Web-based Supplementary Materials for “A Bayesian
Model for Sparse Functional Data” by W.K.
Thompson and O. Rosen

December 3, 2006

Web Appendix

Here, we give a detailed account of the distributions and sampling scheme outlined in sections
2and 3. Let y = (¥}, ...,y,) be the vector of responses for all n subjects. Let m = Y1 | m;
be the total number of observations across all subjects. With the prior distributions specified

in Section 2.2, we have
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Step 1: Sample s distinct values I = {ly,...,l;} (for predetermined 1 < s < L) from
{1,..., L} without replacement such that each such vector is equally probable.
Step 2: Sample {'yl,ﬁ,y, bW} conditional on {l,’y(l), 02,%,y}. This is done in three sub-
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steps, using the factorization
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Step 2(a): Draw ~;; the posterior conditional probability that v, = u (where u ranges over
all zero-one vectors of dimension s) is given by
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Let ¢, be the dimension of the model selected by vy(u) = {v, = u,7v(,}. Denote the right
side of (A.2) by L,. Then it can be shown that L, is equal to
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where Y (4 18 the gy(,) X ¢y covariance matrix corresponding to the breakpoints selected

by v(u), X f(u) = diag{ X, ()} is an m x ng, () block-diagonal matrix and
AV(U) = diag ( X/ ~(u), zX“/(u)vi + Eb,’i(u)) B
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where 1 is the n-dimensional vector of all ones, [

4w 18 the gy ) X gy (u) 1dentity matrix, and

® denotes the Kronecker product. While calculation of L, involves taking the inverse and
determinant of the ng,w) X ng,w) matrix A, because of the special form of this matrix,
these can be simplified through the use of Woodbury’s formula (Lange, 1999, pp. 86-87), so
that only the determinant and inverse of ¢,() X ¢,() matrices are necessary.

Let ©, = p(y = | L, Y, 02, Xby). Then
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where B(:,-) is the beta function, L is the number of interior breakpoints, and g, is the
dimension of the model selected by v(0) = {v, = 0,7, }. Using L, and ©, as defined in
(A.3) and (A.4), we have that (A.1) is
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where the sum in the denominator of the right side is taken over all zero-one vectors of
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dimension s.
Step 2(b): Draw 8, conditional on {v,o?, %, y}. The posterior conditional is
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Step 2(c): Draw the {b,;};, conditional on {v,8.,02, %, y}. The conditional posterior

distributions of the {b,;}? ; are independent MVN((IJJb”. , Zbil')7 where
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Step 3: Draw o2 conditional on {~, B, by, Y, y}. The posterior conditonal of o2 is inverse

gamma, 1G(c., dg.), with
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The parameters ¢, and d. may be chosen to obtain a vague prior on o

Step 4: Draw X, conditional on {v, 3,,b,,07,y}. The posterior conditional distribution

of ¥, is inverse Wishart, IW (ny. Sy., .), where
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Let ¢ be an ordered vector of 7 time values containing all the unique time points in the
data. Let X, denote the 7 x K design matrix of B-splines evaluated at all the points of ¢
and let X;~ be the 7 X ¢, design matrix corresponding to the breakpoints selected in .
Furthermore, define &, = (X/X.)"' X’ X, ~. Since models created by removing breakpoints
are linear subspaces of the full model, we have that X, ®, = Y and hence we also have
X;~B, = X;®,8,. Thus, going from the full model to the model given by - implies

the linear restrictions on @ (and similarly for the b;’s) given by 8 = ®,8. and hence



B, = (@;@7)_1 B = B3, where Q, = &, (P, ®,)"". This implies that the covariance
matrix ¥, can be obtained from %, by using the relationship 3, , = Q 3,(2,. Additionally,
let Po, = Q,(.Q,) ', Then,

Xy = PQ,YZbPQ,Y + ([ — PQ,Y)Eb(I — PQ,Y)

= (2, Q,) 8y (0Q,) I + (I — Po,)Sy(I — Pa,). (A.9)

At iteration r+1 of the MCMC algorithm, let El(f) be the value of X, generated in the previous
iteration. Step 4 consists of drawing El(f:' Y according to the IW(Sy.,m.) as detailed above
and then using (A.9), with E,(fj Yin place of ¥, and El(f) in place of 3, on the right side of

this equation to obtain the new draw of the full covariance matrix El(erl).



