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Performance Measures and Combination: The Classical Model 
 
There are two generic, quantitative measures of expert performance, calibration and information. 
Loosely, calibration measures the statistical likelihood that a set of experimental results 
correspond, in a statistical sense, with an expert’s assessments. More precisely, it is the p-value 
at which we would falsely reject the hypothesis that an expert's probability statements were 
accurate. In this study the 5, 50 and 95 percentiles, or quantiles, were elicited from each expert 
for each of the continuous variables.  Hence, each expert divides the range of possible outcomes 
of each variable into 4 intervals: less than or equal to the 5% value, greater than the 5% value 
and less than or equal to the 50% value, etc. The probabilities for these intervals are expressed as 
a vector  
 

 p = (p1, p2, p3, p4) = (0.05, 0.45, 0.45, 0.05).  
 
Calibration 
If N quantities are assessed, each expert may be regarded as a statistical hypothesis, namely that 
each realization falls in one of the four inter-quantile intervals with probability vector p. Suppose 
we have realizations x1,…xN of these quantities. We may then form the sample distribution of the 
expert's inter quantile intervals as: 
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 s1(e) = #{ i  |  xi  ≤ 5% quantile} / N  
 s2(e) = #{ i  | 5% quantile < xi ≤  50% quantile} / N 
 s3(e) = #{ i  | 50% quantile < xi ≤  95% quantile} / N 
 s4(e) = #{ i  | 95% quantile < xi } / N 
 s(e) = (s1,…s4) 
 
Note that the sample distribution depends on the expert e. If the realizations are indeed drawn 
independently from a distribution with quantiles as stated by the expert then the quantity 
 

 2NI(s(e) | p) = 2N ∑i=1..4 si ln(si / pi)              (1) 
 
is asymptotically distributed as a chi-square variable with 3 degrees of freedom.  This is the 
likelihood ratio statistic, and I(s | p) is the relative information of distribution s with respect to p. 
Extracting the leading term of the logarithm  yields the familiar chi-square test statistic for 
goodness of fit. There are advantages in using the form in (1) (Cooke 1991).   
 
If after a few realizations the expert were to see that all realization fell outside his 90% central 
confidence intervals, they might conclude that these intervals were too narrow and could seek to 
broaden them on subsequent assessments. This means that for this expert the uncertainty 
distributions are not independent - they learn from the realizations. Expert learning is not a goal 
of an expert judgment study. Rather, the problem owner wants experts who do not need to learn 
from the elicitation. Independence is not an assumption about the expert's distribution but a 
desideratum of the problem owner. Hence the decision maker (see below) scores expert e as the 
statistical likelihood of the hypothesis  
 
He: "the inter quantile interval containing the true value for each variable is drawn 
independently from probability vector p."   
 
A simple test for this hypothesis uses the test statistic (1), and the likelihood, or p-value, or 
calibration score of this hypothesis, is: 
 
 Cal(e) =  p-value(e) = Prob{2NI(s(e) p)≥  r | He} 
 
where r is the value of (1) based on the observed values x1,…xN.  It is the probability under 
hypothesis He that a deviation at least as great as r should be observed on N realizations if He 
were true. Calibration scores are absolute and can be compared across studies. However it is 
appropriate to equalize the power of the different hypothesis tests by equalizing the effective 
number of realizations. To compare scores on two data sets with N and N’ realizations, we 
simply use the minimum of N and N' in (1), without changing the sample distribution s. 
 
Although the calibration score uses the language of simple hypothesis testing, it must be 
emphasized that we are not rejecting expert-hypotheses; rather we are using this language to 
measure the degree to which the data supports the hypothesis that the expert's probabilities are 
accurate. Low scores, near zero, mean that it is unlikely that the expert’s probabilities are correct. 
High scores, near 1, indicate good support. 
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Information 
The second scoring variable is information. Loosely, the information in a distribution is the 
degree to which the distribution is concentrated. Information cannot be measured absolutely, but 
only with respect to a background measure. Being concentrated or ‘spread out’ is measured 
relative to some other distribution.  
 
