Supplementary Information: Mechanism of O₂ diffusion and reduction in [FeFe] hydrogenases

Adam Kubas,^{†,‡,@} Christophe Orain,^{¶,@} David De Sancho,^{§,@} Laure

Saujet,^{||} Matteo Sensi,[¶] Charles Gauquelin,^{\perp} Isabelle Meynial-Salles,^{\perp}

Philippe Soucaille,[⊥] Hervé Bottin,[∥] Carole Baffert,[¶] Vincent Fourmond,[¶]

Robert B. Best,[#] Jochen Blumberger,^{*,†} and Christophe Léger^{*,¶}

E-mail: j.blumberger@ucl.ac.uk; christophe.leger@imm.cnrs.fr

^{*}To whom correspondence should be addressed

[†]Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK [‡]Institute of Physical Chemistry, Polish Academy of Science, ul. Kasprzaka 44/52, Warsaw, Poland

[¶]Aix Marseille Université, CNRS, BIP UMR 7281, 13402, Marseille, France.

[§]Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; CIC nanoGUNE, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain and IKERBASQUE; Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain

^{||}Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France / Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France

[⊥]Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France

[#]Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States

[@]Contributed equally to this work.

Contents

S1	Derivation of expression for k_i , Eq. 3 in main text.	S 3
S2	MD simulation and Markov state model	S 5
	S2.1 Force field parameters	S 8
	S2.2 Equilibrium MD	S 8
	S2.3 Pulling simulations	S 9
	S2.4 Kinetics of barrier crossing processes induced by force	S 10
	S2.5 Markov state model of gas diffusion in hydrogenase	S12
	S2.6 Explicit simulations of mutants	S15
S 3	Further discussion of the non-redox reactivation (k _a)	S18
S4	Quantum mechanical (QM) calculations	S18
	S4.1 Molecular model and electronic structure method	S18
	S4.2 Calculation of reaction free energies for PT coupled ET	S22
	S4.3 Validation of QM calculations	S24
S 5	Caption of fig 2 and the site-directed mutants of Cr FeFe hydrogenase	S30
	S5.1 Caption of fig 2	S 30
	S5.2 The site-directed mutants	S 31
	S5.2.1 C169D	S 31
	S5.2.2 V296F	S 31
	S5.2.3 F290Y	S33
	S5.2.4 F290W	S33
S6	XYZ coordinates of computed structures, Fig. 5 main text	S34
S7	Supplementary references (cited in main text)	S39
Re	ferences cited in SI	S39

S1 Derivation of expression for k_i , Eq. 3 in main text.

The inhibition of FeFe-hydrogenase with O_2 is described by the bimolecular rate constant k_i and the reverse process by the unimolecular rate constant k_a .

$$[\mathbf{FeFe}] (\mathbf{A}) \rightleftharpoons [\mathbf{FeFe}] - \mathbf{O_2} (\mathbf{I})$$

$$k_a \qquad (S1)$$

The inhibition is further divided in a diffusion process with rate constants k_{+1} and k_{-1} and chemical attachment/detachment with rate constants k_{+2} and k_{-2} .

$$[\mathbf{FeFe}] (\mathbf{A}) \begin{array}{c} k_{+1}[\mathbf{O}_2] & k_{+2} \\ \Rightarrow & [\mathbf{FeFe}] \dots \mathbf{O}_2 (\mathbf{G}) \end{array} \begin{array}{c} \mathbf{FeFe}] - \mathbf{O_2} (\mathbf{I}) \\ k_{-1} & k_{-2} \end{array}$$
(S2)

The time dependence of the concentrations of the geminate state G, inhibited state I and active state A are given by the usual kinetic equations,

$$\frac{d[G]}{dt} = k_{+1}[A][O_2] + k_{-2}[I] - (k_{-1} + k_{+2})[G]$$
(S3)

$$\frac{d[I]}{dt} = k_i[A][O_2] - k_a[I] = k_{+2}[G] - k_{-2}[I]$$
(S4)

$$\frac{d[A]}{dt} = k_a[I] - k_i[A][O_2] = k_{-1}[G] - k_{+1}[A][O_2]$$
(S5)

At equilibrium, $\frac{d[I]}{dt} = \frac{d[A]}{dt} = \frac{d[G]}{dt} = 0$ and $[A] = [A]_{eq}$, $[I] = [I]_{eq}$, $[G] = [G]_{eq}$ and $[O_2] = [O_2]_{eq}$. Insertion of these conditions in Eqs. S4 and S5 gives the equilibrium constants in terms of the rate

constants,

$$K_i \equiv \frac{[\mathbf{I}]_{eq}}{[\mathbf{A}]_{eq}[\mathbf{O}_2]_{eq}} = \frac{k_i}{k_a}$$
(S6)

$$K_{+1} \equiv \frac{[G]_{eq}}{[A]_{eq}[O_2]_{eq}} = \frac{k_{+1}}{k_{-1}}$$
 (S7)

$$K_{+2} \equiv \frac{[I]_{eq}}{[G]_{eq}} = \frac{k_{+2}}{k_{-2}}.$$
 (S8)

Therefore, $K_i = K_{+1}K_{+2}$ and

$$k_a = \frac{k_{-1}k_{-2}}{k_{+1}k_{+2}}k_i.$$
(S9)

To describe the kinetics of reaction schemes such as the one shown in Eq. S2, one usually assumes the steady-state approximation for the intermediate state, here state G. That is, after a short initial window of time, the concentration of G is assumed to remain unchanged during the course of the reaction,

$$\frac{\mathrm{d}[\mathrm{G}]}{\mathrm{d}t} = 0. \tag{S10}$$

In previous work on ligand diffusion in the enzyme CODH/ACS, the steady state assumption Eq. S10 was shown to give an excellent approximation.¹ Here, we make a second assumption, $k_{-2} \ll k_{+2}$, which is indeed valid for the reaction we consider in this work (see main text). Hence, at the beginning of the reaction where the concentration of I is still low, the reaction from I back to G can be neglected,

$$k_{-2}[I] \ll k_{+2}[G],$$
 (S11)

and therefore also the reaction from I back to A,

$$k_a[\mathbf{I}] \ll k_{+2}[\mathbf{G}]. \tag{S12}$$

Insertion of Eqs. S10 and S11 in Eq. S3 gives

$$[\mathbf{A}][\mathbf{O}_2] = \frac{k_{-1} + k_{+2}}{k_{+1}}[\mathbf{G}], \tag{S13}$$

and insertion of Eqs. S13, S11 and S12 in Eq. S4 gives the final expression for the inhibition rate,

$$k_i = \frac{k_{+1}}{k_{-1} + k_{+2}} k_{+2}.$$
(S14)

The rate for re-activation (here detachment and diffusion out of the protein) is obtained by inserting Eq. S14 in Eq. S9,

$$k_a = \frac{k_{-1}}{k_{-1} + k_{+2}} k_{-2}.$$
(S15)

S2 MD simulation and Markov state model

In order to understand the dynamics of the diffusion of gas molecules from the solvent into the protein active site, we used an approach that has been developed previously by some of us.¹⁻⁵ The first step involves extensive atomistic molecular dynamics simulation of the protein and the gas molecules solvated in explicit water. The structure of Clostridium acetobutylicum (Ca) FeFe hydrogenase has not been resolved experimentally and the structure available for Chlamydomonas reinhardtii (Cr) FeFe hydrogenase does not include the mature H-cluster.⁶ Hence we have resorted to use the structure of their homolog from *Clostridium pasteurianum* (Cp) to run the simulations (PDB id: 3c8y⁷). Although the details of the diffusion may change slightly from protein to protein, we note that there is good support for the transferability of the results. In the alignment between the three sequences we find that the identity between Cp and Ca is very high (71.5%; see also Fig. S2a). In the case of Cr, the sequence identity is considerably lower (34.5%). However the sequence similarity is high in the region corresponding to the main access paths (see Fig. S2b), and particularly for the residues that line the access tunnels we mostly find identity between the three sequences (see colour code in Fig. S1). To finalize we note that even the Cr structure lacking the mature H-cluster has very good structural similarity (1.89 Å RMSD) over the aligned region with the Cp enzyme used in the simulations (see Fig. S2c).

As detailed below we have run a combination of long equilibrium simulations where we aimed for broad sampling of ligand diffusion within the protein and the solvent, and shorter runs from

	MKTIIINGVQFNTDEDTTILKFARDNNIDISALCFLNNCNNDINKCEICTVEVEGTGLVT	60 0								
Q59262_CLOAT	MKTIILNGNEVHTDKDITILELARENNVDIPTLCFLKDCGN-FGKCGVCMVEVEGKGFRA 5									
3c8y 09FYU1 CHLRF	ACDTLIEDGMIINTNSDAVNEKIKSRISQLLDIHEFKCGPCNRRENCEFLKLVIKYKARA	120 0								
Q59262_CLOAT	ACVAKVEDGMVINTESDEVKERIKKRVSMLLDKHEFKCGQCSRRENCEFLKLVIKTKAKA	119								
3c8y	SKPFLPKDKTEYVDERSKSLTVDRTKCLLCGRCVNACGKNTETYAMKFLNKNGKTIIGAE	180 42								
Q59262_CLOAT	SKPFLPEDKDALVDNRSKAIVIDRSKCVLCGRCVAACKQHTSTCSIQFIKKDGQRAVGTV * : . :: : : : : : : : : : : : : : : : :	42 179								
	DEKCFDDTNCLLCGQCIIACPVAALSEKSHMDRVKNALNAPEKHVIVAMAPSVRASIGEL	240								
Q59262_CLOAT	DDVCLDDSTCLLCGQCVIACPVAALKEKSHIEKVQEALNDPYKKHVIVAMAPSVRTAMGEL * : ::: : . : : .*** * :**:**.::.*	239								
3c8y	FNMGFGVDVTGKIYTALRQLGFDKIFDINFG <mark>A</mark> DMTIMEEATELVQRIENNGP	292								
Q9FYU1_CHLRE Q59262_CLOAT	LGLAPGATTPKQLAEGLRRLGFDEVFDTLFGADLTIMEEGSELLHRLTEHLEAHPHSDEP FKMGYGKDVTGKLYTALRMLGFDKVFDINFGADMTIMEEATELLGRVKNNGP	162 291								
	· · · · · · · · · · · · · · · · · · ·									
3c8y Q9FYU1_CHLRE Q59262_CLOAT	<pre>FPMFTSCCPGWVRQAENYYPELLNNLSSAKSPQQIFGTASKTYYPSISGLDPKNVFTVTV LPMFTSCCPGWIAMLEKSYPDLIPYVSSCKSPQMMLAAMVKSYLAEKKGIAPKDMVMVSI FPMFTSCCPAWVRLAQNYHPELLDNLSSAKSPQQIFGTASKTYYPSISGIAPEDVYTVTI :********.*: ::::*:*: *****************</pre>	352 222 351								
2681		400								
Q9FYU1_CHLRE Q59262_CLOAT	MPCTSKN LADKPUNEKDGENDIDAVITTRELAKMIKDAKIFFAKEDSEADPANG MPCTRKQSEADRDWFCVDADPTLRQLDHVITTVELGNIFKERGINLAELPEGEWDNPMGV MPCNDKKYEADIPFMETNSLRDIDASLTTRELAKMIKDAKIKFADLEDGEVDPAMGT ***. *: *** :: **** :: *** ***	282 408								
3681		463								
Q9FYU1_CHLRE Q59262_CLOAT	GSGAGVLFGTTGGVMEAALRTAYELFTGTPLPRLSLSEVRGMDGIKETNITMVPAPGSKF YSGAGAIFGATGGVMEAALRSAKDFAENKELENVDYTEVRGFKGIKEAEVEIAG ****.:**:********:*: :: * :***:.***:	342 462								
Зс8у	NKYNVAVINGASNLFKFMKSG	484								
Q9FYU1_CHLRE Q59262_CLOAT	EELLKHRAAARAEAAAHGTPGPLAWDGGAGFTSEDGRGGITLRVAVANGLGNAKKLITKM	402 483								
	^^^ *^ .* :::									
3c8y 09FYU1 CHLRE	MINEKQYHFIEVMACHGGCVNGGGQPHVNPKDLEKVDIKKVRASVLYNQDE-HLSKRKSH OAGFAKYDFVEIMACPAGCVGGGGOPRSTDKAITOKROAALYNLDE-KSTLRRSH	543 456								
Q59262_CLOAT	KMNEKQYHFIEVMACPGGCINGGGQPHVNALDRENVDYRKLRASVLYNQDKNVLSKRKSH * :*.*:*:*** .**: *****: . : : : ::*:**	543								
Зс8у	ENTALVKMYQNYFGKPGEGRAHEILHFKYKK 574									
Q9FYU1_CHLRE	ENPSIRELYDTYLGEPLGHKAHELLHTHYVAGGVEEKDEKK 497									
255202_CLUAT	* :: ::*:.*:* **::** :* .* :: ::*:.*:*:*									

Figure S1: Alignment of the Cp (PDB: 3C8Y), Ca (Uniprot: Q9FYU1) and Cr (Uniprot: Q59262) FeFe hydrogenase sequences produced using the Clustal⁸ implementation included in the MultiSeq extension⁹ of the VMD program.¹⁰ Residues coloured in blue and red are lining the main access paths (1 and 2, respectively) to the H-cluster.

