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In this Supporting Information, we derive expressions for the partition function and the acceptance

rules for the trial moves of the new formulation of the Reaction Ensemble Monte Carlo technique (RxMC)

combined with the Continuous Fractional Component Monte Carlo (serial Rx/CFC). We also derive an

expression for computing the chemical potential in the Gibbs ensemble for multicomponent mixtures. We

extend this derivation to arrive at an expression for chemical potentials in serial Rx/CFC. Details regarding

the calculation of equilibrium mixture compositions by thermodynamic modeling using the Peng-Robinson

equation of state are provided. We also mentioned how ideal gas partition functions can be computed.
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1 Partition function of serial Rx/CFC

In this section, we derive the partition function and acceptance rules for the constant volume version of

serial Rx/CFC. In section 5, this is extended to the constant pressure version.1 We start with the partition

function of the Gibbs ensemble for a pure component with a single fractional molecule:2

QCFCMC =
1

Λ3(NT+1)NT !

2∑
i=1

NT∑
N1=0

1∫
0

dλ

VT∫
0

dV1V1
N1+δi,1(VT − V1)

NT−N1+δi,2 NT !

N1! (NT −N1)!
×

∫
dsN1 exp[−βUint,1(sN1 , V1)]

∫
dsNT−N1 exp[−βUint,2(sNT−N1 , V1)]×(

δi,1

∫
ds1

frac exp[−βUfrac,1(s1
frac, s

N1 , λ, V1)] + δi,2

∫
ds2

frac exp[−βUfrac,2(s2
frac, s

NT−N1 , λ, V1)]

)
(S1)

where λ is the scaling parameter with λ ∈ [0, 1], VT is the total volume of the two boxes, V1 is the volume

of box 1, NT is the total number of whole molecules in the two boxes, N1 is the number of whole molecules

in box 1, Uint,i is the total potential energy of whole molecules in box i, and Ufrac,i is the potential energy

of the fractional molecule in box i. The fractional molecule can be either in box 1 (i = 1, δi,1 = 1, δi,2 = 0)

or in box 2 (i = 2, δi,1 = 0, δi,2 = 1). When λ = 0, the fractional molecule has no interactions with

surrounding molecules and when λ = 1, the fractional molecule has full interactions with surrounding

molecules. To derive an expression for the partition function of the reaction ensemble, we consider the

case where the volumes of the boxes are fixed and molecules in box 2 do not interact with each other (box

2 is an ideal gas). Later, we will take the limit that box 2 is infinitely large. In this case, QCFCMC becomes

QCFCMC =
1

Λ3(NT+1)

1∑
δ=0

NT∑
N1=0

V1
N1+δ(VT − V1)

NT−N1+1−δ

N1! (NT −N1)!

1∫
0

dλ

∫
dsN1 exp[−βUint,1(sN1)]

×
(∫

ds1
frac exp[−βδUfrac,1(s1

frac, s
N1 , λ)]

) (S2)

where δ = 1 when the fractional molecule is in box 1 and otherwise δ = 0. Next, we consider a system

with multiple components. Each component has νi fractional molecules (νi > 0). The fractional molecules

of component i are either all in box 1 or in box 2. The interaction energy between fractional molecules

themselves is included in Ufrac,i. Fractional molecules of type i are distinguishable from the whole molecules

in box 1. Since there are no interactions between molecules in the ideal gas reservoir (box 2), fractional

molecules are indistinguishable from whole molecules of the same component type in box 2. In this case,
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we can write

QCFCMC =

NT,1∑
N1=0

1∑
δ1=0

NT,2∑
N2=0

1∑
δ2=0

...

NT,S∑
NS=0

1∑
δS=0

S∏
i=1

V1
Ni+νiδi(VT − V1)

NT,i+(1−δi)νi−Ni

Λi
3(NT,i+νi)Ni! (NT,i + (1− δi)νi −Ni)!

1∫
0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]×

(
S∏
i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, . . . , λS)]

)
(S3)

where S is the number of components, NT,i is the total number of whole molecules of component i (in

box 1 and box 2), Nint is the total number of whole molecules in box 1, Ni is the total number of whole

molecules of type i in box 1. δi = 1 when the νi fractional molecules of type i are in box 1, and δi is zero

otherwise. We assume that box 2 is very large and we want to express the term

(VT − V1)NT,i+(1−δi)νi−Ni

(NT,i + (1− δi)νi −Ni)!

as a function of the chemical potential of component i in the reservoir. As VT is much larger than V1 and

NT is much larger than N1, we can write

(VT − V1)
NT,i+(1−δi)νi−Ni ≈ (VT )

NT,i+(1−δi)νi−Ni = (VT )
NT,i(VT )

(1−δi)νi−Ni (S4)

(NT,i + (1− δi)νi −Ni)! ≈ (NT,i)
NT,i+(1−δi)νi−Ni = (NT,i)

NT,i(NT,i)
(1−δi)νi−Ni (S5)

Therefore, we can write

(VT − V1)
NT,i+(1−δi)νi−Ni

(NT,i + (1− δi)νi −Ni)!
=

(VT )
NT,i+νi(VT )

−δiνi−Ni

(NT,i)
NT,i+νi(NT,i)

−δiνi−Ni = (constant)× ρiNi+δiνi (S6)

where ρi = NT,i/VT is the number density of component i in box 2 (the ideal gas reservoir). When

NT,i →∞, VT →∞, and ρi is a finite number, we can replace the term

(VT − V1)NT,i+(1−δi)νi−Ni

(NT,i + (1− δi)νi −Ni)!
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with ρi
Ni+νiδi and we can rewrite the corresponding partition function as

QCFCMC,GC =

∞∑
N1=0

1∑
δ1=0

∞∑
N2=0

1∑
δ2=0

...

∞∑
NS=0

1∑
δS=0

S∏
i=1

V1
Ni+νiδiρi

Ni+νiδiΛi
3(Ni+νiδi)

Λi
3(Ni+νiδi)Ni!