Measuring information requires associating a density with each assessment of each expert. To do 
this, we use the unique density that complies with the experts' quantiles and is minimally 
informative with respect to the background measure. This density can easily be found with the 
method of Lagrange multipliers. For a uniform background measure, the density is constant 
between the assessed quantiles. The background measure is not elicited from experts as indeed it 
must be the same for all experts; instead it is chosen by the analyst. 
 
The uniform and log-uniform background measures require an intrinsic range on which these 
measures are concentrated. The classical model implements the so-called k% overshoot rule: for 
each item we consider the smallest interval I = [L, U] containing all the assessed quantiles of all 
experts and the realization, if known. This interval is extended to  
 
 I* = [L*, U*]; L* = L – k(U-L)/100;  U* = U + k(U-L)/100.   
 
The value of k is chosen by the analyst. A large value of k tends to make all experts look quite 
informative, and tends to suppress the relative differences in information scores. The 
information score of expert e on assessments for uncertain quantities 1…N is 
 
Inf (e) =Average Relative information w.r.t. Background = (1/N) ∑i = 1..N I(fe,i | gi)  

 
where gi  is the background density for variable i  and fe,i is expert e's density for item i. This is 
proportional to the relative information of the expert's joint distribution given the background, 
under the assumption that the variables are independent. As with calibration, the assumption of 
independence here reflects a desideratum of the decision maker and not an elicited feature of the 
expert's joint distribution. The information score does not depend on the realizations. An expert 
can seek to achieve a high information score by choosing quantiles that are very close together. 
But the information score of expert e depends on the group intrinsic range, which depends 
arising on the assessments of the other experts involved. Hence, information scores cannot be 
compared across studies.  
 
The above information score is chosen because it is familiar, tail insensitive, scale invariant and 
‘slow’. The latter property means that relative information is a slow function; large changes in 
the expert assessments produce only modest changes in the information score. This contrasts 
with the likelihood function in the calibration score, which is a very ‘fast’ function. This causes 
the product of calibration and information to be driven by the calibration score. 
 
Combination: Decision Maker 
The combined score of expert e will serve as an (unnormalized) weight for e: 
 

w(e) = Cal (e)  Inf (e)  (Cal(e)  ),    (2) 
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where (Cal(e)) = 1 if Cal(e)  , and is zero otherwise. The combined score thus depends on 
; if Cal(e)  falls below cut-off level , expert e is unweighted. The presence of a cut-off level is 
imposed by the requirement that the combined score be an asymptotically strictly proper scoring 
rule.  That is, each expert maximizes their long run expected score by and only by ensuring that 
their probabilities p= (0.05, 0.45, 0.45, 0.05) correspond to their true beliefs (Cooke, 1991).  is 
similar to a significance level in simple hypothesis testing, but its purpose is to measure 
‘goodness’ and not to reject hypotheses.  
 
A combination of expert assessments is called a ‘decision maker’ (DM). All decision makers 
discussed here are examples of linear pooling; the classical model is essentially a method for 
deriving weights in a linear pool. ‘Good expertise’ corresponds to good calibration (high 
statistical likelihood, high p-value) and high information. Weights that reward good expertise 
and pass these virtues on to the decision maker are desired.  
 
The reward aspect of weights is very important. We could simply solve the following 
optimization problem: find a set of weights such that the linear pool under these weights 
maximizes the product of calibration and information. Solving this problem on real data, one 
finds that the weights do not generally reflect the performance of the individual experts. As an 
expert's influence on the decision maker should not appear haphazard, and ‘gaming’ the system 
with assessments tilted to achieve a desired outcome should be discouraged, we must impose a 
strictly scoring rule constraint on the weighting scheme.   
 