Figure S2: (a-b) Cartoon representation of Cp hydrogenase with atomic detail for metal clusters and magenta and ice blue spheres indicating the clusters involved in the main access paths reaching the geminate site (blue sphere). The red-white-green colour code indicates structure similarity between Cp and Ca (a) and Cp and Cr (b), with red indicating low similarity and green indicating high similarity. The BLOSUM80 similarity scoring matrix was used. (c) Overlay between the experimental structure of immature Cr (cyan) and Cp (white). Color code of relevant clusters as in the main manuscript. Figures were produced using the MultiSeq extension⁹ of the VMD program.¹⁰

the pockets deep inside the protein to improve the statistics, resulting in an aggregate simulation time of over 1.9 μ s. All simulations were carried out using the Gromacs software package, version 4.6.¹¹

S2.1 Force field parameters

We used the optimized Amber03w force field¹² together with the TIP4P/2005 water model.¹³ Parameters for the active site cluster and iron-sulfur clusters were taken from the DFT-derived force field of Chang and Kim.¹⁴ For the O₂ molecule we used a three-site model, with a bond length between the O₂ atoms of 1.21 Å and a mass-less virtual site located in the center of mass of the gas molecule. The oxygen atoms carry charges of -0.114 and the virtual atom 0.228, in order to reproduce a quadrupole moment.^{15,16} The Lennard-Jones parameters for the virtual atom are $\varepsilon = 0.4305$ kJ/mol and 3.01 Å.

S2.2 Equilibrium MD

First, we run two sets of long (~100 ns) equilibrium simulations of the protein together with 50 O_2 molecules. The initial structure was energy minimized using a conjugate gradient algorithm. Then the protein molecule was solvated in a truncated octahedron water box with 79.2 Å between closest walls, including 29807 water molecules, and then further energy minimized. Water molecules were replaced to include 75 Na⁺ and 60 Cl⁻ ions to the simulation box. The resulting simulation system was used as the starting point for a short NVT simulation at 300 K with position restraints in the protein and metal clusters. Finally long equilibrium simulations were run at 300 K using a stochastic leap frog integrator with an integration timestep of 2 fs and a friction coefficient of 1 ps⁻¹. The particle-mesh Ewald method was used for the electrostatics¹⁷ with a grid spacing of 1.2 Å and a real-space cutoff of 9 Å.

In the long equilibrium runs none of the 50 gas molecules reached the proximity of the Hcluster. In the spirit of adaptive sampling¹⁸ we initialized tens of short simulations from the closest sites to the active site, and from the active site itself. Even this was insufficient for sampling the last transitions from the protein pockets to the active site. A summary of the actual runs and total simulation time is shown in Table S1.

Run	Number of runs	Simulation time [ns]	Aggregate time [ns]
Equilibrium 1	1	92.6	92.6
Equilibrium 2	1	142.4	142.4
Short Eq. 1	5	20	100
Short Eq. 2	5	20	100
Short Eq. 3	5	20	100
Short Eq. 4	5	20	100
Short Eq. 5	5	20	100
Short Eq. 6	5	20	100
Short Eq. 7	5	20	100
Short Eq. 8	50	20	1000
Total	87		1935

Table S1: Summary of the equilibrium atomistic molecular dynamics simulations run for this study.

S2.3 Pulling simulations

For a subset of the microstates from the model (those closest to the H-cluster), we have run simulations in the presence of an external pulling force. To set up these runs, we first placed a single O_2 molecule at the center of a cluster corresponding to a microstate using a randomly chosen snapshot of the solvated protein. The resulting system was energy minimized and a short NVT simulation in the presence of position restraints was run to avoid very high forces. Then short simulations in the presence of an external pulling force were run using the pull code from the Gromacs software package.¹¹ The center of mass of the gas molecule was dragged towards a reference site, defined as the center of mass of a selection of atoms from the H-cluster, shown in Figure S3.

Figure S3: Representation of the H-cluster, with selected atoms used as target site for the pulling simulations represented as spheres.

S2.4 Kinetics of barrier crossing processes induced by force

The results of the MD simulations of force induced transitions to the H-cluster were fitted using the Dudko-Hummer-Szabo model.¹⁹ Briefly, this model assumes that the transitions in the presence of an external force can be explained as a diffusive barrier crossing process on a simplified free energy surface. The escape rate over the barrier is expressed as

$$k(F) = k_0 \left(1 - \frac{\nu F x^{\ddagger}}{\Delta G^{\ddagger}} \right)^{1/\nu - 1} e^{(\Delta G^{\ddagger} [1 - (1 - \nu F x^{\ddagger} / \Delta G^{\ddagger})^{1/\nu}])},$$
(S16)

where the model parameters are the transition rate in the absence of force (k_0) , the position of the transition state (x^{\ddagger}) and the free energy barrier (ΔG^{\ddagger}) . Another model parameter is v, which determines the shape of the one-dimensional potential (in this case we set v = 1/2, corresponding to a linear cubic surface).¹⁹

For each of the pulling simulations *i* at force *F*, we calculate the transition time t_i as the time it takes for the distance to reach the H-cluster site (we set the cutoff distance for an effective transition at 2.5 Å from the selected atoms of the H-cluster, corresponding to the center of the distribution of gas molecules in that site; see Figure S4). To calculate the maximum likelihood transition time for the *N* runs started from each microstate we use the expression

$$\tau = N_b^{-1} \{ \sum_{i=1}^{N_b} t_i + \sum_{i=N_b+1}^{N} T_i \},$$
(S17)

where T_i is the total time of the simulations that did not reach the H-cluster and N_b is the total number of trajectories that bind. Errors were estimated as $\tau/N_b^{1/2}$.

In Figure S5 we show the results from the pulling simulations for those sites from which we observe that binding is most likely. The theory for force-induced transitions explains the data very well, and returns values for the rate in the absence of force, k_0 , which we later combine with the rates derived from the Markov state model.

Figure S4: (a) Time series for the distance between the virtual atom of the O_2 molecule and the center of mass of the selected atoms from the H-cluster, calculated from 50 MD pulling runs. We mark illustrative examples of transition times t_i for three runs as well as the total simulation length T. (b) Distribution of values of the distance calculated for the same dataset. In both plots the dashed line marks the distance at which we assume that the geminate site has been reached.

Figure S5: (a) Selected initial states for the pulling simulations (spheres). Atomic detail is shown also for the H-cluster. The protein is shown as transparent ribbon. (b) Force dependent binding times estimated from simulations initiated from the different initial states (colours as in (a)). Fits to the Dudko-Hummer-Szabo theory are shown as lines.

S2.5 Markov state model of gas diffusion in hydrogenase

We describe the kinetics of gas diffusion of the O_2 molecules within the protein using a Markov state model (MSM).^{20–22} The MSM was built using the methods described previously.⁵ We briefly summarize the methodology below. The construction of an MSM involves the following steps: discretizing the MD simulation data, assigning the transitions to the microstates, estimating the transition count and rate matrices, and validating the model.

Discretization. The coordinates of the O_2 molecules from the long equilibrium runs within a maximum of 6 Å from protein heavy atoms were clustered using the Daura algorithm with a cutoff of 5 Å.²³ We filtered the initial set of clusters, including only the most populated clusters which account for up to a 95% of the total simulation time. This resulted in a total of 212 microstates.

Assignment. For assigning an instantaneous position of an O₂ molecule to one of the clusters we used transition based assignment (TBA).^{22,24} For each of the clusters, we calculated the distribution of distances from each of the cluster members to the cluster center, and defined a TBA radius, r_{TBA} , as the value corresponding to the distance that lies at the median of the population of the cluster. Each of the O₂ atoms from each instantaneous configuration was then assigned to a microstate *i* whenever the virtual atom of the O₂ was closer than $r_{\text{TBA}}(i)$ from the corresponding cluster center. A transition from a microstate *i* to another microstate *j* was assigned only if after leaving microstate *i*, the virtual site of the gas molecule approached the center of cluster *j* at less than $r_{\text{TBA}}(j)$. This type of assignment greatly reduces the number of recrossings, which would result in artificially fast rates.²² For escaping from any of the microstates to the solvent, we imposed a hard cutoff distance of 6 Å from any alpha carbon of the protein. Using this criterion we assigned all trajectories to the model microstates.

Estimation of rate matrix. Using the assigned trajectories one can simply calculate the transition count matrix, $N(\Delta t)$, with elements $N_{ji}(\Delta t)$ corresponding to the number of transitions observed from state *i* to state *j* within an observation window (or lag time) Δt . From the transition count matrix we obtain the transition probability matrix $T(\Delta t)$, with elements calculated using the maximum likelihood estimator²⁵

$$t_{ji}(\Delta t) = N_{ji}(\Delta t) / \sum_{j} N_{ji}(\Delta t)$$
(S18)

To obtain the rate matrix $\mathbf{K}(\Delta t)$ we use the approximation $k_{ji}(\Delta t) = t_{ji}(\Delta t)/\Delta t$ for $i \neq j$ and $k_{ii}(\Delta t) = -\sum_j k_{ji}(\Delta t)$.²⁶ In Figure S6a we show the relaxation times from the rate matrix as obtained from the eigenvalues of the rate matrix $\tau_i = -1/\lambda_i$.

We connect the rate matrix calculated from the equilibrium MD runs to the fitted rates at zero force $(k_{Gi}(0))$ by adding a row and a column to the rate matrix (corresponding to the $G \rightarrow i$ and $i \rightarrow G$ transitions, respectively). The rates for the additional column are zero except for those microstates from which we run pulling simulations, for which we use $k_{Gi} = k_0$ from Equation S16. For the reverse rate (k_{iG}) we use the results from short equilibrium runs initialized in the H-cluster.

The rate coefficients k_{is} for the transitions from the solvent *s* to the microstates *i* in the protein as obtained by the above procedure depend on the gas concentration used in the MD simulation. In order to obtain the rate coefficients at a reference concentration $[O_2]^o = 1$ mM we scale the k_{is} by a factor of $V_{\text{sim}}^{\text{H}_2\text{O}}/V_{\text{ref}}^o$.³ Here $V_{\text{sim}}^{\text{H}_2\text{O}}$ is the volume of water in the simulation, which we obtain from substracting the volume of the protein ($V_{\text{protein}}=94.570 \text{ nm}^3$) from that of the simulation box

Figure S6: (a) Spectrum of eigenvalues of the rate matrix. Only the first 40 eigenvalues are shown. (b) Population of the geminate microstate as a function of time, from a calculated relaxation initiated in the solvent. The red line shows the fit to Equation S20

 $(V_{\text{box}}=993.588 \text{ nm}^3)$. Then the simulated concentration of gas is $[O_2]=1.847 \text{ mM}$ and the scaling factor for the rate coefficients is $V_{\text{sim}}^{\text{H}_2\text{O}}/V_{\text{ref}}^{\text{o}}=0.541$.

Validation. The simplest test for the Markov property in an MSM is the convergence of relaxation times, τ_i as a function of the lag time. In Figure S7 we show that indeed relaxation times for the MSM are well converged and remain stable for a long range of lag times. The results reported in this paper correspond to a lag time of 1 ps.

Estimation of the binding rate from the MSM. We calculate the rate of access to the Hcluster as before,² using the propagation of the rate matrix from an initial distribution placed at the solvent microstate (hence $p_i(0) = 0$ for all states except i = s, where $p_s(0) = 1$). The relaxation can be calculated from the matrix exponential as

$$\mathbf{P}(t) = \exp(\mathbf{K}t)\mathbf{P}(0) \tag{S19}$$

In Figure S6b we show the relaxation for the geminate site $p_G(t)$. In order to obtain the rates of

Figure S7: Convergence of relaxation times for the first few modes of the rate matrix. All times are in ps.

access to the geminate site we fit the data to the following expression

$$p_G(t) = \frac{k_{+1}[O_2]}{k_{+1}[O_2] + k_{-1}} [1 - \exp(-(k_{+1}[O_2] + k_{-1})t)]$$
(S20)

to obtain the values of k_{+1} and k_{-1} . The data is well explained by this pseudo-first order rate expression.

S2.6 Explicit simulations of mutants

For the F417W, F417Y and V423F we run explicit atomistic MD pulling simulations as described above, only for the last transition of the dominant pathway (i.e. for the $7\rightarrow$ G step). The setup of these runs was done as described for the WT, with the initial structure corresponding to the highest ranked rotameric state, as defined by PyMOL. In the case of the V423F mutant simulations were run starting from the two most probable rotameric states. In Figure S8 we show the results. In all cases we obtain a slowdown of the final transition upon mutation. The effect is particularly strong for the mutations in site F417, where access to the geminate site via pathway 1 seems almost

Figure S8: Force dependent binding times estimated from simulations initiated from site 7 for different mutants of Cp hydrogenase. Symbol filling colours correspond to different mutants. Lines, with the same colour code, are fits to the Dudko-Hummer-Szabo model.

completely inhibited. In the case of V423F we observe a slowdown for both rotameric states by a factor of about 2.

Pulling site	Pulling force [pN]	Number of runs	Simulation time [ns]
1	75	48	3
1	100	48	2
1	125	48	2
1	150	48	1
1	175	48	1
1	200	48	1
1	225	48	1
2	100	48	2
2	150	48	1
2	200	48	1
3	75	48	3
3	100	48	2
3	125	48	2
3	150	48	1
3	175	48	1
3	200	48	1
3	225	48	1
4	100	48	2
4	150	48	1
4	200	48	1
5	75	48	3
5	100	48	2
5	125	48	2
5	150	48	1
5	175	48	1
5	200	48	1
5	225	48	1
7	75	64	3
7	100	64	2
7	125	64	2
7	150	64	1
7	175	64	1
7	200	64	1
9	200	48	1
Total			2656

Table S2: Summary of the pulling simulations run for this study.