1∫
0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]×

(
S∏
i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, ..., λS)]

)
(S7)

Essentially, we have moved to the grand-canonical (GC) ensemble and the sums over the number of

molecules run from 0 to∞. Here, the subscript GC refers to grand-canonical and this is used to emphasize

that the reaction ensemble is essentially a grand-canonical ensemble where the chemical potentials of

components are constant. For an ideal gas we have3

µi = µ◦i +
1

β
ln

ρi
βP ◦

(S8)

µ◦i = − 1

β
ln

(
qi

βP ◦Λi
3

)
(S9)

where µ◦i is the reference chemical potential, P ◦ is the standard reference pressure (105 Pa), Λi is thermal

wavelength of component i. qi is the ideal gas phase partition function of an isolated molecule of type i

excluding the translational part:3

µi = − 1

β
ln

(
qi

βP ◦Λi
3

)
+

1

β
ln

ρi
βP ◦

(S10)

exp [βµi (Ni + νiδi)] = ρi
Ni+νiδi

(
Λi

3

qi

)Ni+νiδi
(S11)

We arrive at

ρi
Ni+νiδiΛi

3(Ni+νiδi) = exp [βµi (Ni + νiδi) + (Ni + νiδi) ln qi] (S12)

Substituting Eq. S12 into Eq. S7 yields

QCFCMC,GC =

∞∑
N1=0

1∑
δ1=0

∞∑
N2=0

1∑
δ2=0

...

∞∑
NS=0

1∑
δS=0

S∏
i=1

V1
Ni+νiδi exp [βµi (Ni + νiδi) + (Ni + νiδi) ln qi]

Λi
3(Ni+νiδi)Ni!

1∫
0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]×

(
S∏
i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, ..., λS)]

)
(S13)
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We can rearrange the partition function as follows:

QCFCMC,GC =

∞∑
N1=0

1∑
δ1=0

∞∑
N2=0

1∑
δ2=0

...

∞∑
NS=0

1∑
δS=0

exp

[
β

S∑
i=1

µi (Ni + νiδi) +

S∑
i=1

(Ni + νiδi) ln
V qi

Λi
3 −

S∑
i=1

lnNi!

]
1∫

0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]×

(
S∏
i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, ..., λS)]

)
(S14)

Next, we move to the reaction ensemble and divide the components into reactants (R) and reaction products

(P ). For simplicity, we only consider systems with a single reaction as extension to systems with multiple

reactions is trivial. We consider the case that we either have fractional molecules of reactants (δ = 1)

or fractional molecules of reaction products (δ = 0). The number of fractional molecules of component i

equals the stoichiometric coefficient of component i (νi >0) in the reaction or equals zero when a component

does not participate in the reaction. Furthermore, instead of λi for each component, we have an overall λ

for the system which translates to λ of individual fractional molecules. Eq. S14 then reduces to

QCFCMC,GC =

∞∑
N1=0

...

∞∑
NS=0

1∑
δ=0

exp

[
β

R∑
i=1

µi (Ni + νiδ) +

R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


1∫

0

dλ

∫
dsNint exp[−βUint(s

Nint)]

(
R∏
i=1

∫
dsνifrac exp[−βδUfrac,i(s

νi
frac, s

Nint , λ)]

)
×

 S∏
j=R+1

∫
ds
νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ)]



(S15)

where R is the number of reactant components, and P is the number of reaction product components so

R + P = S. Therefore, the number of reaction product components is ranging from R + 1 to S with S

being the total number of components.
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1.1 Partition function of the reaction ensemble with CFCMC for the ideal

gas case

In the ideal gas case, molecules do not interact. Therefore, the energy terms in the partition functions

of the conventional reaction ensemble and the reaction ensemble with CFCMC can be disregarded. The

partition functions of the conventional reaction ensemble and the reaction ensemble with CFCMC for the

ideal gas case are

QIG
Conv =

∞∑
N1=0

...

∞∑
NS=0

exp

[
β

S∑
i=1

µiNi +

S∑
i=1

Ni ln
V qi

Λi
3 −

S∑
i=1

lnNi!

]
(S16)

QIG
CFCMC,GC =

∞∑
N1=0

...

∞∑
NS=0

1∑
δ=0

exp

[
β

R∑
i=1

µi (Ni + νiδ) +

R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (S17)

One can separate the two cases δ = 0 and δ = 1, and rewrite Eq. S17 as

QIG
CFCMC,GC =

∞∑
N1=0

...

∞∑
NS=0

exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µj (Nj + νj) +

S∑
j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

+

exp

[
β

R∑
i=1

µi (Ni + νi) +

R∑
i=1

(Ni + νi) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µjNj +

S∑
j=R+1

Nj ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


=

∞∑
N1=0

...

∞∑
NS=0

exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µjNj +

S∑
j=R+1

Nj ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

×
exp

[
β

R∑
i=1

µiνi +

R∑
i=1

νi ln
V qi

Λi
3

]
+ exp

β S∑
j=R+1

µjνj +

S∑
j=R+1

νj ln
V qj

Λj
3



(S18)

The last term is simply a constant for given values of µi, Λi, and qi for all component. Therefore, we
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have

QIG
CFCMC,GC =

∞∑
N1=0

...

∞∑
NS=0

exp

[
β

S∑
i=1

µiNi +

S∑
i=1

Ni ln
V qi

Λi
3 −

S∑
i=1

lnNi!

]
× Constant

=QIG
Conv × Constant

(S19)

Therefore, ensemble averages computed in the ensemble of Eq. S17 are identical to those computed in

the ensemble of Eq. S16, provided that the quantity of which the ensemble average is computed does not

depend on λ or δ. By not counting fractional molecules when computing ensemble averages of the number

of molecules of a component, one is guaranteed that the ensembles of Eq. S16 and Eq. S17 yield the same

results. It is therefore a natural choice not to count fractional molecules when computing ensemble averages

for systems with intermolecular interactions.