The scoring rule constraint requires the term (Cal(e)  ) in eq (2), but does not indicate what 
value of α we should select. Therefore, we choose α to maximize the combined score of the 
resulting decision maker. Let DMα(i) be the result of linear pooling for any item i with weights 
proportional to (2): 
 

DMα(i) = ∑e=1,..E wα(e) fe,i  / ∑e=1,..E wα(e)                 (3) 
 
The optimized global weight DM is DMα* where α* maximizes 
 

 calibration score(DMa*) × information score(DMα*).    (4) 
 
This weight is termed global as the information score is based on all the assessed calibration 
items.  
 
A variation on this scheme allows a different set of weights to be used for each item. This is 
accomplished by using information scores for each item rather than the average information 
score: 
 

wα (e,i) = 1α(calibration score)×calibration score(e) × I(fe,i | gi)     (5) 

 
For each α we define the Item weight DMα  for item i as 
 

IDMα(i) = ∑e=1,..E wα(e,i) fe,i  / ∑e=1,..E wα(e,i)    (6) 
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The optimized item weight DM is IDMα* where α* maximizes  
 

 calibration score(IDMa) × information score(IDMα).   (7) 
 
The non-optimized versions of the global and item weight DM’s are obtained by setting  = 0. 
 
Item weights are potentially more attractive as they allow an expert to up- or down- weight 
judgments for individual items according to how much they feels they know about that particular 
item. ‘Knowing less’ means choosing quantiles farther apart and lowering the information score 
for that item. Of course, good performance of item weights requires that experts successfully 
perform this up-down weighting. Anecdotal evidence suggests that item weights improve over 
global weights as the experts receive more training in probabilistic assessment. Both item 
weights and global weights can be described as optimal weights under a strictly proper scoring 
rule constraint. With both global and item weights, calibration strongly dominates over 
information, and information serves to modulate between more or less equally well calibrated 
experts. 
   
Since any combination of expert distributions yields assessments for the calibration variables, 
any combination can be evaluated on the calibration variables. In particular, we can compute the 
calibration and the information of any proposed decision maker. We should hope that the 
decision maker would perform better than the result of simple averaging, called the equal weight 
DM (EW), and we should also hope that the proposed DM is not worse than the best expert in the 
panel.  The global and item weight DM’s discussed above (optimized or not) are Performance 
weighted DM’s (PW). In general the optimized global weight DM is used, unless the optimized 
item weight DM is markedly superior.  
 
 
The expert judgment processing software EXCALIBUR may be freely downloaded at  
http://www.lighttwist.net/wp/excalibur  
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Applications of the Classical Model by Subject Area 
 
 

1. Nuclear:  Reports published as a result of the Joint EC/USNRC Project on 
uncertainty analysis of probabilistic accident consequence codes (under the Third 
EC-Framework Programme) 
 
1.1. F.T. Harper, L.H.J. Goossens, R.M. Cooke, S.C. Hora, M.L. Young, J. Päsler-Sauer, L.A. Miller, B. 

Kraan, C. Lui, M.D. McKay, J.C. Helton and J.A. Jones Probabilistic accident consequence 
uncertainty study: Dispersion and deposition uncertainty assessment (1994)  Prepared for U.S. 
Nuclear Regulatory Commission and Commission of European Communities  NUREG/CR-6244, 
EUR 15855 EN, SAND94-1453, Washington/USA, and Brussels-Luxembourg, November 1994, 
published January 1995. Volume I: Main report, Volume II: Appendices A and B, Volume III: 
Appendices C, D, E, F, G, H 

1.2.  R.M. Cooke, L.H.J. Goossens and B.C.P. Kraan Methods for CEC\USNRC accident consequence 
uncertainty analysis of dispersion and deposition - Performance based aggregating of expert 
judgements and PARFUM method for capturing modeling uncertainty  (1995) Prepared for the 
Commission of European Communities, EUR 15856, Brussels-Luxembourg, June 1994, published 
1995 

