranes and catalyzing the uptake of carbohydrates. The 29 

increased relative abundance of these pathways may indicate gut environment of a GDM status may 30 
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stimulate bacterial accelerated usage of glucose as energy. 1 

There were several limitations in our study. First, the sample size is relatively small. Second, we 2 

only analyzed one stool sample per participant, which was collected in the second trimester of 3 

pregnancy. It is well known that immune and metabolic changes occur throughout pregnancy, and 4 

that the gut microbiota shifts from first to third trimesters [16]. In the present study, we are unable 5 

to clarify the causal relationship between the microbiome and the development of GDM due to the 6 

cross-sectional design. Consequently, data at multiple time points are needed to provide further 7 

insights into their dynamic relationship. Third, we did not have information on several factors such 8 

as life style and diet may further affect both blood glucose levels and gut microbiota composition. 9 

In order to more confirm the associations observed in the current study, a large prospective cohort 10 

investigation, with analysis of other potentially significant variables, will be necessary. Besides, due 11 

to the lack of serum samples, we could not measure LPS levels and describe the real endotoxemia 12 

level of the patients. 13 

In summary, this is the first study to demonstrate an association between the gut microbiota 14 

dysbiosis, functional changes and GDM. Our findings contribute to the understanding of GDM 15 

pathophysiology and may have important implications for identifying patients at risk for 16 

development of GDM.  17 

Potential Implications 18 

The gut microbiome can be considered both as an endocrine and metabolic organ, the dysfunction 19 

of which plays important roles in disease development. During gestation, profound hormonal, 20 

immunological and metabolic changes take place [34-36]. Our findings suggest that gut microbiota 21 

in pregnant women are sensitive to subtle changes in metabolism and increases in blood glucose 22 

levels. When taken together with results from previous studies on T2D [23], our findings suggest 23 

gut microbiota may be a potential predictor of T2D after pregnancy. Furthermore, data from our 24 

cohort indicate that women diagnosed with GDM also suffered from moderate gut bacterial 25 

dysbiosis and functional dysbiosis that was not restricted to certain microbial species. Although 26 

causality has not been demonstrated, it raises the possibility that susceptibility of postpartum 27 

metabolic (e.g. T2D) and immune dysfunction might be modified by reconditioning of gut 28 

microbiota. Given that the gut microflora can be modified by diet, altering the composition of gut 29 

microbiota in pregnant women may improve diabetes related outcomes. Future studies should 30 
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explore how gut bacterial dysbiosis could be improved and evaluate the efficacy of potential 1 

interventions, such as probiotics and dietary manipulation among pregnant women.   2 

Methods 3 

Study population and sampling 4 

As part of the Born in Guangzhou Cohort Study (BIGCS) [37], fecal samples were obtained 5 

from 298 pregnant women during their second trimester in Guangzhou Women and Children’s 6 

Medical Center (GWCMC) between 1st August, 2012 and 31st Aug, 2013. The inclusion criteria of 7 

current study were as follows: 1) without diseases which might affect glucose metabolism or 8 

microbiome composition such as pre-pregnancy diabetes, hypertension, thyroid disorders, asthma, 9 

lipid metabolic disorders, inflammatory bowel disease, irritable bowel syndrome and celiac disease; 10 

2) had not received any antibiotic treatment 1 month before sample collection; 3) had not taken 11 

probiotics 2 weeks before sample collection. Of the 287 eligible women, 43 had a diagnosis of GDM 12 

and were included in the present study as the case group, and 81 women of non-GDM were 13 

randomly selected as the control group. Basic characteristics of the 124 pregnant women included 14 

in the study are summarized in Table S1. Compared to non GDM women, women with GDM were 15 

more likely to be older and multiparous and have higher pre-pregnant weight, pre-pregnancy body 16 

mass index (BMI)，gestational weight gain during pregnancy and premature delivery incidence. 17 

Fecal samples were frozen at -20°C freezers immediately (within 30 minutes) and transferred to -18 