2 Acceptance rules

Starting from the partition function of Eq. S15, we derive the acceptance rules for the trial moves in serial

Rx/CFC.

2.1 Changing the value of λ

This trial move is used to change the value of λ (see Fig. S1) while keeping δ and all molecules positions

constant. When the new λ is outside the interval [0,1], this trial move is automatically rejected. In this

trial move, the number of whole molecules and fractional molecules remains the same. By changing the

value of λ, only the strength of interactions between the fractional molecules and the whole molecules are

changed. Therefore, the probabilities of being in the old (o) and new (n) configurations are

po =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδ) +

R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUo] (S20)

pn =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδ) +

R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUn] (S21)
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where Uo and Un are the total potential energies in the old and new configurations, respectively. Therefore

the acceptance rule for this trial move is

acc(o→ n) = min [1, exp [−β∆U ]] (S22)

in which ∆U = Un − Uo.
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2.2 Reaction for fractional molecules

In this trial move, the fractional molecules of reactants/reaction products are removed and fractional

molecules of reaction/reactants are inserted at random positions (see Fig. S2). The number of whole

molecules and also the value of λ are constant but the value of δ changes. This trial move basically mimics

the reaction for fractional molecules and is very efficient at low values of λ. Here, we derive the acceptance

rule for the forward reaction (reactants→ reaction products). The acceptance rule for the reverse reaction

(reaction products → reactants) simply follows by swapping the labels. The direction of the reaction

eventually depends on the value of δ for the old configuration (if we have the fractional molecules of

reactants or reaction products). The probabilities of being in the old (o) and new (n) configurations are

po =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδo) +

R∑
i=1

(Ni + νiδo) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δo)) +

S∑
j=R+1

(Nj + νj(1− δo)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUo] (S23)

pn =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδn) +

R∑
i=1

(Ni + νiδn) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δn)) +

S∑
j=R+1

(Nj + νj(1− δn)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUn] (S24)

where we have used the notation δn, δo for the value of δ in the new and old configurations, respectively.

If δo = 1 then δn = 0 (and vice versa). For the forward reaction (reactants → reaction products), we have

δo = 1 and δn = 0. Therefore, we can rewrite Eqs. S23 and S24 as

po =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νi) +

R∑
i=1

(Ni + νi) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µjNj +

S∑
j=R+1

Nj ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUo] (S25)

pn =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj) +

S∑
j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUn] (S26)
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It is important to note that the number of whole molecules of each component does not change in this

trial move. Therefore, we have

pn

po
= exp

−β R∑
i=1

µiνi −
R∑
i=1

νi ln
V qi

Λi
3 + β

S∑
j=R+1

µjνj +

S∑
j=R+1

νj ln
V qj

Λj
3

× exp [−β∆U ] (S27)

Reaction equilibrium implies
R∑
i=1

µiνi =
S∑

j=R+1

µjνj. Consequently, Eq. S27 reduces to

pn

po
= exp

− R∑
i=1

νi ln
V qi

Λi
3 +

S∑
j=R+1

νj ln
V qj

Λj
3

× exp [−β∆U ] (S28)

Therefore the acceptance rule for this trial move is

acc(o→ n) = min

1,

[
R∏
i=1

(
V qi

Λi
3

)−νi]
×

 S∏
j=R+1

(
V qj

Λj
3

)νj× exp [−β∆U ]

 (S29)

For the limiting case of λ→ 0, this acceptance rule reduces to

acc(o→ n) = min

1,

[
R∏
i=1

(
V qi

Λi
3

)−νi]
×

 S∏
j=R+1

(
V qj

Λj
3

)νj (S30)
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2.3 Reaction for whole molecules

In this trial move, the fractional molecules of reactants/reaction products are transformed into whole

molecules of reactants/reaction products while at the same time, randomly selected whole molecules of

reaction products/reactants are transformed into the fractional molecules of reaction products/reactants.

All molecule positions stay the same. This trial move is illustrated in Fig. S3. The value of λ remains

constant during this trial move and the value of δ changes. This trial move can be seen as a reaction

for whole molecules. In the forward reaction, whole molecule of reactants are transformed into fractional

molecules and, at the same time, fractional molecules of reaction products are turned into whole molecules.

Essentially, the number of whole molecules of reactants is reduced and the number of whole molecules

of reaction products is increased, according to their stoichiometric coefficients. This trial move is very

efficient when the value of λ is close to 1. Trial moves are automatically rejected when there are not

enough whole molecules to turn into fractional molecules. Here, we derive the acceptance rule for the

forward reaction (reactants → reaction products), so the fractional molecules of the reaction products are

converted into whole molecules, and νi whole molecules of reactants are converted into fractional molecules.

The acceptance rule for the reverse reaction (reaction products → reactants) simply follows by swapping

the labels. The direction of the reaction eventually depends on the value of δ for the old configuration (if

we have the fractional molecules of reactants or reaction products). The probabilities of being in the old

(o) and new (n) configurations are

po =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδo) +

R∑
i=1

(Ni + νiδo) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δo)) +

S∑
j=R+1

(Nj + νj(1− δo)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUo] (S31)

pn =
1

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni − νi + νiδn) +

R∑
i=1

(Ni − νi + νiδn) ln
V qi

Λi
3 −

R∑
i=1

ln (Ni − νi)!

]

exp

β S∑
j=R+1

µj (Nj + νj + νj(1− δn)) +

S∑
j=R+1

(Nj + νj + νj(1− δn)) ln
V qj

Λj
3 −

S∑
j=R+1

ln (Nj + νj)!

 exp[−βUn] (S32)

For the forward reaction (reactants → reaction products) we have δo = 0 and δn = 1. Therefore, we can

write
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po =
1

QCFCMC
exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj) +

S∑
j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 exp[−βUo] (S33)

pn =
1

QCFCMC
exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

ln (Ni − νi)!