1.3.  J. Brown, L.H.J. Goossens, F.T. Harper, B.C.P. Kraan, F.E. Haskin, M.L. Abbott, R.M. Cooke, 
M.L. Young, J.A. Jones S.C. Hora, A. Rood and J. Randall (1997) Probabilistic accident 
consequence uncertainty study: Food chain uncertainty assessment Prepared for U.S. Nuclear 
Regulatory Commission and Commission of European Communities NUREG/CR-6523, EUR 
16771, SAND97-0335 Washington/USA, and Brussels-Luxembourg, March 1997, published June 
1997. Volume 1: Main report, Volume 2: Appendices.  

1.4. L.H.J. Goossens, J. Boardman, F.T. Harper, B.C.P. Kraan, R.M. Cooke, M.L. Young, J.A. Jones and 
S.C. Hora Probabilistic accident consequence uncertainty study: Uncertainty assessment for 
deposited material and external doses  (1997) Prepared for U.S. Nuclear Regulatory Commission 
and Commission of European Communities, NUREG/CR-6526, EUR 16772, SAND97-2323  
Washington/USA, and Brussels-Luxembourg, September 1997, published December 1997. Volume 
1: Main report, Volume 2: Appendices  

1.5. F.E. Haskin, F.T. Harper, L.H.J. Goossens, B.C.P. Kraan, J.B. Grupa and J. Randall (1997) 
Probabilistic accident consequence uncertainty study: Early health effects uncertainty assessment 
Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 
NUREG/CR-6545, EUR 16775, SAND97-2689 Washington/USA, and Brussels-Luxembourg, 
November 1997, published December 1997. Volume 1: Main report, Volume 2: Appendices  

1.6. M. Little, C.M. Muirhead, L.H.J. Goossens, F.T. Harper, B.C.P. Kraan, R.M. Cooke and S.C. Hora 
(1997) Probabilistic accident consequence uncertainty study: Late health effects uncertainty 
assessment Prepared for U.S. Nuclear Regulatory Commission and Commission of European 
Communities, NUREG/CR-6555, EUR 16774, SAND97-2322 Washington/USA, and Brussels-
Luxembourg, September 1997, published December 1997. Volume 1: Main report, Volume 2: 
Appendices  

1.7. L.H.J. Goossens, J.D. Harrison, F.T. Harper, B.C.P. Kraan, R.M. Cooke and S.C. Hora (1998) 
Probabilistic accident consequence uncertainty study: Uncertainty assessment for internal 
dosimetry Prepared for U.S. Nuclear Regulatory Commission and Commission of European 
Communities, NUREG/CR-6571, EUR 16773, SAND98-0119 Washington/USA, and Brussels-
Luxembourg, February 1998, published April 1998 Volume 1: Main report, Volume 2: Appendices  

 
 

2. Reports published on the project uncertainty analysis of the probabilistic accident 
consequence code COSYMA using expert judgement (under the Fourth EC-
Framework Programme) 
 
2.1. Radiation Protection and Dosimetry Special Issue, vol. 90 no 3, 2000. 
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2.2. R.M. Cooke, L.H.J. Goossens, B.C.P. Kraan (2000) Probabilistic Accident Consequence 
Uncertainty Assessment Procedures Guide Using Expert Judgement EUR 18820EN European 
Commission. Luxembourg 2000, Euratom. 

2.3. L.H.J. Goossens, J.A. Jones, J. Ehrhardt, B.C.P. Kraan (2001) Probabilistic Accident Consequence 
Uncertainty Assessment Countermeasures Uncertainty Assessment EUR 18821EN European 
Commission. Luxembourg 2001, Euratom.  

2.4. J.A. Jones, J. Ehrhardt, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke  
(2001) Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA Uncertainty 
from the Atmospheric Dispersion and Deposition Module EUR 18822EN European Commission. 
Luxembourg 2001, Euratom.  

