
Supplementary Material

“Integrative Gene Set Enrichment Analysis Utilizing Isoform-Specific Expression”

This document provides a list of important notation, additional simulation results and results

from our breast cancer example mentioned in the main body of the paper.
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S1 Notation

K Number of RNA-seq studies to be combined

Sk Number of samples in study k

P Number of pathways in the pathway database to be tested

G Total number of genes that appear in at least one component study

Zgp Indicator variable of gene g’s membership in pathway p:

Zgp = 1 if gene g is in pathway p; Zgp = 0, otherwise

Ig Number of isoforms within gene g

Tkg Indicator variable of gene g’s presence in study k:

Tkg = 1 if gene g is present in study k; Tkg = 0, otherwise

Xksgi Expression level of isoform i of gene g for sample s in study k

Y ks Phenotype of sample s in study k

Ukg Score statistic of gene g in study k

Vkg Estimated covariance matrix of Ukg

Qg Gene-level quadratic statistic of gene g

p(Qg) P -value measuring significance of gene g′s association with Y

βkg Vector of isoform effects of gene g in study k

µg Overall isoform effects of gene g across studies

ξkg Study-specific deviations of gene g from µg in study k

Σg Covariance matrix of ξkg

ωp Enrichment score of pathway p

cp Size of pathway p

dp Number of genes in the genome but not in pathway p

ω∗
p Size-adjusted enrichment score of pathway p

p(ω∗
p) P -value measuring significance of pathway p′s enrichment

α Strength of pathway enrichment signal

λ Gene sampling rate

v Mean isoform effect
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S2 The approximate limiting distribution of the RE test statistic

As mentioned in Section 2.1, the limiting distribution of the RE test statistic (5) is approximately chi-

square with Ig +1 degrees of freedom. Below we show empirical evidence that the approximation

is generally adequate.

We consider both discrete and continuous cases, and use the same methods described in

Section 4 of the main paper to generate data for null-case genes. We set the number of studies

K = {5, 10} (each study with 40 samples) and λ = 1, and consider genes with Ig = {2, 4, 6, 8, 10}

isoforms. We generate 1000 genes for each combination of the parameters under H0 : µg = 0

and Σg = 0 and calculate the RE statistics Qg ’s. Figure S1 compares the empirical cumulative

distribution function (CDF) of Qg (the dotted curve) with χ2
Ig+1 (the solid curve) under each setting.

Clearly, the solid and dotted curves are grouped by the number of degrees of freedom. It seems

that the approximation is reasonably good. Similar observations can be made for other settings in

the paper as well (results omitted for concision).
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Figure S1: Comparison between the empirical CDF of Qg (dotted curve) and the limiting chi-square
distribution (solid curve) under various settings
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S3 Comparison of Algorithms 1 and 2 in estimating stage I P -values

We compare the performance of Algorithms 1 and 2 in estimating P -values of the first-stage

analysis in our proposed procedures (i.e., testing H0 : µg = 0 under the FE model and testing

H0 : µg = 0 and Σg = 0 under the RE model) for both discrete and continuous cases, by setting

K = 6, α = 0.3, λ = 0.7 and v = 0.75. Figure S2 shows histograms of estimated P -values based

on Algorithms 1 and 2 for data generated from the FE model in the discrete case, where the left

four histograms are for the FE algorithms, the right four for the RE algorithms, the top four for

isoform-active genes, and the bottom four for non isoform-active (i.e. silent) genes. In the top

panel, each black bar stands for genes of which P -values are smaller than the cutoff 0.05; and the

proportion of significant genes among all isoform-active genes is also reported for each algorithm.

From these proportion values for isoform-active genes, we find that FE Algorithm 2 is the best. As

to silent genes, the histograms of FE Algorithm1, FE Algorithm 2 and RE Algorithm 2 are pretty

close to the uniform distribution unif [0, 1]. For data generated from the RE model in the discrete

case, Figure S3 reports that RE Algorithm 2 is the best, in terms of the proportion of significant

genes and the distribution of P -values for silent genes. For the continuous case, Figure S4 shows

FE Algorithm 2 is the best for data generated from the FE model, and Figure S5 shows RE Algo-

rithm 2 is the best for data generated from the RE model. Thus, in all the cases, Algorithm 2 is

better than Algorithm 1 when estimating P -values of the first-stage analysis.
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Figure S2: Discrete case: estimated P -values based on Algorithms 1 and 2 for data generated
from the FE model
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Figure S3: Discrete case: estimated P -values based on Algorithms 1 and 2 for data generated
from the RE model
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Figure S4: Continuous case: estimated P -values based on Algorithms 1 and 2 for data generated
from the FE model
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Figure S5: Continuous case: estimated P -values based on Algorithms 1 and 2 for data generated
from the RE model
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S4 Evaluation of type I error