]

exp

β S∑
j=R+1

µj (Nj + νj) +

S∑
j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

ln (Nj + νj)!

 exp[−βUn] (S34)

Since the total number of whole plus fractional molecules of each component remains constant in this

trial move, the terms related to the chemical potential and ideal gas partition function are the same for

the old and new configurations. Therefore, we have

pn

po
= exp

 R∑
i=1

ln
Ni!

(Ni − νi)!
+

S∑
j=R+1

ln
Nj !

(Nj + νj)!

× exp [−β∆U ] (S35)

in which ∆U = Un − Uo. Therefore, the acceptance rule is

acc(o→ n) = min

1,

R∏
i=1

Ni!

(Ni − νi)!
×

S∏
j=R+1

Nj !

(Nj + νj)!
× exp [−β∆U ]

 (S36)

For the limiting case of λ→ 1, the acceptance rule reduces to

acc(o→ n) = min

1,

R∏
i=1

Ni!

(Ni − νi)!
×

S∏
j=R+1

Nj !

(Nj + νj)!

 (S37)
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3 Chemical potential of mulitcomponent mixtures in the con-

ventional Gibbs ensemble

We start with the partition function of the conventional Gibbs ensemble of a mixture of S components1

Qnormal,GE =

NT,1∑
N1=0

NT,2∑
N2=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)] (S38)

We know that1

µi =

(
∂F

∂Ni

)
V,T,Nj 6=i

≈
FNNtotal

+1 − FNNtotal

1
≈ FNtotal+νi − FNtotal

νi
(S39)

Therefore, we have

νiµi = FNtotal+νi − FNtotal
=
−1

β
ln

(
QNtotal+νi

QNtotal

)
(S40)

We can extend this to mixtures and write

R∑
i=1

νiµi =
−1

β
ln


Q
Ntotal+

R∑
i=1

νi

QNtotal

 (S41)

In this case, we have

Q
Ntotal+

R∑
i=1

νi
=

NT,1+ν1∑
N1=0

...

NT,R+νR∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
(

S∏
i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑
i=1

νi
, V1)]

(S42)

where Q
Ntotal+

R∑
i=1

νi
is the partition function of Gibbs ensemble when for each reactant i, νi molecules of

type i are added to the system. Therefore, we can write

Q
Ntotal+

R∑
i=1

νi

QNtotal

=



NT,1+ν1∑
N1=0

...

NT,R+νR∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
(

S∏
i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑
i=1

νi
, V1)]


NT,1∑
N1=0

...
NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni (VT−V1)NT,i−Ni

Λ3NT,iNi!(NT,i−Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

(S43)
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Following Frenkel and Smit and separating the terms Ni = 0 to Ni = νi − 1 for reactants leads to4

Q
Ntotal+

R∑
i=1

νi

QNtotal

=



NT,1+ν1∑
N1=ν1

NT,R+νR∑
NR=νR

...

NT,S∑
Ns=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
(

S∏
i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑
i=1

νi
, V1)]


NT,1∑
N1=0

...
NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni (VT−V1)NT,i−Ni

Λ3NT,iNi!(NT,i−Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

+



ν1−1∑
N1=0

ν2−1∑
N2=0

...

νR−1∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
(

S∏
i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑
i=1

νi
, V1)]


NT,1∑
N1=0

...
NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni (VT−V1)NT,i−Ni

Λ3NT,iNi!(NT,i−Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

(S44)

By re-indexing the sums, we obtain

Q
Ntotal+

R∑
i=1

νi

QNtotal

=



NT,1∑
N1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)

R∏
i=1


(
V1

Λi3

)νi
(Ni+νi)!
Ni!

exp[−β
νi∑
j=1

∆Uj
+]

∫ dsNtotal exp[−βU(sNtotal , V1)]


NT,1∑
N1=0

...
NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni (VT−V1)NT,i−Ni

Λ3NT,iNi!(NT,i−Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

+



ν1−1∑
N1=0

ν2−1∑
N2=0

...

νR−1∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
(

S∏
i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑
i=1

νi
, V1)]


NT,1∑
N1=0

...
NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni (VT−V1)NT,i−Ni

Λ3NT,iNi!(NT,i−Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

(S45)

where
νi∑
j=1

∆Uj
+ is the total change in the potential energy of the system due to the addition of νi molecules

of component i for reactants only. As the first term on the right hand side of Eq. S45 corresponds to an

S14



ensemble average in the conventional Gibbs ensemble, we can write

Q
Ntotal+

R∑
i=1

νi

QNtotal

=

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

+



ν1−1∑
N1=0

ν2−1∑
N2=0

...

νR−1∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
(

S∏
i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑
i=1

νi
, V1)]


NT,1∑
N1=0

...
NT,S∑
Ns=0

VT∫
0

dV1

(
S∏
i=1

V1
Ni (VT−V1)NT,i−Ni

Λ3NT,iNi!(NT,i−Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

(S46)

where the last term corresponds to configurations where the numbers of molecules of reactants in box 1

are less than their stoichiometric coefficient. These configurations have very limited contribution to the

statistical weight1,4 and therefore we can neglect this term. Therefore, we have

Q
Ntotal+

R∑
i=1

νi

QNtotal

=

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

(S47)

so that

R∑
i=1

νiµi =

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

(S48)
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4 Chemical potentials in the new reaction ensemble with CFCMC

Consider the reaction: ν1r1 + ν2r2 + ...+ νRrR 
 νR+1p1 + νR+2p2 + ...+ νSpP

We start the derivation by not yet considering the contribution of internal degrees of freedom to the

chemical potential of each component i, as we add these effects at the very end. We start again from the

Gibbs ensemble where molecules only interact in box 1, and box 2 is an ideal gas reservoir. Eq. S3 then

reduces to

QCFCMC =

NT,1∑
N1=0

...