2.5. J.A. Jones, J. Brown, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke (2001)  
Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA: Uncertainty from the 
Food Chain Module  EUR 18823EN European Commission. Luxembourg 2001, Euratom.  

2.6.  J.A. Jones, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke (2001) 
Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA Uncertainty from the 
Health Effects Module EUR 18824EN European Commission.  Luxembourg 2001, Euratom.  

2.7. J.A. Jones, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke (2001)  
Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA Uncertainty from the 
Dose Module EUR 18825EN European Commission. Luxembourg 2001, Euratom.  

2.8. J.A. Jones, J. Ehrhardt, L.H.J. Goossens, F. Fischer, I. Hasemann, B.C.P. Kraan, R.M. Cooke (2001) 
Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA Uncertainty from the 
Complete System EUR  18826EN European Commission. Luxembourg 2001, Euratom  

2.9. J.A. Jones, B.C.P. Kraan, R.M. Cooke, L.H.J. Goossens, F. Fischer, I. Hasemann (2001) 
Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA Methodology and 
Processing Techniques EUR 18827EN European Commission. Luxembourg 2001 Euratom.  

2.10. Klügel, J-U., (2008) “Seismic Hazard Analysis — Quo vadis?” Earth-Science Reviews 88,  1–32  
 
 

3. Ecosystems / public health 
 
3.1. Tuomisto J.T, Wilson A., Cooke R.M., Tainio M., Evans J.S.  (2005) Mortality in Kuwait due to 

PM from oil fires after the Gulf War: Combining expert elicitation assessments. Epidemiology, 
Volume 16 (5) September 2005 p. S74-S75 

3.2. Evans J.S., Wilson A, Tuomisto JT, Tainio M, Cooke RM (2005) What risk assessment can tell us 
about the mortality impacts of the Kuwaiti oil fires. Epidemiology, Volume 16 (5) September 2005 
p.S137-S138 

3.3. Burgman, M. (2005) Risk and Decisions for Conservation and Environmental Management, 
Cambridge University Press, Cambridge, UK. 

3.4. Van der Fels-Klerx, H.J., Cooke, R.M., Nauta, M.J., Goossens, L.H.J., Havelaar, A.H. (2005)  A 
Structured Expert Judgement Study For A Model of Campylobacter Transmission During Broiler 
Chicken Processing. Risk Analysis 25 No. 1, 2005, pp 109-124. 

3.5. Cooke, R.M. Wilson,A.M., Tuomisto,J.T. Morales,O. Tainio,M. and Evans, J.S.. (2007) A 
Probabilistic Characterization of the Relationship Between Fine Particulate Matter and Mortality:  
Elicitation of European Experts.  Environmental Science and Technology 2007 Sep 15;41(18): pp 
6598-6605. 

3.6. Kurowicka, D., Cooke, R.M. Goossens, L. and Ale, B.J.M, (2008) Expert Judgment study for 
Placement Ladder Bowtie, Safety Science,  Volume 46, Issue 6, July 2008, Pages 921–93. 

3.7. Radboud J. Duintjer Tebbens, Kimberly M. Thompson, M.G. Myriam Hunink, M.D., Thomas M 
Mazzuchi, Daniel Lewandowski, Dorota Kurowicka, Roger M. Cooke, (2008)  Uncertainty And 
Sensitivity Analyses Of A Dynamic Economic Evaluation Model For Vaccination Programs. 
Medical Decision Making  2008   

3.8. Arie H. Havelaar, Ángela Vargas Galindo, Dorota Kurowicka, Roger M. Cooke (2008) Attribution 
of Foodborne Pathogens Using Structured Expert Elicitation, Foodborne Pathogens and Disease, 
October 2008, 5(5): 649-659. doi:10.1089/fpd.2008.0115 



8 
 

3.9. Rothlisberger, J.D., Lodge, D.M. Cooke, R.M. and Finnoff, D.C. (2009) Future declines of the 
binational Laurentian Great Lakes fisheries: recognizing the importance of environmental and 
cultural change. Frontiers in Ecology and the Environment; doi:10.1890/090002 

3.10. Neslo R.E.J. and Cooke, R.M. (2011) Modeling and Validating Stakeholder Preferences with 
Probabilistic Inversion. Applied Stochastic Models in Business and Industry. 