We examine the type I error of each method at the significance level 0.05 by setting the enrichment

signal α = α0 (i.e., the null hypothesis of no enrichment holds for the gene set). We report results

in Table S1 for various settings, under each of which 1000 replicate datasets are used. In all the

cases, the type I error of the proposed methods, iGSEAi-FE and iGSEAi-RE, although pretty close

to 0.05, is consistently smaller than 0.05, which means that the proposed methods are conservative

in rejecting the null hypothesis. Among the MAPE methods, the type I error of MAPE_G is close

to 0.05; MAPE_P tends to be aggressive for the discrete case, and slightly conservative for the

continuous case; and MAPE_I tends to be slightly aggressive for the discrete case but is quite

close to 0.05 for the continuous case. Note that the type I error of MAPE_I is somewhere between

those of MAPE_G and MAPE_P in all the cases. This might be explained by the fact that MAPE_I

is a hybrid of MAPE_G and MAPE_P.

Table SI: Type I error for various methods
Phenotype Model λ v iGSEAi-FE iGSEAi-RE MAPE_G MAPE_P MAPE_I

Discrete FE 0.7 0.5 0.03 0.03 0.05 0.07 0.06
1 0.03 0.03 0.05 0.08 0.07

1.0 0.5 0.03 0.04 0.05 0.08 0.05
1 0.03 0.03 0.04 0.08 0.05

RE 0.7 0.5 0.03 0.03 0.05 0.07 0.06
1 0.03 0.03 0.05 0.08 0.07

1.0 0.5 0.03 0.04 0.05 0.08 0.05
1 0.03 0.03 0.04 0.08 0.06

Continuous FE 0.7 0.5 0.04 0.04 0.06 0.03 0.04
1 0.03 0.04 0.04 0.05 0.05

1.0 0.5 0.04 0.04 0.05 0.04 0.04
1 0.03 0.04 0.05 0.04 0.05

RE 0.7 0.5 0.04 0.03 0.05 0.05 0.05
1 0.03 0.03 0.05 0.05 0.05

1.0 0.5 0.04 0.04 0.05 0.05 0.05
1 0.03 0.03 0.05 0.05 0.05

S5 Control of false discovery rate (FDR)

We evaluate the performance of various methods in FDR control by comparing the empirical FDR

versus nominal level (i.e., the Q-value cutoff δ) when testing multiple pathways. Table SII shows
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results (averaged over 50 replicates) for δ ∈ {0.01, 0.05, 0.1} using data generated in Simulation

I-2 for binary phenotypes and Simulation II-2 for continuous phenotypes of the main paper. We

find that our iGSEA methods seem to perform well in FDR control and their empirical values are

pretty close to the nominal ones, except for δ = 0.1 in the discrete case, where the values are a bit

inflated. Nevertheless, they are consistently better than the MAPEs whose empirical FDR values

are inflated in almost all the settings considered, especially for the continuous case.

Table SII: Comparison of FDR: the empirical FDR versus the Q-value cutoff δ
Phenotype Model Q-value cutoff iGSEAi-FE iGSEAi-RE MAPE_G MAPE_P MAPE_I

Discrete FE 0.01 0.01 0.02 0.33 0.03 0.02
0.05 0.07 0.05 0.09 0.13 0.09
0.10 0.12 0.14 0.13 0.20 0.16

RE 0.01 0.01 0.01 0 0.03 0.02
0.05 0.07 0.08 0 0.10 0.07
0.10 0.16 0.19 0.16 0.16 0.13

Continuous FE 0.01 0 0 0.50 0.50 0
0.05 0.08 0.03 0.60 0.25 0.20
0.10 0.09 0.08 0.71 0.36 0.35

RE 0.01 0 0.02 0.50 0.08 0
0.05 0.05 0.02 0.50 0.21 0.13
0.10 0.10 0.10 0.53 0.19 0.24

S6 Power comparison based on gene-level expression.