NT,S∑
NS=0

1∑
δ=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni+νiδ(VT − V1)

NT,i+(1−δ)νi−Ni

Λi
3(NT,i+νi)Ni! (NT,i + (1− δ)νi −Ni)!

)

×

 S∏
j=R+1

V1
Nj+νj(1−δ)(VT − V1)

NT,j+δνj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + δνj −Nj)!

 1∫
0

dλ

∫
dsNint exp[−βUint(s

Nint , V1)]

×

(
R∏
i=1

∫
dsνifrac exp[−βδUfrac,i(s

νi
frac, s

Nint , λ, V1)]

)
×

 s∏
j=R+1

∫
ds
νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ, V1)]


(S49)

We can write〈
δ′λ=0,δ=1

1
R∏
i=1

(
V1

Λi3

)νi
〉

=



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni+νi(VT − V1)

NT,i−Ni

Λi
3(NT,i+νi)Ni! (NT,j −Ni)!

)

×

 S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

 1
R∏
i=1

(
V1

Λi3

)νi ∫ dsNint exp[−βUint(s
Nint , V1)]


QCFCMC

(S50)

δ′λ=0,δ=1 equals one when λ = 0 and δ = 1 and otherwise this term equals zero. When δ = 1, all reactants

have fractional molecules in box 1. Therefore,〈
δ′λ=0,δ=1

1
R∏
i=1

(
V1

Λi3

)νi
〉

=



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,i −Ni)!

)
 S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

∫ dsNint exp[−βUint(s
Nint , V1)]


QCFCMC

(S51)
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We can also write〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!
Ni!

〉
=



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni+νi(VT − V1)

NT,i−Ni

Λi
3(NT,i+νi)Ni! (NT,j −Ni)!

) S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


1

R∏
i=1

(Ni+νi)!
Ni!

∫
dsNint exp[−βUint(s

Nint , V1)]×

(
R∏
i=1

∫
dsνifrac exp[−βUfrac,i(s

νi
frac, s

Nint , λ = 1, V1)]

)


QCFCMC

=



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,j −Ni)!

) S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


R∏
i=1

(
V1

Λi3

)νi
R∏
i=1

(Ni+νi)!
Ni!

∫
dsNint exp[−βUint(s

Nint , V1)]×

(
R∏
i=1

∫
dsνifrac exp[−βUfrac,i(s

νi
frac, s

Nint , λ = 1, V1)]

)


QCFCMC

(S52)

At this condition, fractional molecules interact just like whole molecules and we can write〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!
Ni!

〉
=



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,j −Ni)!

) S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


R∏
i=1

(
V1

Λi3

)νi
R∏
i=1

(Ni+νi)!
Ni!

 R∏
i=1

exp[−β
νi∑
j=1

∆Uj
+]

∫ dsNint exp[−βUint(s
Nint , V1)]


QCFCMC

(S53)
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By combining Eqs. S51 and S53, we can write:

〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!

Ni!

〉
〈
δ′λ=0,δ=1

1
R∏
i=1

(
V1
Λi

3

)νi
〉 =



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,j −Ni)!

) S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


R∏
i=1

(
V1

Λi3

)νi
R∏
i=1

(Ni+νi)!
Ni!

R∏
i=1

exp[−β
νi∑
j

∆Uj
+]

∫
dsNint exp[−βUint(s

Nint , V1)]




NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,i −Ni)!

)
 S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

∫ dsNint exp[−βUint(s
Nint , V1)]



(S54)

This leads to 〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!

Ni!

〉
〈
δ′λ=0,δ=1

1
R∏
i=1

(
V1
Λi

3

)νi
〉 =

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

(S55)

Note that the right hand side of Eq. S55 is directly related to the chemical potential (see Eq. S48). If we

assume that number of whole molecules and volume of the box are independent of the value of λ, we can

write〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!

Ni!

〉
〈
δ′λ=0,δ=1

1
R∏
i=1

(
V1
Λi

3

)νi〉 ≈
〈

R∏
i=1

(
V1

Λi3

)νi
R∏
i=1

(Ni+νi)!
Ni!

〉
〈δ′λ=1,δ1=1〉
〈δ′λ=0,δ1=1〉

≈

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

=

R∑
i=1

νiµi (S56)

which leads to 〈
R∏
i=1

(
V1

Λi3

)νi
R∏
i=1

(Ni+νi)!
Ni!

〉
p(λR ↑ 1)

p(λR ↓ 0)
≈

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

=

R∑
i=1

νiµi (S57)
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where λR = λ when we have the fractional molecules of reactants (δ = 1). In this equation, p(λR ↑ 1) is

the probability that λR approaches 1, and p(λR ↓ 0) is the probability that λR approaches 0.〈
R∏
i=1

(
V1

Λi3

)νi
R∏
i=1

(Ni+νi)!
Ni!

〉
≈

〈(
V1

Λi3

)νi
R∏
i=1

Ni
νi

〉
=

〈
R∏
i=1

(
1

Λi
3ρi

)νi〉
(S58)

The sum of chemical potentials of all reactants times their stoichiometric coefficients equals

〈
R∏
i=1

(
1

Λi
3ρi

)νi〉 p(λR ↑ 1)

p(λR ↓ 0)
≈

〈
R∏
i=1

(
V1

Λi3

)νi
exp[−β

νi∑
j=1

∆Uj
+]

(Ni+νi)!
Ni!