S3 Further discussion of the non-redox reactivation (k_a)

DFT structure optimizations of the O₂-bound state (structure **2** in Figure 5, main text) show that the O-O bond length increases from 1.22 Å to 1.30 Å upon binding and that the distal oxygen carries a negative charge, which is stabilized through hydrogen bonding with Cys169. The closest contact $O-O^- \cdots$ HS-Cys169 is 2.16 Å. Proton transfer (PT) from the sulphur to the distal oxygen is only slightly uphill by 2.2 kcal/mol and the PT activation barrier equates 7.5 kcal/mol. Hence, PT is orders of magnitude faster than reactivation, observed on the time scale of 10-100 seconds. Besides, the cysteine is part of the proton transfer chain that connects the active site to the solvent.^{27–31} This, together with our calculations, suggests that a fast, solution pH-dependent protonation equilibrium between Fe_d-O₂ and Fe_d-O₂H⁺ exists.

DFT calculations further show that dissociation of O_2H^+ from the active site is energetically unfeasible (104.8 kcal/mol), whereas dissociation of O_2 is slow but feasible with a free energy barrier of 20.0 kcal/mol.³² In the alkaline limit, where O_2H^+ is negligible, and within the steadystate approximation for G, the re-activation rate for chemical detachment of O_2 and diffusion out of the protein is given by Eq. 15. Since $k_{-1} \gg k_{+2}$, $k_a = k_{-2} = 1.1 \cdot 10^{-2} \text{ s}^{-1}$. This compares favourably with the experimental estimate for the re-activation rate in the alkaline limit, $k_a > 1.0 \cdot 10^{-1} \text{ s}^{-1}$. The deviation between computation and experiment (at least a 9-fold underestimation of k_a) is similar to what we found for k_i (see main text). Here the deviation can only originate from chemical ligand detachment implying that the transition state of this step is indeed overestimated in the calculations of Ref. 32 by 1-2 kcal/mol.

S4 Quantum mechanical (QM) calculations

S4.1 Molecular model and electronic structure method

The energy and free energy for O_2 binding, reaction $1 \rightarrow 2$ in Figure 5 main text, were taken from our previous study,³² where calculations were carried out using a QM(CA1-B3LYP)/QM(BP86-

D3) ONIOM approach. The functional in the high-level QM region (CA1-B3LYP) was a rangeseparated functional, that was specially parametrized to reproduce the binding energy profile of high-level ab-initio calculations. Whereas short-range dispersion interactions for O₂ binding were described with that functional, the medium and long-range dispersion interaction of O₂ with protein residues were accounted for by BP86-D3. The binding free energy reported in Ref. 32, $\Delta G = -7.1$ kcal/mol, was for O₂ initially residing in the G cavity, i.e. active site of the protein. We have modified this value so that the binding free energy corresponds to O₂ initially residing in the gas phase at standard conditions, O₂ (g). This gives a binding free energy $\Delta G = -2.7$ kcal/mol, as indicated in Figure 5 in the main text.

The calculations on the species formed upon consecutive addition of electrons and protons, **3-9** in Figure 5 main text, and on the species described in SI section 3, were carried out in this work using the large active site model shown in Figure S9. It is similar to the one used for the O_2 binding reaction and was obtained from the crystal structure of the *Cp* protein. This model was found to be sufficiently large for all reactions investigated. For one reaction, the formation of the sulphenic acid **9** (SOH) from species **4**, we investigated a slightly modified model. The sulphenic acid is strongly stabilised by a hydrogen bond to the CN^- ligand, and we checked that this stabilization is not just an artifact of our model in which the cysteine residue is represented by a CH₃SH molecule with the carbon atom fixed to the crystal structure position. Inclusion of the entire cysteine (with C^{α} kept fixed to the crystal position) reduced only slightly the stabilisation of **9** relative to **4**, from 14 to 12 kcal/mol. Therefore our conclusion that **9** is an energetically low lying species remains unchanged.

We note that the N-atom of the bridging amino of the active site is thought to be involved in proton delivery to the active site. Therefore, under turnover conditions (H_2 production, no O_2 inhibition), this atom becomes temporarily doubly protonated. For our calculations we chose the singly protonated (neutral) state because our calculations indicated that proton transfer from the N-atom to bound O_2 is unlikely. The bound O_2 ligand is ideally positioned to accept a proton from Cys299, whereas proton transfer from the bridging N atom would require a major re-orientation of O_2 , which is energetically costly and highly unlikely to occur. Thus, whereas proton transfer from the amine is important under turnover conditions, we do not think it plays a major role for the initial stages of O_2 reduction. For this reason we treated the N-atom as singly protonated (neutral), as was done also in earlier work by Reiher et. al. (e.g. in 33 or 34).

The electronic structure of the active site model is complicated by the [Fe₄S₄] unit, which consists of two high-spin Fe(II) and two high-spin Fe(III) atoms that are antiferromagnetically coupled to yield a total spin of 0. This electronic state was approximated with the broken symmetry approach^{35,36} using a coupling scheme as described previously.³² Geometry optimisations were performed with the BP86 functional^{37–41} augmented with empirical dispersion corrections using Becke and Johnson damping^{42,43} (denoted by +D3 suffix). Def2-TZVP basis set was used throughout the study.^{44,45} The calculations were performed efficiently with the resolution of the identity (RI) approximation^{46,47} using the def2-TZVP/J auxiliary basis set.⁴⁸ Single point energies reported in the manuscript were obtained with the B3LYP+D3 functional^{37,49,50} (see section S4.3 for validation of this functional) and COSMO solvation model⁵¹ with either $\varepsilon = 4$ to account for the charge screening in a protein environment or $\varepsilon = 78$ in case of an aqueous solution. Geometry optimisations were carried out using the default DFT integration grid m3, whereas single point calculations utilised a larger grid m4. All DFT computations were performed with the Turbomole package⁵² if not stated otherwise.

Each calculation was checked for the final spin populations to reassure convergence to the same broken-symmetry state. In Table S3 we summarize the natural spin population analysis (NPA)⁵³ for the four iron atoms of the cubane for each species **1-9** shown in Figure 5, main text, as obtained with the B3LYP functional plus COSMO solvation model. For each species we obtained very similar spin populations showing that the calculations have indeed converged to the same broken-symmetry state.

All structures were subjected to analytical frequency calculations to confirm they correspond to stationary points and to obtain harmonic corrections for ΔG . Because some atoms were fixed during optimisation, we obtained a few imaginary frequencies of small amplitude. They were ne-

Table S3: Natural spin population analysis for the four iron atoms of the cubane for each species **1-9** in Figure 5, main text, as obtained with B3LYP functional plus COSMO solvation model. The atom numbering is defined in Figure S9.

	Fe ¹	Fe ²	Fe ³	Fe ⁴
1	3.457	3.449	-3.302	-3.319
2	3.445	3.441	-3.288	-3.327
3	3.457	3.433	-3.293	-3.328
4	3.427	3.451	-3.285	-3.324
5	3.480	3.430	-3.275	-3.327
6	3.386	3.358	-3.181	-3.217
7	3.385	3.463	-3.259	-3.296
8	3.457	3.449	-3.302	-3.319
9	3.437	3.457	-3.291	-3.319

glected in the calculation of thermochemical corrections. However, it was always verified that they do not involve any atoms important for the reaction studied. An alternative to omitting the imaginary frequencies is to remove from the Hessian all columns and rows that correspond to frozen atoms and calculate the free energy corrections from the eigenvalues of the modified Hessian. We have compared both methods for the two types of reactions considered in this work: (i) Reduction; we have chosen the reduction of the active site model [FeFe] (1 in Figure 5, main text) as an example, [FeFe]⁰ + 1 e⁻ \rightarrow [FeFe]¹⁻. We obtained a total correction for the Gibbs free energy of ΔG_{corr} =-5.2 kcal/mol when omitting all imaginary frequencies and $\Delta G'_{corr}$ =-6.2 kcal/mol when using the eigenvalues of the modified Hessian. (ii) Proton addition; we have chosen [FeFe]-O₂¹⁻ + H⁺ \rightarrow [FeFe]OOH as an example. Here both approaches give virtually identical free energy corrections of -6.9 kcal/mol after rounding the first decimal digit. This suggests that the free energies reported are robust against the free energy correction scheme used. We think that this is mainly due to the fact that the same atoms are frozen in each consecutive step of the reaction and that the active site model is large enough so that the local changes at the di-iron site hardly affect the frequencies associated with frozen atoms.

Figure S9: Scheme of the active site model used in this study. Atoms marked with asterisk were fixed to the crystal positions while the rest of the system was allowed to relax. The iron atoms 1 and 2 (red) as well as 3 and 4 (blue) are coupled ferromagnetically. The pairs (red-blue) are in turn coupled antiferromagnetically (see Table S3).

S4.2 Calculation of reaction free energies for PT coupled ET

There are three types of reactions in the reaction scheme of Figure 5, main text. The first reaction is binding of O_2 to the enzyme in state 1

$$\mathbf{1} + \mathbf{O}_{2(g)} \to \mathbf{2},\tag{S21}$$

where (g) refers to the standard state in the gas phase and species **1** and **2** are in the solution phase at a standard activity of 1 mol/L. The electronic energies, zero-point energies, thermal corrections and entropic terms of **1** and **2** were calculated as explained in section S4.1 using the QM model of Figure S9 surrounded by a dielectric with ε =4. The properties for O₂ were calculated in the gas phase. The reaction energy difference (ΔE) and the free energy difference (ΔG) are summarized in Table S4. The difference between ΔE and ΔG , about 13 kcal/mol, is mainly due to the loss in translational entropy of the O₂ molecule.

The second type of reactions are the ET/PT steps. Calculations of absolute electron or proton attachment energies in the condensed phase are challenging because of the change in total charge and the resulting dependence of these energies on the absolute potential in the simulation cell. The

Table S4: Summary of computed reaction energies and free energies for the reactions shown in Figure 5 of main text. In $1 + O_2(g) \rightarrow 2$, $O_2(g)$ is at standard conditions. ET/PT steps are for pH=7 versus SHE.

	ΔE [kcal/mol]	ΔG [kcal/mol]
$1 \! + \! \mathrm{O}_2(g) \! \rightarrow \! 2$	-16.1	-2.7
$2 + H^+(aq) + e^- \rightarrow 3$	-11.4	-6.2
$3 + \mathrm{H^+}(\mathrm{aq}) + \mathrm{e^-} \rightarrow 4$	-33.4	-34.9
$3 + \mathrm{H^+}(\mathrm{aq}) + \mathrm{e^-} \rightarrow 5$	5.8	8.6
$4 + H^+(aq) + e^- \rightarrow 6$	-4.9	0.7
$4 \rightarrow 9$	-16.9	-14.0
$6 + H^+(aq) + e^- \rightarrow 7$	-10.1	-12.9
7 ightarrow 8	-7.8	-13.3
Total*	-82.7	-69.3

 $^{*}\mathrm{O}_{2} + 4\mathrm{H}^{+} + 4\mathrm{e}^{-} \rightarrow 2\mathrm{H}_{2}\mathrm{O}.$

Exp. +1.23 V at pH = 0 vs. SHE.

This is -74 kcal/mol at pH =7 vs. SHE.

latter differs from the potential in experimental set-ups due to the presence of interfaces in experiment, use of electron core potentials and/or boundary conditions for potentials in the calculations. We avoided this complication by considering only coupled ET/PT steps so that the system remains neutral in all considered states. To ease the comparison with experimental data, all free energy differences for the ET/PT steps in Figure 5 in the main text were calculated for pH 7 and are relative to the free energy of the standard hydrogen electrode (SHE) reaction.

For example, considering the first ET/PT reaction in Figure 5,

$$2 + H^+_{(aq)} + e^- \to 3,$$
 (S22)

and the SHE reaction,

$$H^+_{(aq)} + e^- \rightarrow \frac{1}{2} H_{2(g)},$$
 (S23)

the standard reaction free energy of reaction Eq. S22 relative to the SHE reaction Eq. S23 is equal

to the standard reaction free energy ΔG^0 of the hydrogenation reaction (Eq. S22 minus Eq. S23),

$$\mathbf{2} + \frac{1}{2} \mathbf{H}_{2g} \to \mathbf{3}. \tag{S24}$$

The electronic energy and free energy corrections for **2**, **3** and $H_{2(g)}$ are calculated as described in section S4.1 to obtain ΔG^0 . This way one obtains the standard reaction free energy of Eq. S22 vs SHE at a standard activity of $H_{(aq)}^+$ of 1 mol/l, i.e. at pH = 0. To obtain the reaction free energy at pH=7 vs SHE, we add the usual concentration term $\ln 10 k_B T$ pH to ΔG^0 , which amounts to an increase in ΔG^0 by 9.60 kcal/mol. Calculations are carried out similarly for the other ET/PT reactions shown in Figure 5.

The third type of reactions are unbinding events, e.g.

$$\mathbf{5} \rightarrow \mathbf{1} + \mathrm{H}_{2}\mathrm{O}_{2\,\mathrm{(aq)}},\tag{S25}$$

 H_2O_{2aq} is modelled as a cluster containing four explicit water molecules surrounded with a dielectric continuum. This gives a more accurate description of solvation than a pure dielectric continuum model. The reaction free energy reported corresponds then to the following reaction,

$$\mathbf{5} + (\mathbf{H}_2 \mathbf{O})_{4(aq)} \to \mathbf{1} + [\mathbf{H}_2 \mathbf{O}_2(\mathbf{H}_2 \mathbf{O})_4]_{(aq)}.$$
 (S26)

The electronic energies and free energy corrections of the species in reaction Eq. S26 are calculated as explained in section S4.1. Calculations are carried out similarly for unbinding of OOH, OH and water.