3.11. Kurowicka, D. Bucura, C. Cooke, R.M. and Havelaar, A. (2010) Probabilistic Inversion in Priority 
Setting of Emerging Zoonoses, Risk Analysis, Vol. 30, No. 5, 2010 DOI: 10.1111/j.1539-
6924.2010.01378.x 

3.12. Kurowicka, D. Nauta, M.  Jozwiak,, K. 1 and Cooke, R.M. (2010) Updating Parameters of the 
Chicken Processing  Line Model.  Risk Analysis, Vol. 30, No. 6, 2010 DOI: 10.1111/j.1539-
6924.2010.01379.x 

3.13. Sarah J. Teck, Benjamin S. Halpern, Carrie V. Kappel, Fiorenza Micheli, Kimberly A. Selkoe, 
Caitlin M. Crain, Rebecca Martone, Christine Shearer, Joe Arvai, Baruch Fischhoff, Grant Murray, 
Rabin Neslo, and Roger Cooke (2010) Using expert judgment to estimate marine ecosystem 
vulnerability in the California Current. Ecological Applications, 20(5), 2010, pp. 1402–1416  2010 
by the Ecological Society of America 

3.14. Burgman, M. Carr, A. Godden, L. Gregory, R. McBride, M. Flander, L.Maguire, L..(2010) 
Redefining expertise and improving ecological judgement. Under review Conservation Letters. 

3.15. Burgman,M. McBride,M., Ashton,R.,Speirs-Bridge,A., Flander, L., Wintle,B., Fidler, F., Rumpff, 
L.and Twardy,C. (2011) Perception of expertise and performance of experts: How do they compare? 

3.16. Villie Flari, Qasim Chaudhry, Rabin Neslo and Roger Cooke (2011) Expert judgment based multi-
criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food 
products J Nanopart Res 13: 1813–1831; DOI 10.1007/s11051-011-0335-x 

3.17. Martin, T.G. Burgman, M.A., Fidler, F.F. , Kuhnert, P.M. , Low-Choy, S., Mcbride, M. , and 
Mengersen, K. (2011) Eliciting expert knowledge in conservation science  Conservation biology, 
volume 26, no. 1, 29–38 2011 Conservation biology c _ 2011 Society for Conservation Biology Doi: 
10.1111/j.1523-1739.2011.01806.x 

3.18. Tyshenko, M.G., S. ElSaadany, T. Oraby, M. Laderoute, J. Wu, W. Aspinall and D. Krewski (2011)  
Risk Assessment and Management of Emerging Blood-Borne Pathogens in Canada: Xenotropic 
Murine Leukaemia Virus-Related Virus as a Case Study for the Use of a Precautionary Approach. 
Chapter in: Risk Assessment (ISBN 979-953-307-765-8). 

3.19. Tyshenko, M.G., ElSaadany, S., Oraby, T., Darshan, S., Catford, A., Aspinall, W., Cooke, R. and 
Krewski, D. (2012) Expert judgement and re-elicitation for prion disease risk uncertainties. 
International Journal of Risk Assessment and Management, 16(1-3), 48-77. 
doi:10.1504/IJRAM.2012.047552  

3.20. Tyshenko, M.G., S. ElSaadany, T. Oraby, S. Darshan, W. Aspinall, R. Cooke, A. Catford and D. 
Krewski (2011) Expert elicitation for the judgment of prion disease risk uncertainties. J Toxicol 
Environ Health A.; 74(2-4):261-285. 