〉
normal,GE

(S59)

At this point, it is important to note that so far we did not consider the internal contribution of the

partition function of component i. The corrected expression including the correct reference state for the

chemical potential of component i equals

R∑
i=1

νiµi = − 1

β
ln

〈
R∏
i=1

(
qi

Λi
3ρi

)νi〉
− 1

β
ln

(
p(λR ↑ 1)

p(λR ↓ 0)

)
(S60)

where qi is the ideal gas partition function of component i, excluding the translational part.3 Eq. S60

allows for an independent check of reaction equilibria without any additional calculations (e.g. Widom’s

test particle insertion method).1 By coupling the interactions of different components in smart way to the

order parameter λR, we are able to compute the chemical potentials of all components participating in the

reaction. If we only scale the interactions of the fractional molecule of one of the reactant components (for

instance component i) from no interactions to full interactions when λ ∈ 〈0, A〉, we can write

νiµi = − 1

β
ln

(
qi

Λi
3ρi

)νi
− 1

β
ln

(
p(λR ↑ A)

p(λR ↓ 0)

)
(S61)

The first term on the right hand side accounts for the ideal gas part of the chemical potential including the

internal degrees of freedom, and the second term account for the excess part of the chemical potential (due

to the interactions of molecules with the surrounding). To validate Eq. S61, excess chemical potentials

obtained from serial Rx/CFC for the reaction A 
 B, where A and B have identical interaction potentials,

are compared with the values obtained from Widom’s test particle insertion method1,5,6 in the NPT

ensemble and values computed from from the equation of state of the Lennard-Jones interaction potential.7

As shown in table S1, values obtained from the three methods are in excellent agreement. The chemical
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potential of component i for a non-ideal gas equals8 (see also Eqs. S8 and S9)

µi =
1

β
ln
βP0Λ3

i

qi
+

1

β
ln
yiPϕi
P0

(S62)

in which ϕi and yi are the fugacity coefficient and mole fraction of component i. P0 is the reference pressure

(1 bar) and P is the pressure of the mixture. Therefore, we have

R∑
i=1

νiµi =
1

β
ln

(
R∏
i=1

[
βΛi

3yiPϕi
qi

]νi)
(S63)

Combining this with Eq. S60 immediately leads to

R∏
i=1

ϕi
−νi =

(
βyiP

ρi

)νi p(λR ↑ 1)

p(λR ↓ 0)
(S64)

We define the term zi by

zi =
βyiP

ρi
(S65)

Therefore, we can write for ϕi

ϕi
−νi = zi

νi
p(λR ↑ A)

p(λR ↓ 0)
(S66)

5 Extension to the constant pressure version of serial Rx/CFC

In this section, we extend the expressions derived for the partition function and acceptance rules for the

constant volume version of serial Rx/CFC to the constant pressure version by multiplying the partition

function by a term exp[−βPV ].1 The partition function for the constant pressure version of serial Rx/CFC

is therefore given by

QCFC,P =βP

∞∑
N1=0

...

∞∑
NS=0

1∑
δ=0

∫
dV exp[−βPV ] exp

[
β

R∑
i=1

µi (Ni + νiδ) +

R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

×
1∫

0

dλ

∫
dsNint exp[−βUint(s

Nint)]

(
R∏
i=1

∫
dsνifrac exp[−βδUfrac,i(s

νi
frac, s

Nint , λ)]

)
×

 S∏
j=R+1

∫
ds
νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ)]



(S67)
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where P is the pressure of the system. The term βP is used to make the partition function dimensionless.1

In the constant pressure version of the serial Rx/CFC method, the volume of the simulation box remains

unchanged in all reaction trial moves. Therefore, the acceptance rules for these trial moves in the constant

volume and constant pressure versions of serial Rx/CFC Eqs. S22, S29 and S36 are identical. The only

additional trial move in the constant pressure versions of serial Rx/CFC is the trial move to change the

volume of the simulation box. In this trial move, the volume of the simulation box is changed while the

number and relative coordinates of the whole molecules and fractional molecules stay the same. Here, the

random walk is performed in V and not in ln(V ). The acceptance rule for this trial move is1

acc(o→ n) = min

1,

(
Vn
Vo

) R∑
i=1

(Ni+νiδ)+
S∑

j=R+1
(Nj+νj(1−δ))

exp [−β (∆U + P (Vn − Vo))]

 (S68)

As we assume that the probability distribution of λ does not depend on volume, the expression derived

for the chemical potential for the constant volume version of serial Rx/CFC can also be used for the

constant pressure version of the serial Rx/CFC method, as is the same for the conventional NV T and

NPT ensembles.1

6 Thermodynamic modeling of ammonia synthesis reaction

The ammonia synthesis reaction is modeled using the Peng-Robinson Equation of State (PR-EoS)9 and

the mixture compositions at equilibrium are obtained for different temperatures and pressures. These

results are compared to those obtained from serial Rx/CFC simulations. The equilibrium constant is only

a function of temperature and defined by8

K =

S∏
j=R+1

(
qj/Λ

3
j

)
R∏
i=1

(qi/Λ3
i )

(S69)
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where Λi is the de Broglie thermal wavelength of component i, and qi is the ideal gas partition function

excluding the translational part. At equilibrium, the equilibrium constant is also given by

K =

S∏
j=R+1

(
yjPϕj

kBT

)vj
R∏
i=1

(
yiPϕi

kBT

)vi (S70)

where P is the total pressure, and yi and ϕi are the mole fraction and the fugacity coefficient of compo-

nent i, respectively. For a non-linear polyatomic molecule, the ideal gas partition function excluding the

translational part is8

qi (T )

Λi
3 =

(
2πMikBT

h2

)3/2
π1/2

σ

(
T 3

Θrot,A,iΘrot,B,iΘrot,C,i

) 3n−6∏
j=1

1

1− exp (−Θvib,j,i/T )
ge1,iexp[D0/kBT ] (S71)

where Θrot,A,i, Θrot,B,i, and Θrot,C,i are the characteristic rotational temperatures in terms of three principal

moments of inertial.8 Mi is the molecular mass of component i, Θvib,j is the characteristic vibrational

temperature corresponding to normal mode j. D0 is the atomization energy at 0K. σ is the symmetry

number of molecules of component i. h is the Planck constant. ge1,i is the degeneracy of the electronic

ground state, and kB is the Boltzmann constant. As the atomization energies D0 appear in the exponential,

small differences in D0 may lead to large differences in the computed partition functions. Deviations are

observed between the experimental atomization energies and those obtained from the Gaussian09. These

values are reported in table S2. table S3 summarizes the computed partition functions both based on ex-

perimental data from literature8,10 and quantum computations using Gaussian09.11 It is important to note

that for the latter, the atomization energies from McQuarrie were used, and not the ones computed from