S4.3 Validation of QM calculations

We have carried out extensive benchmark calculations to identify a density functional that would describe the oxygen reduction at the FeFe-hydrogenase active site with good accuracy. To this end we have carried out two series of calculations. Firstly, we chose a small test model of the

active site and calculated reaction energies for the first steps of oxygen reduction at the small active site model. The performance of several density functionals was compared to *ab initio* reference calculations at the level of the parametrized coupled cluster method with single and double excitations [pCCSD(-1,1)] using the def2-TZVP basis set (see Table S5). Secondly, we computed reduction and deprotonation free energies of oxygen species in aqueous solution and compared to experimental data (see Figure S10).

The small test model of the active site comprised of only the diiron subsite terminated with a CH₃SH group (for the details see Ref. 32). We tested various functionals (BP86, TPSS,⁵⁴ B3LYP, PBE0,^{55,56} BHLYP,^{37,38,40,50} CAM-B3LYP⁵⁷ along with corresponding D3 correction against pCCSD(-1,1).⁵⁸ The special parametrization accounts partially for missing higher-order excitations and improves the results substantially. The calculations would be prohibitively expensive without recently developed local pair natural orbital approach (LPNO)⁵⁹ that greatly reduces the virtual excitation space but provides results that are typically within ± 1 kcal/mol of the canonical calculations. We note, that particularly LPNO-pCCSD is both efficient and accurate method that approaches CCSD(T) accuracy at a fraction of cost.⁶⁰ The structures were optimised using setup described in the section S4.1. Calculations were performed with the Turbomole package, except the CAM-B3LYP and reference LPNO-pCCSD computations, which were carried out with the ORCA 3.0.3 program.⁶¹ In case of the LPNO-pCCSD the T_1 diagnostic was found to be always between 0.022 and 0.026 in calculations involving the [2Fe] subunit and 0.014 for a free triplet oxygen molecule. The general agreement is that CC calculations that show $T_1 < 0.04$ can be considered as reliable.⁶² The results are summarized in Table S5. We found that the B3LYP functional shows best overall performance with a mean unsigned error (MUE) of 2.31 kcal/mol and relative unsigned error (MRUE) of 8%, closely followed by the range-separated version of the same functional, CAM-B3LYP.

Table S5: Comparison of the electronic energy changes (kcal/mol) for eight reactions involving a small diiron model of [FeFe] hydrogenase active site adopted from 32. At the bottom of the table statistical evaluation of the density functionals with respect to the reference LPNO-pCCSD calculations is provided (MUE: mean unsigned error, MRUE: mean relative unsigned error, RMSD: root mean square deviation, MAX(\pm): maximum singed positive or negative error). All calculations utilize the def2-TZVP basis set.

Reaction	BP86	TPSS	B3LYP	PBE0	BHLYP	CAM-B3LYP	LPNO-pCCSD
$[\text{FeFe}]^{1-} + 1e^- \rightarrow [\text{FeFe}]^{2-}$	11.60	16.95	22.74	26.34	45.49	25.12	21.55
$[\text{FeFe}]^{1-} - 1e^- \rightarrow [\text{FeFe}]^0$	75.30	72.03	75.51	77.57	74.33	73.03	74.19
$[\text{FeFe}]^{1-} + \text{O}_2 \rightarrow [\text{FeFe}] - \text{O}_2^{1-}$	-9.84	-11.47	-2.11	-0.58	10.36	-2.52	-1.93
$[\text{FeFe}]^{2-} + \text{O}_2 \rightarrow [\text{FeFe}] - \text{O}_2^{\overline{2}-}$	4.41	3.06	15.01	18.96	13.69	7.57	11.62
$[\text{FeFe}] - \text{O}_2^{1-} + 1e^- \rightarrow [\text{FeFe}] - \text{O}_2^{2-}$	25.84	31.48	39.86	45.88	48.83	35.22	35.11
$[FeFe] - O_2^{\overline{1}-} + H^+ \rightarrow [FeFe] - O_2^{\overline{1}H}$	-309.20	-311.72	-311.51	-312.02	-316.93	-309.27	-315.00
$[FeFe] - O_2^{\overline{2}-} + H^+ \rightarrow [FeFe] - O_2 H^{1-}$	-415.17	-420.37	-429.99	-436.83	-445.21	-427.78	-431.46
$[\text{FeFe}] - \overline{\text{O}_2\text{H}} + 1e^- \rightarrow [\text{FeFe}] - \overline{\text{O}_2\text{H}}^{1-}$	-80.13	-77.16	-78.63	-78.93	-79.45	-83.28	-81.35
MUE [kcal/mol]	7.35	5.88	2.31	4.80	8.72	2.60	
MAX(+) [kcal/mol]	16.29	11.09	4.75	10.77	23.94	5.72	
MAX(-) [kcal/mol]	-9.96	-9.54	-0.18	-5.37	-13.75	-4.05	
RMSD [kcal/mol]	8.67	6.66	2.72	5.59	11.79	3.18	
MRUE [%]	69.09	76.40	8.00	24.48	101.35	11.14	

Next, the performance of the microsolvation model used for calculation of the free energies of species 3-9 was tested against experimental deprotonation and reduction free energies of oxygen species in water, see Figure S10. Each oxygen species was solvated with 4 explicit water molecules and the cluster surrounded by the COSMO dielectric continuum (as described previously for 3-9 in section S4.2). The DFT functional is B3LYP+D3. Electronic energy and free energy corrections were calculated as explained in section S4.1. The free energy of the solvated proton, which has a transient structure (fluctuating defect), was not calculated explicitly but left as a fit parameter to align the computed deprotonation free energies to the experimental scale. For reduction reactions the reaction free energy was calculated for pH=7 vs SHE.

We found excellent agreement between computed and experimental free energies ($R^2 > 0.99$). The errors in potentials for the stepwise reduction of oxygen to water are reasonably small, in the order of 0.3 V (see table S7). Results are also given for a model where only the COSMO continuum solvation model is used, without explicit water molecules (column COSMO only). In this case errors are very large which shows that inclusion of explicit water molecules is essential. Hence, we conclude that the B3LYP+D3 functional in combination with our microsolvation model performs very well for both sets of calculations, reduction of O₂ at the di-iron active site and in aqueous solution. This approach was therefore chosen for the calculations presented in the main text.

The microsolvation model used was additionally validated by comparing the computed hydration free energies to experiment. The results are summarized in Table S6, where we also give the results for the COSMO only model, without explicit water molecules. On the basis of these data it is clear that an adequate description of solvation of charged species such as OH^- and O_2^- can only be achieved if the first hydration shell is treated explicitly as done in our microsolvation model. Similar results have been reported before in the literature by Truhlar and co-workers for redox potential calculation of aqueous ions⁶³ and pKa calculations.⁶⁴ The inclusion of explicit water seems to be less crucial for the solvation free energy of neutral species, which is already reasonably well described by COSMO only. Unfortunately, we could not find an experimental value for H₂O₂, which is why this species is not included in the table.

Figure S10: Correlation between experimental^{65–67} and calculated reaction free energies for deprotonation and reduction reactions of oxygen species. H_{ox} and H_{red} denote oxidized (Fe(II)Fe(I)) and reduced form ((Fe(I)Fe(I)) of the active site model, respectively. Reactions denoted by a filled square are used for the fit of H⁺ solvation free energy.

Table S6: Summary of experimental and computed solvation free energies, $X_{(g)} \rightarrow X_{(aq)}$ at standard conditions, $X=H_2O,OH^-,O_2^-$. Calculations were carried out without explicit water molecules and COSMO continuum solvation model only or with a microsolvation model where 4 water molecules are explicitly included and the remaining solvation shells modelled with a COSMO continuum solvation model. MUE denotes the mean unsigned error of the method with respect to the experimental values. All values in units of kcal/mol.

Molecule	Exp.	Only COSMO	Microsolvation
H_2O^{68}	-6.3±0.4	-9.9	-5.1
OH^{-69}	-106.4 ± 0.5	-68.9	-107.8
O_2^{-65}	-85.0	-57.3	-86.0
	MUE	22.9	1.2

Table S7: Comparison of the calculated and experimental^{66,67} reduction potentials w.r.t SHE at pH=7 for set of reactions involving oxygen species (see Figure S10). The calculations employ B3LYP+D3 functional with COSMO or microsolvation models denoted as E_{calc}^{COSMO} or $E_{calc}^{microsolv.}$, respectively. MUE denotes the mean unsigned error of the method with respect to the experimental values.

Reaction	E_{calc}^{COSMO} [V]	$E_{calc}^{\rm microsolv.}$ [V]	E_{exp} [V]
5	-1.53	-0.27	-0.33
6	-0.62	-0.62	-0.40
7	-0.86	0.32	0.89
8	-0.99	0.19	0.38
9	0.65	1.80	2.32
MUE [V]	1.24	0.31	_

S5 Caption of fig 2 and the site-directed mutants of Cr FeFe hydrogenase

S5.1 Caption of fig 2

A: Effect of H/D exchange on the inhibition of WT Ca FeFe hydrogenase by O₂. pH or pD = 7.1, E = 90 mV vs SHE, $T = 12^{\circ}$ C, 1 bar H₂ or D₂. (Experiment with H₂ oxidation in H₂O, $[O_2]_0 = 6.25 \ \mu$ M, $\tau = 49$ s; 12.5 μ M, 50 s; 25 μ M, 53 s; experiment with D₂ oxidation in D₂O, $[O_2]_0 = 6.25 \ \mu$ M, $\tau = 43$ s; 12.5 μ M, 40 s; 25 μ M, 37 s).

B: Effect of pH on the inhibition of WT Ca FeFe hydrogenase by O₂. pH = 6, 7 and 8.5, E = 190 mV, $T = 12^{\circ}\text{C}$, $[\text{O}_2]_0 = 12.5$ and 25 μ M, $\tau = 38$ and 39 s at pH 6; 39 and 36 s at pH 7; 25 and 25 s at pH 8.5.

C: Effect of electrode potential on the inhibition of WT Ca FeFe hydrogenase by O₂. pH = 6, E = 40 and 140 mV, $T = 12^{\circ}$ C, $[O_2]_0 = 6.25$, 12.5 and 25 μ M, $\tau = 35$, 34 and 35 s at 40 mV; $\tau = 33$, 32 and 33 s at 140mV.

D: Effect of F290Y and V296F substitutions on the inhibition of Cr FeFe hydrogenase by CO. pH = 7, E = 190 mV, T = 30 °C, $[CO]_0 = 4.8 \mu$ M, $\tau = 19$ s (WT), 17 s (V296F) and 19 s (F234Y).

E: Effect of F290Y and V296F substitutions on the inhibition of Cr FeFe hydrogenase by O₂. pH = 7, E = 40 mV, T = 12 °C, $[O_2]_0 = 12.5 \mu$ M, $\tau = 38$ s (WT), 20 s (V296F) and 41 s (F234Y). The inset in panel E shows the data in a plot of -d(log(i))/dt against the time after the injection of O₂. As explained in ref 54, this gives the instant rate constant of inactivation (provided the reaction is irreversible, which is only true just after the time of injection of O₂). The inset therefore shows that the F290Y mutant reacts with O₂ about twice as slowly as the WT enzyme.

F: Effect of C169D substitution on the inhibition of Cr FeFe hydrogenase by O₂. pH = 7, $E = 40 \text{ mV}, T = 3^{\circ}\text{C}, [\text{O}_2]_0 = 25 \,\mu\text{M}, \tau = 45 \text{ s}$ for Cr WT and 49 s for Cr C169D. E: Cr WT and Cr V296F, pH = 7, 1 bar H₂, $\omega = 3 \text{ krpm}, E = -158 \text{ mV}, T = 30^{\circ}\text{C}, [\text{CO}]_0 = 2.4 \,\mu\text{M}, \tau = 20 \text{ s}$ for Cr WT and 17.5 s for Cr V296F.

S5.2 The site-directed mutants

Site-directed mutagenesis was performed on the CrhydA1 gene cloned into the pBBR-hydA1N vector⁷⁰ using Quick Change Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA). The recombinant plasmids were introduced and expressed in *Shewanella oneidensis* AS52 strain as described in ref. 70.

S5.2.1 C169D

The mutagenesis primers used for creating C169D mutant were T226Kup 5'-ccatgttcaccagcgatt-tgccccggctgga-3'.

The analysis of the C169D data recorded at pH 7, E = 40 mV, $T = 12^{\circ}$ C (ref 71 and fig S11) returns: $k_i = 2.5 \pm 0.5$ mM⁻¹s⁻¹ (WT) and 3.8 ± 0.4 mM⁻¹s⁻¹ (C169D); $k_a = 0.035 \pm 0.005$ s⁻¹ (WT) and 0.010 ± 0.001 s⁻¹ (C169D), $k_3 = 0.024 \pm 0.003$ s⁻¹ (WT) and 0.0021 ± 0.0008 s⁻¹ (C169D).

S5.2.2 V296F

For the V296F mutant the primers were Hyd1-830Fw 5'- TGACCGCGACTGGTTCTGTGTGGACG-3' and Hyd1V296Frev 5'- GCGCAGTGCCGCCTCCATGAAACCTCCGGTGGTGCCGAACAG -3' (with nucleotide triplets coding a mutated amino acid shown in bold, and underlined are silent base changes to lower secondary structure formation). The PCR program used was 96°C 5 min, [96°C 1 min, 65°C 3 sec, 72°C 17 min] for 25 cycles, and a final cycle at 72°C 17 min. The PCR products were digested with DpnI and directly transformed into *E. coli*, and clones were sequenced to confirm the mutation.