80 °C freezers within 24 hours after collected.  19 

This study received approval from the Ethics Committee of GWCMC, and written informed 20 

consent was obtained from all participating pregnant women. Participants underwent a standard 2h 21 

75g oral glucose tolerance test (OGTT) between 21–29 weeks’ gestation by collection of 2ml blood 22 

samples fasting, 1h, and 2h after a 75g glucose load, using NaF/EDTA tubes. After centrifugation, 23 

plasma glucose was measured by a hexokinase method using Beckman Coulter AU5800 automatic 24 

analyzer (Beckman Coulter, California, US). The laboratory previously achieved ISO15189 25 

certification by China National Accreditation Service for Conformity Assessment. GDM was 26 

defined using the Chinese diagnostic criteria [38], which is in agreement with the one-step approach 27 

endorsed by the American Diabetes Association [39]. Pregnant women were diagnosed as having 28 

GDM if one or more of the following glucose levels were elevated: fasting ≥5.1 mmol/L, 1h ≥10.0 29 
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mmol/L, and 2h ≥8.5 mmol/L [38]. None of these women was treated with insulin or glyburide. 1 

Maternal age, pre-pregnancy weight and height were extracted from clinical records of the Hospital 2 

Information Systems (HIS) used in GWCMC. Pre-pregnancy body mass index (PBMI) was 3 

calculated from height and weight information.  4 

 5 

DNA extraction and metagenomic sequencing 6 

Total bacterial DNA was extracted from about 180-200 mg of feces using Qiagen QIAamp DNA 7 

Stool Mini Kit (Qiagen) following the manufacturer’s instructions [40]. Extracted DNA of each 8 

sample was kept frozen at −20°C until used. Illumina HiSeq 2000 was used to sequence the samples. 9 

We constructed a paired-end library with insert size of 350 base pairs (bp) for every sample, and 10 

sequenced with 100bp read length from each end. Illumina sequencing reads for fecal samples from 11 

pregnant women were independently processed for quality control using FASTAX Toolkit 12 

(FASTAX Toolkit, RRID:SCR_015042) [41]. The following criteria were used for quality control: 13 

(1) reads were removed if they contain more than 3 N bases or more than 50 bases with low quality 14 

(<Q20); (2) reads were trimmed in the end with low quality (<Q20) or assigned as N. The remaining 15 

reads were then mapped to the human genome using SOAPalinger2 (SOAPaligner/soap2, 16 

RRID:SCR_005503) [42] to remove contaminating human DNA. After QC, an average of 1.9% 17 

of low-quality or human genome reads were removed for the 124 samples. 18 

De novo assembly, gene calling and gene catalogue construction 19 

To determine the best assembling method for the obtained high-quality Illumina sequencing reads, 20 

we compared the performance of two assemblers, SOAPdenovo v2.04 (SOAPdenovo2 , 21 

RRID:SCR_014986) (as previously used in the MetaHIT and IGC projects) [43, 44] and IDBA-22 

UD v1.1.1 (a de novo assembler for metagenomic sequences) [45]. For the SOAPdenovo, we tested 23 

the k-mer length ranging from 23bp to 123bp by 10bp step for each sample, and selected the 24 

assembled contig set with longest N50 length. For the IDBA-UD, parameters “--mink 21 --maxk 81 25 

--step 20 --pre_correction” were used. For most samples, IDBA-UD obtained a better assembled 26 

contig set than SOAPdenovo. This could be attributable to the relative efficiency of IDBA-UD in 27 

assembling bacterial genomes within regions of highly uneven depth in metagenomic samples. As 28 

a result, we obtained an average 197.9 ± 50.3 Mbp (mean ± SD) contig sets for each pregnant women 29 

sample, with N50 length 8.8 ± 3.9 kbp. Unassembled reads from these samples were pooled and re-30 
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assembled by using IDBA-UD for further analysis. 1 