3.21. Oraby,T., Tyshenko, M.G., Westphal, M., Darshan, S., Croteau, M., Aspinall, W., Elsaadany, S., 
Cashman, N. and Krewski, D. (2011) Using Expert Judgments to Improve Chronic Wasting Disease 
Risk Management in Canada.  Journal of Toxicology and Environmental Health, in press. Volume 
74, Issue 2-4, 2011 Special Issue: Prion Research in Perspective 2010 

3.22. Rothlisberger,J.D. Finnoff, D.C. Cooke,R.M. and Lodge, D.M.  (2012) Ship-borne nonindigenous 
species diminish Great Lakes ecosystem services. Ecosystems (2012) 15: 462–476 DOI: 
10.1007/s10021-012-9522-6 

3.23. Halpern,B.S.,  Longo, C McLeod. C.L.,  Cooke, Roger M..,  Fischhoff, B.,  Samhouri, J.F., 
Scarborough, C. (2013)  Elicited preferences for components of ocean health in the California 
Current. Marine Policy 42 (2013) 68–73. 

3.24. Cashman, N.R., Cheung, R., Aspinall, W., Wong, M. and Krewski, D. (2014) Expert Elicitation for 
the Judgment of Prion Disease Risk Uncertainties associated with Urine-derived and Recombinant 
Fertility Drugs.  Submitted to: Journal of Toxicology and Environmental Health. 

3.25. Cooke,  R.M., Wittmann, M.E., Lodge, D.M., Rothlisberger, J.D., Rutherford E.S., Zhang, H. and 
Mason, D.M. (2014) Out-of-Sample Validation for Structured Expert Judgment of Asian Carp 
Establishment in Lake Erie. Integrated Environmental Assessment and Management, open access. 
DOI: 10.1002/ieam.1559 http://onlinelibrary.wiley.com/doi/10.1002/ieam.1559/abstract 
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3.26. Wittmann, M.E., Cooke, R.M., Rothlisberger, J.D., Rutherford, E. S., Zhang, H., Mason, D., Lodge, 
D.M. (2014b) Structured expert judgment to forecast species invasions: Bighead and silver carp in 
Lake Erie. Conservation Biology . DOI: 10.1111/cobi.12369 
http://onlinelibrary.wiley.com/doi/10.1111/cobi.12369/full 

3.27. Whitmann, M.E., Cooke, Roger M., Rothlisberger, J.D., Lodge, D.M. (2014) Using Structured 
Expert Judgment to Assess Invasive Species Prevention: Asian Carp and the Mississippi Great  
Lakes Hydrologic Connection.  Environmental Science  and Technology,  accepted Jan 17, 2014, 
dx.doi.org/10.1021/es4043098 | Environ. Sci. Technol.  

 
 

4. Civil Aviation / structural reliability 
 
4.1. Cooke, R.M. & Jager, E. (1998) Failure Frequency of Underground Gas Pipelines. Risk Analysis, 

vol. 1, no 4, 511-527, 1998. 
4.2. Cooke, R.M., E. Jager, D. Lewandowski  (2002) Reliability model for underground gas pipelines.  

Probabilistic Safety Assessment and Management E.J. Bonano, A.L. Camp, M.J. Majors, R.A. 
Thompson (eds), Elsevier, 2002; 1045-1050. 

4.3. Cooke, R.M., Eric Jager and D. Lewandowski (2003) Reliability Model for Underground Gas 
Pipelines. Case Studies in Reliability and Maintenance. Edited by Wallace R. Blischke, D.N. 
Prabhakar Murthy; p. 423-446, ISBN: 0-471-41373-9, 2003, John Wiley and Sons, Inc. 

4.4. Cooke, R.M. and Slijkhuis, Karen A. (2003) Expert Judgment in the Uncertainty Analysis of Dike 
Ring Failure Frequency. Case Studies in Reliability and Maintenance. Edited by Wallace R. Blischke, 
D.N. Prabhakar Murthy; p. 331-352, ISBN: 0-471-41373-9, 2003, John Wiley and Sons, Inc. 
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