Figure S12 shows experiments in which films of WT Cr and V286F were exposed to series of potential steps (as shown in the upper panel), and their current response (bottom). Following each step, the equilibrium between active and anaerobically inactivated species changes, which results in a multiexponential relaxation towards a new steady-state. We analyzed the transients in detail to gain insight in the inactivation process in ref. 72. The difference between the WT and the

Figure S11: Characterization of the anaerobic / aerobic inactivation of C169D Cr hydrogenase grafted on rotating electrode, T = 12° C, pH = 7, $\omega = 3000$ rpm, 1 bar H₂. A: Cyclic voltammograms at different scan rates (5, 10, 20 and 2 mV/s; gray lines) and fits (dashed black lines). B: Current response of H₂-oxidation (gray line) and fit (black dashed line) for a sequence of potential steps applied to the electrode (red line). C: Potential dependence of the rate constants for the anaerobic inactivation, extracted from fits shown on panels A (k_a : plain lines and k_i : dashed lines) and B (k_a : square dots and k_i : circle dots). The rate constants for two species involved in the kinetic model are distinguished using black and gray plots. D: Catalytic current of H₂oxidation changes with enzyme exposure to O_2 (gray line), E = 40 mV; $[O_2]_0 =$ 1.25 μ M, $\tau = 31$ s; 2.5 μ M, 30 s; 5 μ M, 30 s. The oxygen reduction current is plot against time as a red line, E = -560 mV; $\omega = 6000$ rpm.

V296F is most visible in the steps at ≈ 0.05 V at t = 150 s and 350 s: whereas the WT enzyme quickly inactivates or activates (and then irreversibly inactivates), the inactivation/activation of the V296F mutant is very slow (neither are complete in these steps). Surprisingly, the rate of inactivation/reactivation is slower at 0.05 V than at 0.15 V. This is not compatible with the model that explains the data in the WT enzyme, for which the relaxation rate increases when the potential is decreased. This shows that the chemistry of the anaerobic inactivation in the V296F mutant is not the same as that in the WT enzyme, which suggests that the aerobic inactivation may be different too. Hence, the difference in O₂ reaction rate between the WT and the V296F (main text fig 2E) cannot be interpreted only in terms of kinetics of diffusion along the gas channel.

Figure S12: Anaerobic (in)activation of WT and V296F Cr FeFe hydrogenase.

S5.2.3 F290Y

The construction and partial characterization of the F290Y mutant are described in ref 72, although this mutant was mistakenly called F234Y therein.

S5.2.4 F290W

The mutagenesis primers used for creating the F290W mutant were Hyd1-830Fw 5'- TGACCGCGA-CTGGTTCTGTGTGGGACG-3' and Hyd1F290Wrev 5'- CTCCATGACACCGCCAGTGGTGCC-CCACAGCACGCCTGCGCCCGAG -3', (with nucleotide triplets coding a mutated amino acid shown in bold, and underlined are silent base changes to lower secondary structure formation).

S6 XYZ coordinates of computed structures, Fig. 5 main text

Ct+	0 1			c	5 0939211	27 5352706	27 0376010	ц	3 /13100/	32 010/177	27 5000000
on	.е т			5	0.7016045	27.5552708	27.0378919	п	0.5242460	32.9194177	27.5900988
80					0.7216845	27.0683127	26.32/3091	н	-0.5242460	33.0791724	30.6414001
				N	-0.3211679	27.0832559	27.3886311	Н	-2.2712146	33.4800838	30.7037496
С	2.8858334	33.3821088	28.4303703	Н	4.4141355	29.5698979	25.8466137	Н	0.1422184	30.7289758	30.9942252
S	1.6505058	32.1597973	29.0114418	Н	5.3231497	28.4372666	24.8081890	Н	-1.1735557	29.5242747	31.2087096
Fe	0.1734620	31.5501570	27.3448925	Н	1.7144455	27.1570108	26.7814153	С	-9.4623550	19.8487551	23.3205802
Fe	-2.2501140	30.8211592	27.1631377	Н	0.5425499	27.9231298	25.6683818	Ν	-8.9887849	19.8461818	21.8832419
С	-2.6696533	29.0472011	26.6944106	Н	-0.2366122	27.9526351	27.9929626	Н	-8.8684179	19.1152766	23.8742576
Ν	-2.7762916	27.8864933	26.4937650	Н	-1.3184127	27.1774516	26.9868091	Н	-10.5225148	19.5779668	23.3284788
С	0.6660615	33.0439297	26.2920597	С	9.0870818	25.2234985	20.2240736	Н	-7.9698163	20.1030960	21.8190919
N	1.0099502	33.9762706	25.6679402	N	10.5874728	25.3921132	20.1158233	Н	-9.1092494	18.8937654	21.4452606
С	-1.6726493	32.7772929	29.9511966	Н	-0.2484676	26.2728850	28.0107618	Н	-9.5315965	20.5377961	21.3037689
S	-1.6508144	32,8321548	28.0783278	н	8.7082331	25.9803648	20.9173042	С	-4.7072237	27.7904542	30.1710166
c	_0 9782849	30 5044836	30 4237514	 U	9 6576966	25.3609151	19 2270023	c	-4 7860706	29.0652508	31 4791495
c	0.7650100	20.0001147	20 (400205		11 0000004	23.3000131	10.4567401	3	4.7800700	23.0032500	32.5064700
5	-0.7650168	29.8991147	28.6498285	н	10.0023684	24.6821872	19.4567481	C	0.2291980	27.1926574	32.5064788
C	1.4086597	30.6026160	26.5/32433	Н	10.8383811	26.34/3324	19./565491	S	1.9725905	26.6543176	32.33/4464
0	2.2310410	30.0187186	25.9916107	Н	11.0507230	25.2709860	21.0504976	С	6.9139297	31.4752476	32.9484591
С	-3.4748560	31.5965561	26.1689105	Fe	2.9302030	30.4685704	29.8416921	S	6.6681934	29.6911397	32.6235581
0	-4.2909424	32.1125816	25.5220737	Fe	4.3415271	28.4395799	28.8851936	Н	-5.2474443	30.0454750	30.6538360
С	-0.9485221	30.9446056	25.7942629	S	5.0620559	30.5567069	29.1540051	Н	-4.0738865	28.1293441	29.3436279
0	-0.8097855	30.7267767	24.6443231	S	2.1005312	28.5064738	29.1397422	Н	-5.7096732	27.5483597	29.7997988
Ν	-1.9405438	31.5319373	30.6115553	Н	-0.2097949	27.2673035	31.5027349	Н	0.1751970	28.1253366	33.0809649
Н	-2.8838290	31.1760963	30.4267139	Н	-4.0316849	27.1637136	30.7663397	Н	-0.3165881	26.4062887	33.0441802
Н	2.3374527	34.2351996	28.0176129	Н	-9.2780152	20.8808871	23.6327980	Н	7.0330272	32.0344047	32.0124893
Н	3.5131265	32.9425967	27.6481550	Н	8.8849174	24.2167167	20.6007240	Н	7.8244250	31.5816373	33.5527366
Н	-0.6816747	33.1445902	30.2567916	Н	6.1925987	29.4449165	26.0124723	Fe	2.9235204	28.1525108	31.0675270
Н	-2.4353111	33.5126656	30.2342250	н	6.3500249	31.6819857	33.8671499	Fe	5.0256234	29.5818382	31,1924510
н	0 0162866	30 8374414	30 7504531	ч	0 6392148	26 1376942	25 7557892	g	4 9739647	27 3959906	30 7471605
и и	-1 2686988	29 6073961	30 9830858	и и	3 /002280	33 6735061	29.2907136	c	3 0490016	30 1247760	32 0765474
п	-1.2000900	29.0073001	30.9830838	п	3.4332203	33.0/33001	29.290/130	3	5.0490010	30.1247760	32.0703474
C	-9.4623550	19.8487551	23.3205802		_			C	5.2682/54	28.8894859	25.8077522
Ν	-9.0294116	19.7113824	21.8767463	Stat	ie 2			S	5.2206149	27.5717381	27.0866471
Н	-8.8712985	19.1490683	23.9192259	82				С	0.7216845	27.0683127	26.3273091
Н	-10.5278967	19.6064351	23.3787934					Ν	-0.3142711	27.1233552	27.3922337
Н	-8.0061822	19.9347739	21.7645665	С	2.8858334	33.3821088	28.4303703	Н	4.2884236	29.3617300	25.6932792
Н	-9.1857756	18.7281284	21.5256844	S	1.6864124	32.2088114	29.1592025	Н	5.5664279	28.4251741	24.8582105
Н	-9.5721755	20.3659848	21.2545947	Fe	0.1063307	31.5905805	27.5659632	Н	1.7209380	27.0278518	26.7753826
С	-4.7072237	27.7904542	30.1710166	Fe	-2.3641944	30.9368312	27.6039728	Н	0.6328112	27.9761561	25.7240342
S	-4.7447636	29.4185366	30.9981489	С	-2.6273356	29.2150732	26.8646608	Н	-0.1508833	27.9317303	28.0478325
С	0.2291980	27.1926574	32.5064788	Ν	-2.6392689	28.0964517	26.4910395	Н	-1.3073647	27.3375468	26.9810736
s	1.9984643	26.7232696	32.4154416	С	0.5476593	33.1182181	26.5261582	С	9.0870818	25.2234985	20.2240736
С	6.9139297	31.4752476	32.9484591	Ν	0.8434054	34.0552383	25.8866336	Ν	10.5757820	25.4940351	20.2553162
S	6.7267475	29.7104495	32.4930716	С	-1.5332732	32.7458178	30.3588026	Н	-0.3275415	26.2718357	27.9609292
Н	-5.5334749	30.0405294	30.0923016	S	-1.5915494	32.9033159	28.4880106	Н	8.5980936	25.9341428	20.8971169
н	-4 3068889	27 8779338	29 1537514	C	-0 8733889	30 4401707	30 6879937	н	8 7395205	25 3588854	19 1954643
 ц	-5 7021209	27 3304321	30 1610429	c	_0 7391939	29 9098904	28 8796569	 U	11 0952423	24 9315329	19 6212216
	0.1170106	27.3304321	22 0101576	5	1.2200240	29.9098904	20.0790309		10.7002020	24.0313325	10.0400007
н	0.11/2186	28.1368133	33.0181576		1.3399349	30.6708016	26.7393393	н	10.7903393	26.4737845	19.9402297
н	-0.2994/22	20.41/6022	33.07/9012	-	2.154380/	20.1202092	20.1138/14	н.	TO'20501-2	23.3/8/385	21.225331/
Н	6.5566324	32.1368047	32.1498033	С	-3.4432708	31.7957293	26.4898778	Fe	2.9581659	30.4557156	29.8940592
Н	7.9804345	31.6734269	33.1232625	0	-4.1386590	32.3442834	25.7495049	Fe	4.4084970	28.4595366	28.9151718
Fe	2.9225888	28.1984342	31.0915289	С	-0.9940885	31.1226829	26.0890838	S	5.1028560	30.5751185	29.2642728
Fe	5.0331887	29.6205928	31.1144447	0	-1.0190737	30.9469278	24.9298886	S	2.1651652	28.5180784	29.0978349
S	4.9576976	27.4186232	30.7272787	Ν	-1.8065579	31.4746211	30.9555110	Н	-0.2341871	27.3470849	31.5235667
S	3.0841105	30.2084471	32.0373961	Н	-2.7630211	31.1537136	30.7852050	Н	-4.2682378	26.8952829	30.6284862
С	5.2682754	28.8894859	25.8077522	Н	2.3265593	34.2522417	28.0732042	Н	-9.3140251	20.8546642	23.7249822