Genes were predicted by MetaGeneMark [46] based on parameter exploration by the MOCAT 2 

pipeline (MOCAT, RRID:SCR_011943) [47]. A non-redundant gene catalogue of pregnant women 3 

samples was constructed using CD-HIT (CD-HIT, RRID:SCR_007105) [48], through which, genes 4 

with >90% overlap and >95% nucleic acid similarity (no gap allowed) were removed as 5 

redundancies. A pregnant women gene catalogue containing 4,344,984 non-redundant genes was 6 

generated for fecal samples collected from these 124 pregnant women. This gene catalogue was 7 

further combined with the previous integrated gene catalogue (IGC) [44] by removing redundancies 8 

(2,621,398 genes) in the same manner as above. In the end, 39.6% (1,723,586) of the genes in the 9 

pregnant women gene catalogue were identified as novel. 10 

  11 

Quantification of metagenomic genes 12 

The abundance of genes in the combined non-redundant gene catalogue (combining the pregnant 13 

women gene catalogue and IGC) was quantified as relative abundance of reads. First, high-quality 14 

reads from each sample were aligned against the gene catalogue using SOAP2.21 [42], with 15 

thresholds that allowed a maximum of two mismatches in the initial 32bp seed sequence and 90% 16 

similarity over the whole reads. Only two types of alignments were accepted: (1) the entire paired-17 

end read can be mapped onto a gene with the correct insert-size; (2) one end of the paired-end read 18 

can be mapped onto the end of a gene, only if the other end of read was mapped outside the genic 19 

region. The relative abundance of a gene in a sample was estimated by dividing the number of reads 20 

that uniquely mapped to that gene by the length of the gene region and by the total number of reads 21 

from the sample that uniquely mapped to any gene in the catalogue. The resulting set of gene relative 22 

abundances of a sample was its gene profile. 23 

 24 

Richness 25 

We used the gene count and Shannon index to represent the richness and evenness of the gut 26 

microbiota for each sample. As defined previously [5], the gene counts of a metagenomic sample 27 

were calculated based on their reads mapping number on the non-redundant gene catalogue. To 28 

eliminate the influence of sequencing depth fluctuation, an equal number of 11 million reads for all 29 

samples were randomly extracted for mapping, and then, the mean number of genes over 30 random 30 
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drawings was generated. The Shannon index (within sample diversity) was calculated as previously 1 

described [23].  2 

 3 

Taxonomical and functional analyses 4 

Taxonomical classification of genes. Reference microbial genomes were downloaded from the 5 

NCBI-genome database (version May-2015), which included 8,953 bacterial/archaea genomes (of 6 

which, 2,785 genomes were complete and 6,168 were draft genomes), and 4,400 viral genomes. 7 

Genes from the non-redundant gene catalogue were aligned to reference genomes using BLASTN 8 

(BLASTN, RRID:SCR_001598) with parameters “-word_size 16 -evalue 1e-10 -max_target_seqs 9 

5000”. At least 70% alignment coverage of each gene was needed. Based on the parameter 10 

exploration of sequence similarity across phylogenetic ranks [49], we used 85% identity as the 11 

threshold for genus assignment, and 65% for phylum assignment. 12 

Functional annotation of genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG 13 

orthologous, version Apr-2015) (KEGG, RRID:SCR_012773) and evolutionary genealogy of genes: 14 

Non-supervised Orthologous Groups (eggNOG, v4) databases (eggNOG, RRID:SCR_002456) 15 

were used for functional annotation of genes. Translated amino acid sequences of genes were 16 

searched against these databases using USEARCH v8.0.1616 [50] (evalue < 1e-5, query_cov > 0.70) 17 

with a minimum similarity of 30%. Each protein was assigned a KEGG orthologue (KO) or 18 

eggNOG orthologue group (OG) based on the best-hit gene in the database. Using this approach, 19 