Gaussian09. Using the atomization energies computed from Gaussian09, results in equilibrium constants

that are 5 times larger than experimentally measured equilibrium constants. In all QM computations, the

optimized molecular structures for nitrogen, hydrogen and ammonia were obtained at the B3LYP level

of theory with a 6-31G** basis set. A frequency analysis was carried out on the optimized geometries to

compute the partition functions.
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For the ammonia synthesis reaction N2 + 3H2 
 2NH3, the equilibrium constant of Eq. S70 becomes

K =
(yNH3PϕNH3)

2

(yN2PϕN2) (yH2PϕH2)
3 (kBT )2 (S72)

The fugacity coefficients of ammonia, nitrogen and hydrogen are obtained from the Peng-Robinson Equa-

tion of State:12

P =
RT

V − b
− a

V (V + b) + b(V − b)
(S73)

lnϕi =
bi
bm

(Zm − 1)− ln (Zm −Bm)− Am

2
√

2Bm


2

S∑
k=1

ykaik

am
− bi
b

 ln

(
Zm + 2.414Bm

Zm − 0.414Bm

)
(S74)

S is the number of components, Zm is the compressibility factor, and Am and Bm are defined as12,13

Am = am (T )P/R2T 2 , Bm = bmP/RT , Zm = PV /RT (S75)

am and bm are constants taking into account the molecular interactions in the mixture and co-volume,

respectively. For mixtures, a and b in Eq. S73 are replaced by am and bm, respectively. The van der Waals

mixing rules are used to compute these values:12,13

am =
S∑
i=1

S∑
j=i

xixjaij

bm =
S∑
i−1

S∑
j=i

xixjbij

(S76)

where xi is the mole fraction of component i. In the above equation, aii and bii correspond to pure

component i and are defined as12,13

aii (T ) = 0.45724
R2T 2

c

Pc

[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1− T 1/2

r

)]2
bii =

0.0778RTc
Pc

(S77)
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ω is the acentric factor of the component which can be found in literature.14 Tc and Pc are the critical

temperature and critical pressure of the component, respectively. Critical points and acentric factors for

nitrogen, hydrogen and ammonia are taken from the REFPROP database15 and are listed in table S4. aij

and bij corresponds to unlike-interaction parameters and defined as

aij = (aiiajj)
1/2 (1− kij)

bij =
(bii + bjj)

2

(S78)

kij is the coupling interaction parameter. For a given temperature and pressure, the right hand side

of Eq. S72 is defined by mixture compositions at equilibrium. To obtain the mixture compositions at

equilibrium using the PR-EoS, the reaction is started with 360 moles of H2 and 120 moles of N2 and

no ammonia (see Fig. 7 of the main text). The reaction coordinate ε ∈ [0, 1] is defined as a measure

of the extent of the reaction. The value 0 meaning the reaction has not taken place and the value 1

meaning all reactants are converted into reaction products. Knowing the initial composition, the mixture

composition at equilibrium is defined by the value of ε, when equilibrium is reached. Using Eq. S72 and

the Peng-Robinson equation of state, the value of ε can be found iteratively and this directly leads to the

composition of the mixture at chemical equilibrium.

7 Interactions for the ammonia synthesis reaction

For Lennard-Jones interactions, the cutoff radius is set to 12.0Å. The Lorentz-Berthelot mixing rules and

tail corrections are used.6 For fractional molecules, Lennard-Jones interactions are scaled as:16

u(r, λ) = λ4ε

 1[
1
2

(1− λ)2 +
(
r
σ

)6]2 − 1[
1
2

(1− λ)2 +
(
r
σ

)6]
 (S79)
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For the interactions between two different fractional molecules, the minimum of the two values of λ is used.

The tail corrections energy for two atom types i and j is:1

uijtail =
16πNiNjεij

V

(
σ12
ij

9r9cut
−

σ6
ij

3r3cut

)
(S80)

where Ni and Nj are the total number of atoms of type i and j in the simulation box, V is the volume of

the simulation box and rcut the cutoff radius. An atom of a fractional molecule is counted as λ. The total

energy tail correction of the system is then:

Utail,total =
1

2

M∑
i=1

M∑
j=1

uijtail

where M is the number of different atom types and the factor 1
2

corrects for counting contributions double.

Coulombic interactions are calculated with the Wolf method.17 Here, also a cutoff radius of 12.0Å is used

and the damping parameter was set to α = 0.10Å
−1

. In the Wolf method, Coulombic interactions are

calculated in two parts. The first part is a damped pairwise potential:

u(r, λ) =
qiqj
4πε0

(
erfc (αr)

r
− erfc (αrcut)

rcut

)
(S81)

where α is a damping parameter, rcut the cutoff radius, and erfc(x) is the complementary error function.

For fractional molecules we use a slightly different form:

u(r) =
λqiqj
4πε0

(
erfc (αr)

r + 1
2

(1− λ)2
− erfc (αrcut)

rcut + 1
2

(1− λ)2

)
(S82)

This ensures that for λ = 1 we have the original interaction potential and for λ = 0 interactions are

switched off, and no singularities are present when λ→ 0. The second term is a correction term called the

self term:17

uself = − 1

4πε0

(
erfc (αrcut)

2rcut
+

α√
π

) N∑
i=1

q2i (S83)
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where the sum is over all atomic charges so that N is the total number of atoms in the system. Fractional

molecules are included by substituting N by N + Nfrac (Nfrac is the total number of atoms of fractional

molecules). For fractional molecules, the term q2i is replaced by λq2i . By comparing the total electrostatic

energy of several configurations using the Wolf method and the Ewald summation,1,18 we verified that the

electrostatic energies computed using the Wolf method are nearly identical.