Н	8.9223950	24.1950401	20.5592211	Н	7.9842937	31.7038875	33.0368203	С	-3.6251000	32.0828099	26.5766297
Н	6.0063900	29.6492368	26.0917168	Fe	2.9359102	28.1717258	31.0962103	0	-4.4467131	32.6556092	26.0034744
Н	6.0607513	31.8794700	33.5071886	Fe	5.0538047	29.5918219	31.1345746	С	-1.0535589	31.8248941	25.9243153
Н	0.5408241	26.1907915	25.6974296	S	4.9711312	27.3960492	30.7320106	0	-1.1917141	31.9310073	24.7699361
Н	3.5967088	33.6559308	29.2187837	S	3.1104278	30.1676688	32.0602350	Ν	-1.8288036	31.4734871	30.8058570
0	-3.7426530	30.6094896	28.8615781	С	5.2682754	28.8894859	25.8077522	Н	-2.7658168	31.1724110	30.5113185
0	-4.9959897	30.9240888	28.6921183	S	5.1099119	27.5367744	27.0415858	Н	2.4067028	34.3282768	28.1632084
				С	0.7216845	27.0683127	26.3273091	Н	3.3555827	32.9500495	27.5408910
Sta	te 3			N	-0.3373872	27.1585314	27.3690725	Н	-0.5436374	33.1044582	30.6477187
83				н	4 4151922	29 5710709	25 8597741	н	-2 2929217	33 4983451	30 7602788
00				 U	5 3107942	29 4369694	24 8080605		0 1397369	30 7786896	30 7909894
C	0 0050004	22 2021000	20 4202702	11	1 7000001	27.0420070	24.80800005	11	1 1546905	20 51/50090	20.9615124
0	1 (020220	33.1015(13	20.4303703	11	1.7055501	27.0425575	20.0000510		1.1540055	10 0407405	22 2205727
5	1.6839330	32.1915615	29.1204974	н	0.6486380	27.9364427	25.6936637		-9.4623523	19.8487495	23.3205737
ŀ.e	0.1615418	31.5841835	27.5098154	Н	-0.1899686	27.9888992	28.0060367	N	-9.3655/91	20.204/4//	21.8525711
Fe	-2.2841594	30.9991639	27.4227415	Н	-1.3188740	27.3500840	26.9478069	Н	-8.7293859	19.0630602	23.5272904
С	-2.6208814	29.2585965	26.7671394	С	9.0870818	25.2234985	20.2240736	Н	-10.4791885	19.4950998	23.5166741
Ν	-2.7071014	28.1206431	26.4633249	Ν	10.5828438	25.4270536	20.1190367	Н	-8.4028951	20.5534825	21.6091631
С	0.6541428	33.0641984	26.4225397	Н	-0.3571533	26.3270432	27.9666882	Н	-9.5676387	19.3658131	21.2444598
Ν	0.9840503	33.9765998	25.7642700	Н	8.6905332	25.9693956	20.9195466	Н	-10.0539353	20.9593803	21.5984747
С	-1.5838998	32.8257646	30.1893120	Н	8.6556449	25.3528350	19.2268883	С	-4.7072224	27.7904464	30.1710081
S	-1.5182590	32.9584601	28.3231907	Н	11.0144509	24.7296509	19.4576721	S	-2.9449890	27.8252796	29.6701643
С	-1.0143322	30.5071301	30.5948444	Н	10.8109356	26.3898736	19.7634659	С	0.2291979	27.1926498	32.5064697
S	-0.7582846	29.9505841	28.8103129	Н	11.0482104	25.3129788	21.0538123	S	1.9646171	26.6710948	32.2588397
С	1.3784917	30.6210998	26.7078686	Fe	2.9577659	30.4503296	29.8745996	С	6.9139278	31.4752388	32.9484498
0	2.1907606	30.0590591	26.0943140	Fe	4.3662765	28.4337036	28.8968547	S	6.5370724	29.7086103	32.6529129
С	-3.3193859	31.9042045	26.3068311	S	5.0797471	30.5469386	29.1850662	Н	-3.3128400	29.6542492	29.0143586
0	-3.9958076	32.4894802	25.5776475	s	2.1223481	28.5029700	29.1405143	Н	-5.3441011	28.0526396	29.3161371
С	-0.9616538	31.0687194	25.9825344	Н	-0.2208715	27.2794292	31.5094020	Н	-4.8931675	28.5082449	30.9794964
0	-0 8784853	30 8703359	24 8275945	н	-4 4710503	26 8662747	30 7136969	н	0 1960905	28 1655168	33 0122005
N	-1 9441197	31 5659933	30 7663889	н	-9 2378542	20.8800411	23 6089254	н	-0 2545133	26 4410228	33 1441333
11	2 9760072	31.33033353	30.4633570		9.2077003	24 2111512	20 6084128	11	7 1265504	21 0020462	32 0070470
п	-2.8789073	31.2707233	30.4023373	п	6.1050441	24.2111313	20.3984138	п	7.1303304	21 5106470	32.00/94/0
н	2.32/2503	34.2563101	28.0819327	н	6.1952441	29.4438220	25.9999527	н	7.7930370	31.5196479	33.6044448
н	3.4236/30	32.9383001	27.5866310	Н	6.4189028	31.6658/29	33.9091821	F.e	2.8394027	28.1911958	30.9796029
H	-0.5852337	33.1271629	30.5381526	Н	0.5557753	26.1693978	25.7241512	Fe	4.9346108	29.6352780	31.1690892
Н	-2.3174887	33.5866313	30.4817158	Н	3.5877363	33.6473262	29.2299820	S	4.8992206	27.4490933	30.7131507
Н	-0.0186174	30.7810759	30.9725611	0	-3.7778724	30.7996047	28.6512181	S	2.9262048	30.1552788	31.9983288
Н	-1.3780144	29.6073819	31.1039612	0	-5.0288505	30.3460433	28.0480420	С	5.2682739	28.8894778	25.8077450
С	-9.4623550	19.8487551	23.3205802	Н	-4.7671555	29.4572742	27.7218123	S	5.2635143	27.5890457	27.1028428
Ν	-9.1766769	19.7021988	21.8413092					С	0.7216843	27.0683051	26.3273017
Н	-8.8221850	19.1450536	23.8611498	Stat	e 4			Ν	-0.4804847	27.2831991	27.1776726
Н	-10.5196992	19.6201499	23.4855636	84				Н	4.2710725	29.3241865	25.6800461
Н	-8.1660428	19.9081405	21.6278903					Н	5.5878704	28.4282264	24.8635332
Н	-9.3840448	18.7220623	21.5109712	С	2.8858326	33.3820994	28.4303623	Н	1.5659166	26.7374342	26.9402528
Н	-9.7664047	20.3646425	21.2735781	S	1.6219511	32.2635335	29.0964154	Н	0.9760503	28.0217555	25.8549584
С	-4.7072237	27.7904542	30.1710166	Fe	0.0399553	31.9061225	27.4293173	Н	-0.3172909	28.0419734	27.8834361
S	-4.6512128	29.1486706	31.3863065	Fe	-2.3871297	31.1898245	27.4843194	Н	-1.3071307	27.6649471	26.5913160
С	0.2291980	27.1926574	32.5064788	С	-2.4469966	29.6476301	26.3909834	С	9.0870792	25.2234914	20.2240679
S	1.9895019	26.6945989	32.3948686	N	-2.3603012	28.6400186	25.7910581	N	10.3308071	25.8701479	20.7962914
С	6.9139297	31.4752476	32.9484591	С	0.5745360	33.5437028	26.6157101	Н	-0.7912272	26.4532105	27.6944499
S	6.7363803	29.7034534	32.5147947	N	0.9129015	34.5464889	26.1128649	Н	8.2155426	25.7241035	20.6564233
Н	-4.7725094	30.1297492	30.4570737	C	-1.5557582	32.7992925	30.3466329	н	9.1101937	25.3489074	19.1372048
н	-3 9537557	27 9490384	29 3894817	q	-1 6497037	33 1149377	28 4995451	н	11 2036957	25 4205610	20 4108944
н	-5 7020632	27 6983780	29 7210500	C	-0 8661/1/	30 4913960	30 4552001	ц ц	10 367//35	26 8949911	20.562/30/
	0 1201000	20 15/0000	33 0251065	c	_0 7267004	30.1120027	20.90000000	11	10 3505010	25.7000010	20.0024004
п	0.1030240	20.1349222	22.0014000	5	1.0000000	20.0050405	20.0091030	п	10.3383810	20.4000042	21.0422056
н	-0.3039543	26.4242297	33.0814228	C	1.2264459	30.9652401	26.54/9734	г,е	2.8888736	30.4893041	29.8150980
Η	6.4737382	32.1211707	32.1802313	0	2.0085224	30.3572909	25.9436131	Fe	4.3639078	28.4996087	28.8754200

S	5.0541089	30.6187969	29.2370252	S	6.7118155	29.6777970	32.6648360	С	0.5873917	33.1553279	26.5192835
S	2.1098870	28.5620251	28.9941750	Н	-4.1679407	28.9799617	32.1935640	N	0.8585819	34.0935403	25.8700039
Н	-0.3189881	27.2555086	31.5572044	Н	-4.2482442	27.5732038	29.1973438	С	-1.3812071	32.7927372	30.4054023
Н	-4.9734511	26.7813271	30.5143567	Н	-5.5495900	28.4713516	30.0214933	S	-1.4523766	32.9694183	28.5473554
Н	-9.2436935	20.7486506	23.9032934	Н	0.2108162	28.0514400	33.1895779	С	-0.7933339	30.4745703	30.6985396
Н	9.1017052	24.1635818	20.4953371	Н	-0.3690575	26.3783282	32.9362121	S	-0.5903351	29.9493086	28.8896978
н	5 9728853	29 6832359	26 0841628	н	7 0738829	32 0072905	32 0026928	C	1 3163885	30 7107535	26 6362220
н	6 0685110	31 9676445	33 4445905	н	7 7890824	31 6153229	33 5968129	0	2 0746683	30 1730139	25 9363072
11	0.0003110	26 2272769	25 55.4445505	Fo	2 0544224	31.0133229	21 1069240	c	2.0740000	31 0105460	26.7340087
п	0.4845101	20.3273708	23.3304817	re	2.9344234	28.1289108	31.1000349		-3.4204320	31.9105460	20.7249987
н	3.6414094	33.5288639	29.2120256	Fе	5.0837624	29.5292039	31.2251670	0	-4.2004906	32.5185745	26.1233/3/
0	-3.6848123	30.5310406	28.6462440	S	5.0057380	27.3452964	30.7651602	С	-1.0883681	31.1855038	26.1131250
0	-6.2367632	30.0317044	27.7770457	S	3.1304320	30.0987994	32.1383434	0	-1.0807033	31.0678565	24.9453194
Н	-5.3036517	30.2013760	28.0837700	С	5.2682739	28.8894778	25.8077450	Ν	-1.7346694	31.5097647	30.9422520
Η	-6.5764785	30.9200933	27.5857555	S	5.2216207	27.5652826	27.0811207	Н	-2.6553816	31.2363299	30.5574954
				С	0.7216843	27.0683051	26.3273017	Н	2.2855804	34.2575980	28.1624985
Sta	te 5			Ν	-0.2034170	27.2864536	27.4798488	Н	3.3745669	33.0037485	27.5262092
84				Н	4.2944023	29.3782436	25.7134739	Н	-0.3572265	33.0638073	30.7011849
				Н	5.5412462	28.4246114	24.8509413	Н	-2.0817623	33.5531562	30.7722853
С	2.8858326	33.3820994	28.4303623	Н	1.7532011	27.0453025	26.6975027	Н	0.2127512	30.7514797	31.0426791
S	1.7794841	32.1588731	29.1906379	Н	0.6003321	27.9041787	25.6332294	Н	-1.1132036	29.5459711	31.1852248
Fe	0.1562191	31.5219553	27.6524776	Н	0.0909265	28.1154412	28.0496687	С	-9.4623496	19.8487439	23.3205672
Fe	-2.3458002	31.0144212	27.7828490	Н	-1.2283109	27.4696672	27.2125411	N	-9.3450724	20.4591537	21.9399330
С	-2.7721378	29.2281453	27.3426400	С	9.0870792	25.2234914	20.2240679	Н	-8.7284806	19.0406073	23.3972997
N	-2 8484594	28 0677533	27 1275861	N	10 5272526	25 6540524	20 4001301	н	-10 4802354	19 4633836	23 4347583
	2.0404554	22.0001080	26 4411005		0 1722740	26 4077147	20.1240040		0 2002660	20 9470696	21 7777081
N	0.0500000	32.9001080	26.4411903	п	-0.1732740	20.49//14/	20.1340040	п	-0.5002000	10 7205024	21.1001400
IN	1.0030303	33.7441219	20.00000051	п	0.4000730	25.8715468	20.0444474	п	-9.5551204	19.7353024	21.1901408
C	-1.29/9/9/	33.1291842	30.2803251	Н	8.8297993	25.3291666	19.165/869	Н	-10.0336855	21.245/399	21.8136440
S	-1.4523269	33.0305021	28.4197837	Н	11.1759536	25.0547783	19.8200523	С	-4.7072211	27.7904386	30.1709996
С	-0.7336218	30.8381639	30.8829051	Н	10.6628956	26.6560603	20.1039364	S	-2.9273384	27.4012478	30.0204673
S	-0.7622100	30.0369823	29.1771531	Н	10.8264798	25.5728743	21.4054434	С	0.2291978	27.1926422	32.5064606
С	1.3483578	30.5341600	26.8463630	Fe	3.0404169	30.4500240	29.9574674	S	1.8487687	26.5176082	31.9681317
0	2.1318650	29.9834684	26.1860765	Fe	4.4511836	28.4395653	28.9406620	С	6.9139259	31.4752300	32.9484405
С	-3.3611151	31.8361186	26.5936348	S	5.1656478	30.5455012	29.3079590	S	6.6802447	29.7047423	32.5350914
0	-3.9888578	32.3795402	25.7848492	S	2.1965470	28.5291910	29.1315571	Н	-3.3619330	29.6996803	29.2857362
С	-1.0273610	30.8680720	26.3117931	Н	-0.2074635	27.4924060	31.5449583	Н	-5.0658370	28.0586242	29.1664459
0	-1.0548186	30.4815875	25.1962405	Н	-5.0219989	26.8589686	30.6543162	Н	-4.8511046	28.6518939	30.8319339
Ν	-1.5843336	31.9674427	31.0752818	Н	-9.2196092	20.8713270	23.6254290	Н	0.3715886	28.0453158	33.1815870
Н	-2.5735566	31.7229709	31.0198823	Н	9.0044691	24.1802230	20.5438245	Н	-0.3155251	26.3971035	33.0323876
Н	2.2739622	34.2234312	28.0891736	Н	6.0245565	29.6351953	26.0811830	Н	7.0922676	32.0573005	32.0350586
Н	3.4042179	32.9486065	27.5689674	Н	6.0261643	31.8819652	33.4482732	Н	7.7867542	31.5574647	33.6095285
н	-0.2570743	33,4361825	30.4579612	н	0.4589712	26.1268000	25.8339038	Fe	2.9027920	28.0943769	30.9277798
н	-1 9746634	33 9414969	30 5709221	ц	3 6129413	33 6996454	29 1873108	Fo	4 9905598	29 5613809	31 2171854
11	0.2118207	31 1157016	31 0706866		2 9467709	31.0597616	20.2064204		4.0470720	27.4601267	20 6952227
п	0.3118307	31.1137016	31.0700000	0	-3.0407708	31.0397616	29.2904294	5	4.5470720	27.4001207	30.0832337
п	-1.0105124	30.0298408	31.3000301		-3.1032324	30.0440323	20.1092009	3	2.9923233	30.0113007	31.9378047
С	-9.4623523	19.848/495	23.3205/3/	Н	-4.8940632	30.2156334	27.9505211	С	5.2682/24	28.8894697	25.80//3/8
Ν	-9.3096494	19.7593679	21.8173713	Н	-3.6329699	30.2780436	29.9027788	S	5.3420671	27.6247120	27.1353372
Н	-8.7705404	19.1319382	23.7736963					С	0.7216841	27.0682975	26.3272943
Н	-10.4989747	19.6019171	23.5699956	Stat	ie 6			Ν	-0.3082893	27.1357513	27.4003263
Н	-8.3216014	19.9896326	21.5228061	85				Н	4.2513609	29.2786061	25.6945949
Н	-9.5340410	18.7848932	21.4712694					Н	5.5830341	28.4152459	24.8678195
Н	-9.9598169	20.4352155	21.3300240	С	2.8858318	33.3820900	28.4303543	Н	1.7137258	26.9168473	26.7654089
С	-4.7072224	27.7904464	30.1710081	S	1.7738452	32.1353825	29.1338205	Н	0.7088446	28.0182038	25.7865269
S	-3.3954085	28.6017197	31.1466017	Fe	0.1707662	31.6333738	27.5812979	Н	-0.1173710	27.9272155	28.0685477
С	0.2291979	27.1926498	32.5064697	Fe	-2.2358038	30.9854733	27.6596714	Н	-1.2913217	27.3788840	27.0027818
S	1.9481135	26.5891923	32.3006518	С	-2.5642266	29.2875397	26.9143135	С	9.0870766	25.2234843	20.2240622
С	6.9139278	31.4752388	32.9484498	Ν	-2.6437759	28.1776213	26.5216458	N	9.9740274	26.0338815	21.1465328