43.6% and 71.9% of the genes in the combined gene catalogue could be assigned a KO or OG, 20 

respectively. As a final step, the abundance profiles of KEGG and eggNOG were calculated by 21 

summing up the relative abundance of genes annotated to a feature. 22 

 23 

Metagenome-wide association study (MGWAS) 24 

We used the MGWAS methodology to identify gene markers that showed significant abundance 25 

differences between the GDM and control individuals. The MGWAS was performed using 26 

methodology developed by Qin et al [23]. Briefly, gene relative abundance profiles were initially 27 

adjusted for population stratifications using the modified EIGENSTRAT method [51] that allows 28 

the use of covariance matrices estimated from abundance levels instead of genotypes. Then, a two-29 

tailed Mann-Whitney U test was performed in the adjusted gene profiles, and the Benjamin-30 
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Hochberg procedure [52] was subsequently used to correct the p-values to generate the false 1 

discovery rate (FDR, known as “q-value”) for each gene. 2 

 3 

Metagenomic linkage group (MLG) analysis 4 

Co-abundance genes were clustered into MLGs based on the previously described methodology 5 

[23]. Taxonomic assignment and abundance profiling of the MLGs were performed according to the 6 

taxonomy and the relative abundance of their constituent genes as previously described [23]. Briefly, 7 

assignment to species requires 90% of genes in an MLG to align with the species’ genome with 95% 8 

identity and 70% overlap of query. Assigning an MLG to a genus requires 80% of its genes to align 9 

with a genome with 85% identity in both DNA and protein sequences. MLGs were further 10 

interconnected according to Spearman’s correlation coefficient (ρ>0.4 or ρ<-0.4) between their 11 

abundances in all GMD and control samples, and the co-occurrence network of MLGs was 12 

visualized by Cytoscape 3.0.2 (Cytoscape, RRID:SCR_003032) [53]. The direction of enrichment 13 

was determined by the Mann-Whitney U test (p<0.05). 14 

 15 

Statistical analysis 16 

Statistical analysis was implemented using the R platform. Distance-based redundancy analysis 17 

(dbRDA) was performed using the “vegan” package [54] based on the Bray-Curtis distances on 18 

normalized taxa relative abundance matrices, then visualized using the “ggplot2” package. 19 

Permutational multivariate analysis of variance (PERMANOVA) was performed using the “vegan” 20 

package, and the permuted p-value was obtained by 10,000 permutations.  21 

The Random Forest model has been shown [6] to be a suitable model for exploiting metagenomic 22 

data. Random Forest models were trained using the “randomForest” package (default parameters 23 

and 10,000 trees) to identify GDM status in a subset of GDM patients and control group by using 24 

the abundance profiles of species and MLGs. Performance of the predictive model was evaluated 25 

with cross-validation error. Variable importance by mean decrease in accuracy was calculated for 26 

the Random Forest models using the full set of species or MLGs. Based on the rank of variables by 27 

importance, concise models were constructed that contained only the most important variables. 28 

  Receiver operator characteristic (ROC) analysis was performed using the “pROC” package, we 29 

then computed the 95% confidence interval (CI) of the area under the ROC curve (AUC) with 30 
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10,000 bootstrap replicates to assess the variability of the measure. Rarefaction analysis was 1 

performed to assess the gene richness of metagenomic samples, implemented by in-house Perl 2 

scripts.  3 

 4 

Availability of supporting data and materials 5 

All raw sequencing data has been deposited in the EBI Sequence Read Archive (SRA) under 6 

accession number ERP020710. Further supporting data is available in the GigaScience repository, 7 

GigaDB [55] 8 
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Figure legends 1 

Figure 1 | Difference in microbial composition between GDM and healthy pregnant women. 2 