As suggested by one of the reviewers, we simulate the scenario in which each gene only has

one isoform and all the methods are compared based on gene-level expression. Figure S6 shows

results of power comparison for settings with the number of studies K = 6, the enrichment signal

α = 0.3, the sampling rate λ = 0.7 and the mean isoform effect size v ∈ {0.25, 0.75, 1} for data

generated from both FE and RE models. We find that, based on gene-level expression, for the

discrete case, when the data is generated from the FE model, the performance of iGSEAi-FE,

iGSEAi-RE and MAPE_P is pretty close, which is slightly better than MAPE_I and substantially

better than MAPE_G; when the data is generated from the RE model, iGSEAi-RE is better than

the other methods but iGSEAi-FE is worse than MAPE_P and MAPE_I. For the continuous case,

our proposed methods are better than MAPEs. Compared with the simulation results reported in

the main paper, we find that the improvement of our proposed methods over MAPEs based on
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isoform-level expression is typically much larger. This seems to suggest that utilizing isoform-level

expression can improve the power of iGSEA.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

v

P
ow

er

Data from FE model

0.50 0.75 1.00
v

Data from RE model

0.50 0.75 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v

P
ow

er

Data from FE model

0.50 0.75 1.00
v

Data from RE model

0.50 0.75 1.00

Discrete case

Continuous case

iGSEAi−FE iGSEAi−RE MAPE_G MAPE_P MAPE_I

Figure S6: Power comparison based on gene-level expression, where K = 6, α = 0.3, λ = 0.7,
and v ∈ {0.25, 0.75, 1}.

S7 Breast cancer data example: list of KEGG pathways identified

Table SIII summarizes the top pathways identified based on the Q-values determined by iGSEAi-

RE, while iGSEAi-FE gives very similar results in this example.
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Table SIII: Data example: top KEGG pathways identified by iGSEAi-RE with Q-values reported
for all the methods compared.

Pathways MAPE_P MAPE_G MAPE_I iGSEAi-FE iGSEAi-RE

CELL_CYCLE 0.42 0.13 0.20 6.54E-05 4.65E-05 X

PATHWAYS_IN_CANCER 0.60 0.07 0.14 6.54E-05 4.65E-05 X

COLORECTAL_CANCER 0.45 0.12 0.18 6.54E-05 4.65E-05 X

PANCREATIC_CANCER 0.44 0.09 0.15 6.54E-05 4.65E-05 X

GLIOMA 0.57 0.24 0.32 6.54E-05 4.65E-05 X

PROSTATE_CANCER 0.44 0.15 0.21 6.54E-05 4.65E-05 X

CHRONIC_MYELOID_LEUKEMIA 0.40 0.10 0.16 6.54E-05 4.65E-05 X

ACUTE_MYELOID_LEUKEMIA 0.41 0.20 0.27 6.54E-05 4.65E-05 X

SMALL_CELL_LUNG_CANCER 0.42 0.09 0.15 6.54E-05 4.65E-05 X

RIBOSOME 0.00 0.08 0.00 6.54E-05 4.65E-05 +

RNA_DEGRADATION 0.26 0.47 0.23 6.54E-05 4.65E-05 +

SPLICEOSOME 0.30 0.09 0.17 6.54E-05 4.65E-05 +

ERBB_SIGNALING_PATHWAY 0.34 0.12 0.20 6.54E-05 4.65E-05 +

LYSOSOME 0.60 0.44 0.58 6.54E-05 4.65E-05 +

ENDOCYTOSIS 0.64 0.15 0.22 6.54E-05 4.65E-05 +

FOCAL_ADHESION 0.50 0.13 0.16 6.54E-05 4.65E-05 +

ADHERENS_JUNCTION 0.28 0.09 0.15 6.54E-05 4.65E-05 +

NEUROTROPHIN_SIGNALING_PATHWAY 0.37 0.10 0.19 6.54E-05 4.65E-05 +

OOCYTE_MEIOSIS 0.57 0.19 0.24 6.54E-05 4.65E-05

UBIQUITIN_MEDIATED_PROTEOLYSIS 0.42 0.16 0.23 6.54E-05 4.65E-05

AXON_GUIDANCE 0.50 0.13 0.19 6.54E-05 4.65E-05

B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.37 0.09 0.15 6.54E-05 4.65E-05

FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 0.49 0.11 0.20 6.54E-05 4.65E-05

REGULATION_OF_ACTIN_CYTOSKELETON 0.64 0.11 0.21 6.54E-05 4.65E-05

HUNTINGTONS_DISEASE 0.44 0.47 0.48 6.54E-05 4.65E-05

LYSINE_DEGRADATION 0.61 0.44 0.59 0.000107 4.65E-05

EPITHELIAL_CELL_SIGNALING_

IN_HELICOBACTER_PYLORI_INFECTION

0.30 0.21 0.27 0.000107 4.65E-05

APOPTOSIS 0.58 0.19 0.25 0.000345 4.65E-05 +
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