Н	-0.3560948	26.2760412	27.9552235	Н	-10.4662368	19.5079911	23.0490743	Н	-4.0612968	31.8930368	29.0582969
Н	8.0544571	25.5515681	20.3759436	Н	-8.1791294	21.4361306	22.7031579				
Н	9.4092200	25.4102420	19.1949707	Н	-9.1653242	20.8322039	21.4502148	Sta	te 9		
Н	10.9852958	25.7550656	21.0400758	Н	-9.8315191	21.8405423	22.6534570	84			
Н	9.9014965	27.0614148	20.9380516	С	-4.7072211	27.7904386	30.1709996				
Н	9.7071994	25.8932708	22.1520872	s	-3.7170101	28.8948080	31.2319521	С	2.8858318	33.3820900	28.4303543
Fe	3.0129913	30.4017543	29.8035572	С	0.2291978	27.1926422	32.5064606	S	1.6558741	32.2270217	29.1067438
Fe	4 4771890	28 5558118	28 8965823	s	1 1657614	26 7108575	30 9970172	Fe	0 0322353	31 7792566	27 5344283
c	5 1203321	30 6130254	20.3345157	c	6 0130250	31 4752300	32 9494405	Fo	-2 4349923	31 1613772	27 5937021
5	0.0001747	20.55(0101	29.0340107	c	5.0(50202	30.0074503	22.0775050	16	2.4340023	30.4050115	27.3037021
	2.2021/4/	20.5500101	20.9109094	5	3.0033303	30.0074585	33.2773830		-2.9379810	29.4950115	20.5245004
н	-0.3557053	27.5199869	31.6372921	н	-4.42/1338	30./81254/	30.0738891	N	-3.1184/68	28.389/5/2	26.5337104
Н	-5.2601729	26.9215287	30.5472878	Н	-4.0349033	27.4985273	29.3543089	С	0.4789923	33.3342805	26.5416316
Н	-9.2571079	20.6322842	24.0561640	Н	-5.5631111	28.3201791	29.7353150	N	0.7867508	34.2973716	25.9470019
Н	9.2031122	24.1670495	20.4846199	Н	0.7453487	28.0044019	33.0278342	С	-1.4335317	32.8589888	30.4296317
Н	5.9471990	29.7188126	26.0416790	Н	0.1483651	26.3217593	33.1687704	S	-1.6444720	33.0698322	28.5734339
Н	6.0306358	31.8740104	33.4627428	Н	7.5173681	31.3165212	32.0472709	С	-0.8355990	30.5253404	30.6288556
Н	0.4658635	26.2511576	25.6438927	Н	7.5727101	31.6115660	33.8158550	S	-0.8188375	30.0753665	28.7912774
Н	3.6368165	33.6313077	29.1901258	Fe	2.8779580	28.0154467	30.5962602	С	1.1756704	30.8306754	26.6290723
0	-3.6297895	30.5979977	29.0065439	Fe	4.7014461	29.5762377	31.4908893	0	1.9403163	30.2307342	25.9849005
0	-5.7440884	29.5397396	27.6375722	S	5.0227496	27.4722948	30.8913811	С	-3.6811014	32.0582664	26.7265298
Н	-5.0404467	30.0450816	28.1445133	S	2.5292338	29.7877548	31.8331688	0	-4.5026129	32.6416385	26.1475903
Н	-5.2540875	29.2034938	26.8672373	С	5.2682724	28.8894697	25.8077378	С	-1.2231436	31.3688581	26.0842424
Н	-2.6798159	27.2408129	31.3414962	S	6.0266033	28.0985883	27.2848474	0	-1.2495393	31.2371249	24.9148735
				С	0.7216841	27.0682975	26.3272943	N	-1.7083606	31.5773127	31.0073006
Stat	-e 7			N	0.0129251	27.1627251	27.6363019	Н	-2.6923041	31.3172815	30.8671614
86				н	4.2210509	28.5847627	25.7035378	н	2.3509370	34.2670175	28.0699208
00				 U	5 9391/13	29 5739251	24 9230956	 U	3 4224084	32 0225081	27 5934476
C	0 0050010	22 2020000	20 4202542	11	1 7000567	27 1529761	26 4061204		0.2800281	22.1426766	20.6200699
c	2.0050510	33.3820900	20.4303343	п	1.7990307	27.1328701	20.4901304	п	-0.3833281	33.1420733	30.0290088
S _	1.7054700	32.2355971	29.1818814	Н	0.3/65844	27.8947930	25.69/4321	Н	-2.10/3413	33.608//06	30.8614324
F.e	0.1636994	31.5285130	27.6360562	Н	0.1999111	28.0708902	28.132/880	Н	0.2068555	30./636394	30.881/263
Fe	-2.2042823	30.6666140	27.7319477	Н	-1.0479208	27.1629402	27.5016951	H	-1.1265616	29.5886713	31.1179914
С	-2.5961016	28.8617961	27.3861447	С	9.0870766	25.2234843	20.2240622	С	-9.4623496	19.8487439	23.3205672
Ν	-2.6845507	27.6968111	27.2108630	Ν	8.4376014	25.9134569	21.4066809	Ν	-8.9487222	21.2458996	23.0452917
С	0.4605769	33.0222861	26.5118668	Н	0.2944238	26.4443005	28.3190709	Н	-8.7407946	19.1365986	22.9083259
Ν	0.6919364	33.9551614	25.8389050	Н	8.3349337	25.1253714	19.4353083	Н	-10.4362753	19.7449172	22.8321199
С	-1.4997812	32.8478056	30.3300142	Н	9.9246571	25.8435652	19.8899895	Н	-8.0091051	21.4000886	23.4966005
S	-1.6602241	32.7682354	28.4641756	Н	9.1179864	26.0337808	22.1978085	Н	-8.8411122	21.4128804	22.0081171
С	-0.6859070	30.6324436	30.8734200	Н	8.0834826	26.8673800	21.1424921	Н	-9.6113324	21.9735027	23.4227445
S	-0.5585062	29.8937486	29.1309931	Н	7.6209478	25.3593481	21.7699914	С	-4.7072211	27.7904386	30.1709996
С	1.4112957	30.7430102	26.7009981	Fe	2.9342325	30.4517483	29.7824758	S	-2.9352555	27.6686386	29.8978331
0	2.2096072	30.3425038	25.9549947	Fe	4.8895694	28.7043231	29.0530471	С	0.2291978	27.1926422	32.5064606
С	-3.4516247	31.3078768	26.6724149	S	5.1381406	30.8132146	29.7826602	S	1.9555572	26.6351601	32.2681231
0	-4.2476763	31.7230783	25.9357556	s	2.7577682	28.6161618	28.5360375	С	6.9139259	31.4752300	32.9484405
С	-0.9936097	30.7179966	26.2591295	Н	-0.7766224	27.5172667	32.2097335	S	6.5386385	29.7030815	32.6840952
0	-0.9482222	30.3675452	25.1324527	н	-5.0126215	26.9021460	30.7351929	Н	-3.0947020	27.2677648	27.7506481
N	-1 6647273	31 6380343	31 0771164	н	-9 4212890	20 1435677	24 3735590	н	-5 1403252	26 8106486	30 4138212
.ч	-2 6131350	31 2660632	30 9969012	 U	9 1350212	24 2400612	20 5560040	 U	-5 21222/1	28 2205712	29 3010114
11 U	2 3242405	34 2250747	20.3303012	п	5 3030634	29.2907013	20.0000000	п 11	0 2126615	20.2270/12	53 0006000 23.00010110
п	2.3242405	22 0020555	20.0133300	н	6 0001074	22.2013010	20.0723386	н	0.2057010	20.1303023	22 1107500
н	3.4381914	32.8929655	2/.0208/01	н	0.29218/4	32.3083869	32.8155610	н	-0.285/210	20.441436/	33.119/590
Н	-0.4963892	33.2589233	30.5137412	Н	0.4722386	26.1112458	25.8566299	Н	7.1732163	31.9676060	32.0031693
Η	-2.2595850	33.5759033	30.6373272	Н	3.5815981	33.7122296	29.2105892	Н	7.7688074	31.5333929	33.6347688
Н	0.3129458	31.0209079	31.1017452	0	-4.7935258	31.5907291	29.6420846	Fe	2.8509669	28.1561428	30.9920373
Н	-0.8932721	29.7614623	31.5027003	0	-6.3256545	29.7541639	28.0671125	Fe	4.9367102	29.6044331	31.2001143
С	-9.4623496	19.8487439	23.3205672	Н	-5.9104825	30.5274271	28.5184578	S	4.9152858	27.4228002	30.7227649
Ν	-9.1393229	21.0656407	22.4804448	Н	-5.6682123	29.5065823	27.3949718	S	2.9210370	30.1122122	32.0316131
Н	-8.7159794	19.0791125	23.1008892	Н	-4.6689719	29.1635090	32.1567372	С	5.2682724	28.8894697	25.8077378