(a) Distance-based redundancy analysis (dbRDA) based on Bray–Curtis distances between 3 

microbial genera, revealing a GDM dysbiosis which overlaps only in part with taxonomic 4 

composition in GDM patients and healthy controls. The first two principal components (PCs) and 5 

the ratio of variance contributed by them is shown. Lines connect samples in the same group, and 6 

colored circles cover the samples near the center of gravity for each group. Genus (blue square), as 7 

the main contributors, are plotted by their loading in the PCs. (b) Boxplot shows genera that differ 8 

significantly between GDM patients and healthy controls. Genera with q<0.05 (Mann-Whitney U 9 

test corrected by the Benjamini-Hochberg method) are shown. Red and green boxes represent GDM 10 

patients and healthy controls, respectively. Only the genera with average relative abundances greater 11 

than 0.05% in all the samples are shown for clarity. The boxes represent the interquartile range (IQR) 12 

between first and third quartiles and the line inside represents the median. The whiskers denote the 13 

lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively. The 14 

circles represent outliers beyond the whiskers. 15 

 16 

Figure 2 | Interconnection of GDM-associated MLGs. A co-occurrence network deduced from 17 

GDM-enriched and control-enriched MLGs is shown. Nodes depict MLG’s with their taxonomic 18 

assignment or ID shown. The size of each node indicates the number of genes within the MLG. 19 

Connecting lines represent Spearman correlation coefficient ρ >0.40 (gray line) or <-0.40 (red line). 20 

Classified MLGs are colored (red: GDM-enriched; green: control-enriched) and grouped according 21 

to their taxonomic information. Only MLGs with >100 genes are shown for clarity of presentation 22 

and visualization, and the detailed information of all 129 MLGs are given in Table S2. 23 

 24 

Figure 3 | Association of gross abundance of GDM-enriched and control-enriched MLGs with 25 

blood glucose levels 0, 60, and 120 minutes after an oral glucose tolerance test. Scatter plots of 26 

all samples (including GDM patients and healthy controls) are shown with lines indicating linear 27 

fit. 28 

 29 

Figure 4 | Correlation of blood glucose levels 0, 60, and 120 minutes after an oral glucose 30 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



21 
 

tolerance test (only OGTT results are shown, I do not see the results for HbA1C in this figure) 1 

with MLGs (a) and species (b). Spearman’s rank correlation coefficients and P-values for the 2 

correlations are shown. ‘+’ denotes P<0.05; ‘++’ denotes P<0.01. Only MLGs or species with 3 

average relative abundances greater than 0.001% and correlated (P<0.05) with at least one index are 4 

shown for clarity. 5 

 6 

Figure 5 | Association of microbial genetic functional pathway composition in GDM patients 7 

and healthy pregnant women. (a) Distributions of relative abundances of KEGG pathway 8 

categories in GDM patients and healthy controls. ‘*’ denotes q<0.05 (Mann-Whitney U test 9 

corrected by the Benjamini-Hochberg method) (b) Correlation of blood glucose levels 0, 60, and 10 

120 minutes after an oral glucose tolerance test, with PTS system and LPS biosynthesis and 11 

transport system. Spearman’s rank correlation coefficients and P-values for the correlations are 12 

shown. ‘+’ denotes P<0.05; ‘++’ denotes P<0.01. 13 

 14 

Figure 6 | Classification of GDM status by the relative abundance of MLGs and species. (a) 15 

Classification performance of a random forest model using MLG or species abundance assessed by 16 

AUC. The performance was explored for different numbers of explanatory variables, ordered in 17 

importance. (b-c) The 30 most discriminant MLGs (b) and species (c) in the models classifying 18 

GDM and controls. The bar lengths in b and c indicate the importance of the variable, and colors 19 

represent enrichment in GDM (red shades) or controls (blue shades). (d) ROC analysis for 20 

classification of GDM status by MLGs and PBMI. 21 

 22 

Figure 7 | A schematic diagram showing the main bacteria and functions of the gut microbes 23 

that had a predicted GDM association. Red and orange columns and text denotes enriched 24 

bacteria and their putative functions in GDM patients; green columns and text denotes depleted 25 

bacteria and their putative functions in GDM patients.  26 
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