Force field parameters used for ammonia, nitrogen and, hydrogen are listed in table S5 and were taken

from Refs.19–22 Hydrogen is modeled by a single chargeless Lennard-Jones interaction site. For nitrogen,

bond lengths and angles are:

• d(NN2 ,MN2) = 0.55Å

• d(NN2 ,NN2) = 1.10Å

• θ(NN2 ,MN2 ,NN2) = 180 deg

MN2 is a dummy site which only carries a partial charge and is located in between the two N atoms (see

also table S5). For ammonia, bond lengths and angles are:

• d(NNH3 ,HNH3) = 1.012Å

• d(NNH3 ,MNH3) = 0.080Å

• θ(HNH3 ,NNH3 ,HNH3) = 106.7 deg

• θ(HNH3 ,NNH3 ,MNH3) = 67.9 deg

MNH3 is a dummy site which only carries a partial charge (see also table S5).
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Table S1: Computed excess chemical potentials of Lennard-Jones particles (with analytic tail corrections1,6)
at different pressures obtained from serial RX/CFC and Widom’s test particle insertion method5 in the
NPT ensemble are compared with values computed from the Equation Of State (EOS) from Kolafa and
Nezbeda.7 In the second column, the values obtained with the serial Rx/CFC method for the reaction A

 B are shown. In the third column, values obtained from NPT simulations (400 particles) with Widom’s
test particle insertion method are shown. The numbers between brackets denote the uncertainty in the
last digit. All values are reported in dimensionless units. The cutoff radius was set to 2.5 in dimensionless
units. T=2.

P Serial RX/CFC Widom EOS
1.0 -0.646(9) -0.645(8) -0.646
3.0 1.91(2) 1.91(3) 1.910
5.0 4.34(2) 4.37(4) 4.342
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Table S2: Experimental atomization energies8 and atomization energies computed for nitrogen, hydrogen,
ammonia using Gaussian09 using the B3LYP level of theory with a 6-31G** basis set.11

Component D0 / [kJ/mol]
McQuarrie Gaussian

N2 941.6 917.6
H2 432.1 432.1

NH3 1158 1149.8
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Table S3: Computed ideal gas partition functions of nitrogen, hydrogen, ammonia obtained as defined in
section 6 of the SI. The reported values are based on experimental data8,10 and quantum computations
using Gaussian09 (B3LYP level of theory, 6-31G** basis set).11 It is important to note that for the values
obtained from Gaussian09, the experimental atomization energies provided by McQuarrie8 are used (see
table S2) and NOT the ones obtained from Gaussian09. One can easily see that using the atomization
energies from Gaussian09 (as listed in table S2) results in large deviations. For serial Rx/CFC simulations,
values reported in the first column (McQuarrie) were used.

q/Λ3 [N2]/[Å−3] q/Λ3 [H2]/[Å−3] q/Λ3 [NH3]/[Å−3]

T/K McQuarrie JANAF Gaussian McQuarrie JANAF Gaussian McQuarrie JANAF Gaussian
573 2.60 · 1090 2.63 · 1090 2.65 · 1090 6.46 · 1040 6.46 · 1040 5.95 · 1040 1.50 · 10110 1.44 · 10110 1.50 · 10110

673 6.89 · 1077 6.99 · 1077 6.99 · 1077 1.28 · 1035 1.35 · 1035 1.25 · 1035 5.42 · 1094 5.22 · 1094 5.42 · 1094

773 3.44 · 1068 3.50 · 1068 3.49 · 1068 8.28 · 1030 8.75 · 1030 8.09 · 1030 2.12 · 1083 2.05 · 1083 2.12 · 1083

873 2.42 · 1061 2.47 · 1061 2.77 · 1061 5.08 · 1027 5.36 · 1027 4.96 · 1027 3.65 · 1074 3.56 · 1074 3.65 · 1074
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Table S4: Critical temperatures (Tc), pressures (Pc) and acentric factors (ω) of the components used in
the PR-EoS modeling.14

Component Tc /[K] Pc /[Pa] ω
N2 126.19 3395800 0.0372
H2 33.14 1296400 -0.219

NH3 405.4 11333000 0.25601
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Table S5: Force field parameters (Lennard-Jones parameters, and partial charges of interaction sites) used
for ammonia, nitrogen and, hydrogen.19–22 The different interaction sites are defined in section 7 of the
SI. Lennard-Jones interactions between unlike atoms are calculated using the Lorentz-Berthelot mixing
rules.6

Site σ /[Å] ε/kB /[K] q /[e]
NN2 3.32 36.4 -0.40505
MN2 0.0 0.0 0.8101
H2 2.915 38.0 0.0

NNH3 3.420 185.0 0.0
HNH3 0.0 0.0 0.410
MNH3 0.0 0.0 -1.230
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Figure S1: Schematic representation of the trial move attempting to change the coupling parameter λ. In
this trial move, δ and the positions of all molecules remain the same. We consider the reaction A 
 B in
which A=green and B=black. The dashed spheres represent fractional molecules.
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Figure S2: Schematic representation of the trial move attempting to perform the reaction for fractional
molecules. In this trial move, the number of the whole molecules and also the value of λ are constant. We
consider the reaction A 
 B in which A=green and B=black. The dashed spheres represent fractional
molecules. The fractional molecule of A is removed and a fractional molecule of B is inserted at a randomly
selected position.
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Figure S3: Schematic representation of the trial move attempting to perform the reaction for whole
molecules. In this trial move, the value of λ and all positions of all molecules remain the same. We
consider the reaction A 
 B in which A=green and B=black. The dashed spheres represent fractional
molecules. The fractional molecule of A is transformed into a whole molecule of A while at the same time,
a randomly selected whole molecule of B is transformed into a fractional molecule of B.
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