S	5 2773520	27 5885915	27 1028515	1.4							
c	0 7216841	27 0682975	26 3272943					0	-1 9776665	1 1748431	0 0276327
N	-0 4516240	27.4674427	27 1455544	0	-2 4874333	2 1197185	2 2214244	ч	-2 3554608	2 0851302	-0 3744648
ц	4 2675255	20 3199955	25 6859216	0	_1 3/11097	2.110,100	2 6347344	0	-0 6677277	1 1759094	_0 2301720
11	4.2073233 E E06163E	29.3100033	24. 8600710	0	0 1072221	2.1506276	0 2102956	0	0.2460172	1 2212000	1 /200500
п	1.5164417	20.4320343	24.8000719		0.1073231	0.1303444	1.0001500		0.24001/2	-1.2313000	1.4209390
н	1.5164417	28.7073791	26.98/3006	н	0.2391486	0.009/938	1.2681598	н	-0.6679444	-1.5865682	1.412/848
Н	1.0851123	27.9486801	25.7893855	Н	-0./415402	-0.150426/	0.0636568	н	0.1921905	-0.4814134	0.8081329
H	-0.2400401	28.252524/	27.8277910	0	-2.3494184	-0.3334891	-0.3934546	0	-2.6830389	-1.4569658	1.3108353
H	-1.2690282	27.8251193	26.5912211	Н	-2.4981695	-0.9184899	-1.1535847	Н	-2.9318334	-1.2974809	2.2364788
С	9.0870766	25.2234843	20.2240622	Н	-2.5669081	0.5941460	-0.7181396	Н	-2.6287806	-0.5659036	0.9129064
Ν	8.4760291	25.8481698	21.4624329	0	-0.0770032	2.6939015	-0.4851047	0	-0.1430759	3.6116949	-1.5261793
Н	-0.8496183	26.7090841	27.7226548	Н	0.5695987	2.8751284	-1.1858779	Н	0.4787894	4.1903381	-1.0550666
Н	8.3063034	25.1540357	19.4602640	Н	0.1368667	1.7690870	-0.1493959	Н	-0.0727363	2.7200675	-1.0968960
Н	9.9044270	25.8694613	19.8890315	0	-2.6089067	2.2068677	-1.2060956	0	-2.6855320	3.4169572	-0.9291595
Н	9.1861432	25.9415709	22.2310166	Н	-3.1871564	2.7720598	-0.6689070	Н	-1.7713813	3.7223329	-1.2324444
Н	8.0993250	26.8078261	21.2571240	Н	-1.6704720	2.5002931	-0.9903299	Н	-3.2560948	3.4093879	-1.7156834
Н	7.6820765	25.2659886	21.8310604								
Fe	2.8923484	30.4680427	29.8487816	(02-) (H2O) 4			(00	0H+) (H2O) 4		
Fe	4.3745457	28.4858751	28.8883443	14				15			
S	5.0579825	30.6044472	29.2793436								
S	2.1211754	28.5443508	29.0080871	0	-2.0348679	1.2962839	0.0586634	0	-2.1761066	1.2972325	-0.3096132
Н	-0.2968766	27.2864930	31.5479945	0	-0.7365408	1.4891336	0.3410885	Н	-2.2086647	2.7831071	-0.9457842
Н	-4.8355149	28.4696806	31.0261759	0	0.1418729	-1.0738342	1.2573962	0	-1.1070587	0.6981643	-0.4742169
Н	-9.5538686	19.7295656	24.4045550	Н	0.0073547	-0.1341446	0.9750306	0	-0.5485890	-0.9379725	1.3601093
Н	9.4586185	24.2306678	20.4951941	Н	-0.7833203	-1.3996099	1.2130650	Н	-1.3224225	-1.4731855	1.6822900
Н	5.9694079	29.6879297	26.0797068	0	-2.6651567	-1.2812017	0.4508947	Н	-0.0143989	-1.5659068	0.8428137
н	6.0540226	31,9850100	33,4001286	Н	-2.4019274	-1.6381608	-0.4130831	0	-2.6486129	-2.5018679	2.2683799
н	0.4186947	26.2878761	25.6206655	Н	-2.4659828	-0.2888514	0.3512277	Н	-2.4052480	-3.2593191	2.8276206
н	3 5895868	33 6357859	29 2316931	0	0 0031780	3 9493670	-0 4238243	ц	-3 4113124	-2 0932838	2 7111154
0	-2 8707289	26 6734728	28 5541247	н	0 3272724	3 7474333	-1 3167213	0	0 0086998	4 6886395	-1 8104146
0	_1 3792395	30 8093752	20.0041247	и и	-0 2722463	3 0349321	-0.0736065	ц ц	0.2963262	5 /378335	_1 2566360
	4.3105533	21 521 6072	20.170640027		0.2722405	3.7617001	1 1 (0 0 0 1 1	11	0.2903202	4 1402000	1.2300303
н	-4.3195555	31.5216076	29.1726484		-2.8213129	3.7617291	-1.1682811	н	0.7893288	4.1402986	-2.0096913
н	-3.8/5/515	30.0724715	29.4285904	н	-2.7251494	2.8602830	-0.7704853	0	-2.1914444	3./33/02/	-1.313/653
				Н	-1.9484439	4.1459018	-0.9338914	Н	-1.1///696	4.1215240	-1.5355644
H2O	2(H2O)4							Н	-2.8070027	3.8178739	-2.0679790
16				(OH)	(H2O)4						
				14							
0	-2.1916665	0.9923113	-0.7054710					(H2	20)4		
Н	-2.3394370	1.8819446	-0.2400365	0	-0.5394743	-1.2592894	0.2790870	12			
0	-0.7427122	1.0093232	-0.9387358	Н	-0.6376506	-0.2351106	0.2771751				
Н	-0.3965537	0.5356233	-0.1104799	0	-0.8265206	1.3307387	0.4718298	0	1.8922773	0.0003700	-0.0287481
0	-0.0317692	-0.4164070	1.2010720	Н	-0.3973090	1.6881990	1.3182805	0	-1.8922675	-0.0003681	-0.0287572
Н	-0.8997652	-0.9183402	1.1883223	Н	-1.7353613	1.6706072	0.4607562	0	0.0003696	-1.8922752	0.0287497
Н	-0.0034537	0.0286537	2.0637816	0	0.3265628	2.2069776	2.6736535	0	-0.0003685	1.8922702	0.0287549
0	-2.5309035	-1.2796699	0.7705986	Н	0.6303842	1.4192540	3.2263534	Н	1.2721418	-0.7927643	-0.0243494
Н	-2.6716590	-2.0422528	0.1858765	Н	1.1293747	2.7150083	2.4750945	Н	-1.2721454	0.7927608	-0.0243491
Н	-2.5815154	-0.4767920	0.1811979	0	1.0723858	0.0360200	4.0249582	Н	-0.7927637	-1.2721424	0.0243495
0	-0.1602771	3.6861013	-1.0648525	Н	1.1384191	-0.7269067	3.3718704	Н	0.7927618	1.2721446	0.0243490
Н	0.7090470	3.8778319	-0.6780984	Н	1.9185873	0.0504360	4.4992766	Н	2.4494373	-0.1002151	0.7595129
Н	-0.2148952	2.6930040	-1.1359305	0	1.2230378	-1.8960066	2.1895905	Н	-2.4494435	0.1002160	0.7595217
0	-2.3763945	3.4187112	0.4019359	Н	0.9949424	-2.8018834	2.4535409	Н	-0.1002152	-2.4494384	-0.7595144
Н	-1.5519979	3.7456582	-0.0653258	Н	0.5998867	-1.6734574	1.4299538	Н	0.1002160	2.4494420	-0.7595195
Н	-3.1080138	3.9471138	0.0427281								

(OOH) (H2O) 4

O2 (H2O) 4

15

S7 Supplementary references (cited in main text)

[51] Pronk, S. *et al.* GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. *Bioinformatics* **29**, 845–854 (2013).

[52] Best, R. B. & Mittal, J. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. *J. Phys. Chem. B.* **114**, 14916–14923 (2010).

[53] Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. *J. Chem. Phys.* **123**, 234505–234512 (2005).

[54] Chang, C. H. & Kim, K. Density functional theory calculation of bonding and charge parameters for molecular dynamics studies on [FeFe] hydrogenases. *J. Chem. Theory Comput.* **5**, 1137–1145 (2009).

[55] Dudko, O. K.; Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. *Phys. Rev. Lett.* **96**, 108101–108104 (2006).

[56] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. *J. Chem. Phys.* **130**, 205102–205105 (2009).

[57] Liu, C., Liu, T. & Hall, M. B. Influence of the density functional and basis set on the relative stabilities of oxygenated isomers of diiron models for the active site of [FeFe]-hydrogenase. *J. Chem. Theory Comput.* **11**, 205–214 (2015).

[58] Fourmond, V. QSoas: a versatile software for data analysis. *Anal. Chem.* 88, 5050–5052 (2016).

References

- Wang, P.-h.; Bruschi, M.; De Gioia, L.; Blumberger, J. J. Am. Chem. Soc. 2013, 135, 9493– 9502.
- (2) Wang, P.-h.; Best, R. B.; Blumberger, J. J. Am. Chem. Soc. 2011, 133, 3548–3556.
- (3) Wang, P.-h.; Best, R. B.; Blumberger, J. Phys. Chem. Chem. Phys. 2011, 13, 7708–7719.

- (4) Wang, P.-h.; Blumberger, J. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6399-6404.
- (5) De Sancho, D.; Kubas, A.; Wang, P.-H.; Blumberger, J.; Best, R. B. J. Chem. Theory Comput.
 2015, 11, 1919–1927.
- (6) Mulder, D. W.; Boyd, E. S.; Sarma, R.; Lange, R. K.; Endrizzi, J. A.; Broderick, J. B.; Peters, J. W. *Nature* 2010, 465, 248–251.
- (7) Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K. J. Am. Chem. Soc. 2008, 130, 4533–4540.
- (8) Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucleic Acids Research 1994, 22, 4673–4680.
- (9) Roberts, E.; Eargle, J.; Wright, D.; Luthey-Schulten, Z. BMC Bioinformatics 2006, 7, 1–11.
- (10) Humphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33 38.
- (11) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. *Bioinformatics* 2013, 29, 845–854.
- (12) Best, R. B.; Mittal, J. J. Phys. Chem. B. 2010, 114, 14916–14923.
- (13) Abascal, J. L. F.; Vega, C. J. Chem. Phys. 2005, 123, 234505.
- (14) Chang, C. H.; Kim, K. J. Chem. Theory Comput. 2009, 5, 1137–1145.
- (15) Bouanich, J.-P. J. Quant. Spectrosc. Radiat. Transf. 1992, 47, 243 250.
- (16) Buckingham, A. D.; Disch, R. L.; Dunmur, D. A. J. Am. Chem. Soc. 1968, 90, 3104–3107.
- (17) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089–10092.
- (18) Singhal, N.; Pande, V. S. J. Chem. Phys. 2005, 123, 204909.
- (19) Dudko, O. K.; Hummer, G.; Szabo, A. Phys. Rev. Lett. 2006, 96, 108101-108104.

- (20) Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K. A.; Swope, W. C. J. Chem. Phys. 2007, 126, 155101.
- (21) Noe, F.; Horenko, I.; Schutte, C.; Smith, J. C. J. Chem. Phys. 2007, 126, 155102.
- (22) Buchete, N.-V.; Hummer, G. J. Phys. Chem. B 2008, 112, 6057–6069.
- (23) Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W. F.; Mark, A. E. Angew. Chem. Int. Ed. 1999, 38, 236–240.
- (24) Schutte, C.; Noe, F.; Lu, J.; Sarich, M.; Vanden-Eijnden, E. J. Chem. Phys. 2011, 134, 204105.
- (25) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J. D.; Schutte, C.;
 Noe, F. J. Chem. Phys. 2011, 134, 174105.
- (26) De Sancho, D.; Mittal, J.; Best, R. B. J. Chem. Theory Comput. 2013, 9, 1743–1753.
- (27) Greco, C.; Fourmond, V.; Baffert, C.; Wang, P.-h.; Dementin, S.; Bertrand, P.; Bruschi, M.;
 Blumberger, J.; de Gioia, L.; Leger, C. *Energy & Environ. Sci.* 2014, *7*, 3543–3573.
- (28) Cornish, A. J.; Gärtner, K.; Yang, H.; Peters, J. W.; Hegg, E. L. J. Biol. Chem. 2011, 286, 38341–7.
- (29) Knörzer, P.; Silakov, A.; Foster, C. E.; Armstrong, F. A.; Lubitz, W.; Happe, T. J. Biol. Chem.
 2012, 287, 1489–99.
- (30) Hong, G.; Cornish, A. J.; Hegg, E. L.; Pachter, R. Biochim. Biophys. Acta 2011, 1807, 510-7.
- (31) Long, H.; King, P. W.; Chang, C. H. J. Phys. Chem. B 2014, 118, 890–900.
- (32) Kubas, A.; Sancho, D. D.; Best, R.; Blumberger, J. Angew. Chem. Int. Ed. 2014, 53, 4081–4084.
- (33) Stiebritz, M. T.; Reiher, M. Inorganic chemistry 2009, 48, 7127–7140.

- (34) Bruska, M. K.; Stiebritz, M. T.; Reiher, M. J. Am. Chem. Soc. 2011, 133, 20588-20603.
- (35) Yamaguchi, K. Chem. Phys. Lett. 1975, 33, 330-335.
- (36) Noodleman, L. J. Chem. Phys. 1981, 74, 5737–5743.
- (37) Dirac, P. **1929**, *123*, 714–733.
- (38) Slater, J. C. Phys. Rev. 1951, 81, 385–390.
- (39) Perdew, J. Phys. Rev. B 1986, 33, 8822-8824.
- (40) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
- (41) Vosko, S. H.; Wilk, L.; Nusair, M. 1980, 58, 1200.
- (42) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104–154119.
- (43) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Chem. Phys. 2011, 32, 1456-1465.
- (44) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett. 1998, 294, 143-152.
- (45) Weigend, F.; Ahlrichs, R. 2005, 7, 3297–305.
- (46) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283–290.
- (47) Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 9136.
- (48) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-65.
- (49) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
- (50) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- (51) Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799-805.

- (52) TURBOMOLE V6.3 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- (53) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83.
- (54) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
- (55) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105.
- (56) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110.
- (57) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51-57.
- (58) Huntington, L. M. J.; Nooijen, M. J. Chem. Phys. 2010, 133, 184109.
- (59) Riplinger, C.; Neese, F. J. Chem. Phys. 2013, 138, 34106.
- (60) Huntington, L. M. J.; Hansen, A.; Neese, F.; Nooijen, M. J. Chem. Phys. 2012, 136, 64101.
- (61) Neese, F. Wiley Interdisciplinary Reviews: Computational Molecular Science **2012**, *2*, 73–78.
- (62) Rienstra-Kiracofe, J. C.; Allen, W. D.; ; III, H. F. S. *The Journal of Physical Chemistry A* 2000, *104*, 9823–9840.
- (63) Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. *The Journal of Physical Chemistry C* 2007, *111*, 5783–5799.
- (64) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. *The Journal of Physical Chemistry A* 2006, *110*, 2493–2499, PMID: 16480309.
- (65) Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100.
- (66) Wood, P. Biochemical Journal 1988, 253, 287–289.

- (67) Silakov, A.; Kamp, C.; Reijerse, E.; Happe, T.; Lubitz, W. *Biochemistry* 2009, 48, 7780–7786.
- (68) Liptak, M. D.; Shields, G. C. International Journal of Quantum Chemistry 2001, 85, 727–741.
- (69) Palascak, M. W.; ; Shields*, G. C. The Journal of Physical Chemistry A 2004, 108, 3692– 3694.
- (70) Sybirna, K.; Antoine, T.; Lindberg, P.; Fourmond, V.; Rousset, M.; Méjean, V.; Bottin, H. *BMC biotech.* 2008, 8, 73+.
- (71) Orain, C.; Saujet, L.; Gauquelin, C.; Soucaille, P.; Meynial-Salles, I.; Baffert, C.; Fourmond, V.; Bottin, H.; Léger, C. *Journal of the American Chemical Society* 2015, *137*, 12580–12587.
- (72) Fourmond, V.; Greco, C.; Sybirna, K.; Baffert, C.; Wang, P.-H. H.; Ezanno, P.; Montefiori, M.; Bruschi, M.; Meynial-Salles, I.; Soucaille, P.; Blumberger, J.; Bottin, H.; De Gioia, L.; Léger, C. *Nat. Chem.* 2014, *6*, 336–342.