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Apolipoprotein E, Receptors and Modulation of Alzheimer’s Disease 

Supplemental Information 

 

ApoE in tauopathy 

Tau is a microtubule-associated protein encoded by MAPT gene, which has a role in stabilizing 

neuronal microtubules. Hyperphosphorylation and aggregation of tau are characteristics of 

several neurodegenerative diseases known as tauopathies, including AD (1). Findings from 

clinical PET imaging, CSF, and post-mortem studies suggest that the pathological aggregation of 

tau is closely linked to patterns of neurodegeneration and clinical manifestations of AD (2, 3). 

AD patients who carry the APOE4 genotype have greater medial temporal lobe vulnerability and 

post-mortem tau pathology compared to non-carriers (4-6). Preclinical studies concerning how 

apoE isoforms affect tauopathy in AD are limited. A transgenic animal study revealed that 

neuronal, but not astrocytic, apoE4 overexpression increases tau phosphorylation, suggesting a 

neuron-specific effect of apoE4 on tauopathy (7). An earlier study showed that tau binds avidly 

to apoE3, but not to apoE4, indicating that the isoform-specific interactions of apoE with tau 

might contribute to differential effects on tau metabolism (8). 

Tauopathy in the absence of Aβ may reflect a pathological process that is distinct from AD. 

Patients with primary age-related tauopathy (PART) develop cognitive impairment that can be 

indistinguishable from AD, but in contrast contain none or only minimal Aβ deposition (9, 10). 

Interestingly, there is no association between PART and APOE genotype (10). It was also 

reported that the APOE4 is associated with tau tangles in the brains with Aβ, whereas no such 

association is found in brains without Aβ (11). Understanding how apoE isoforms affect 
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tauopathy in the presence and absence of amyloid pathology in vivo will help us to develop 

appropriate therapeutic strategies for AD and other tauopathies.  

 

ApoE and apoE receptors in brain lipid transport 

The brain is the most cholesterol-rich organ, and about 30% of cholesterol in the brain is 

metabolically active and found in membranes of glial cells and neurons, where it undergoes 

recycling for neuronal repair and remodeling (12, 13). ApoE is critical in redistributing 

cholesterol and lipids to neurons through LRP1 and LDLR to maintain the synaptic function (13, 

14). It was shown that the cholesterol levels in AD brains are lower than in healthy brains (15). 

The association between apoE, cholesterol and AD has been intensely reviewed (14, 16-20), and 

it is recognized that the isoform-specific effects of apoE in AD is at least partially due to their 

differential ability of transporting cholesterol to neurons, with apoE4 being less efficient than 

apoE3 (21-23).  

 

ApoE in glucose metabolism and mitochondrial function 

Glucose is the primary energy resources for the brain, and mitochondria are recognized as 

subcellular organelles that are essential for generating the energy for the cells (24). Cerebral 

glucose hypometabolism, as assessed by FDG-PET scan, exists in pre-symptomatic AD patients 

long before the clinical onset of disease and has become one of the early biomarkers of AD (25-

28). Multiple studies have also suggested that mitochondrial dysfunction and oxidative damage 

might have early and preponderant roles in AD (29-31). APOE4 has been associated with 
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glucose hypometabolism and mitochondrial dysfunction in the brain (32-34). FDG-PET studies 

have clearly shown that APOE4 carriers, either as healthy adults or with dementia, have lower 

cerebral glucose metabolism compared to non-carriers (34-41). Moreover, APOE4 genotype, not 

Aβ aggregation, contributes to reduced glucose metabolism in aging (42). APOE4 carriers also 

have lower mitochondrial cytochrome oxidase activity than non-carriers (43). Studies revealed 

that apoE4 might affect the neuronal mitochondrial respiration due to its C-terminal-truncated 

fragmentation or domain interaction. In addition, it has been shown that neuronal LRP1 not only 

modulates lipid metabolism, but also plays a critical role in regulating insulin signaling and 

glucose metabolism in the brain (44). Whether LRP1 maintains both lipid and glucose 

homeostasis in an apoE isoform-dependent manner in the brain deserves further investigation. 

Together, more studies are required to understand the biological mechanisms that link the 

glucose hypometabolism and development of AD, and how apoE isoforms modulate these events  

(45-47).  

 

ApoE and apoE receptors in vascular integrity and function 

AD often co-exists with CAA, and is associated with microvascular dysfunction and 

degeneration in the brain (48). APOE4 shows an association with CAA and CAA-related 

hemorrhages (49). Interestingly, APOE2 is also a risk factor for CAA although it is protective 

against AD (50). ApoE4 interrupts cerebrovascular functions likely through both Aβ-

independent and Aβ-dependent manner (51). ApoE4-TR mice showed an age-dependent 

progressive BBB breakdown by activating CypA-nuclear factor (NF) κB-MMP-9 pathway in 

brain capillary pericytes (52). The accelerated pericyte loss contributing to BBB damage was 

also found in human APOE4 carriers (53). ApoE4-TR mice showed compromised BBB transport 
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function and cerebral vascular dysfunction and atrophy (54). Furthermore, it was shown that 

apoE produced by pericytes modulates Aβ removal and cytotoxicity near the vasculature in the 

brain, which might contribute to the development of CAA (55). Thus, it is possible that vascular 

defects in apoE4 precede neuronal dysfunction and could initiate neurodegenerative changes. 

However, a recent study reported no evidence of widespread BBB dysfunction in AD mouse 

models and apoE4-TR mice (56). Whether apoE4-mediated deficit impacts the global 

homeostatic capacity of the BBB which contributes to AD pathogenesis remains to be elucidated 

(57).  

 

ApoE and apoE receptors in modulating neuroinflammation 

Neuroinflammation is observed in both normal aging and AD (58-60). Resident immune cells, 

microglia and astrocytes, are activated by Aβ (61, 62), and joined by blood-borne monocytes that 

traverse the BBB and convert into activated macrophages, to release various cytokines, 

chemokines and proteolytic enzymes (63, 64). ApoE receptors, LRP1 and LDLR, mediate Aβ-

induced astrocyte activation, initiating and modulating the inflammatory response induced by Aβ 

(65). By using a transgenic mouse overexpressing heparanase, an endoglucuronidase that 

specifically degrades HS side chains,  it was found that all aspects of immune cell recruitment 

and activation are significantly attenuated in both lipopolysaccharide (LPS)-treated or 

microinjection of aggregated Aβ elicited inflammation models, which indicates that HSPGs are 

required to mediate neuroinflammatory responses (66). ApoE likely modulates the 

neuroinflammation in an isoform-dependent manner. It was reported that apoE4 amplifies the 

proinflammation (toll-like receptor 4-p38α) pathways induced by Aβ, and suppresses the anti-

inflammtory (IL-4R-nuclear receptor) pathway, resulting in an adverse neuroinflammatory 
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phenotype that causes neuronal dysfunction (67, 68). Additionally, a specific apoE4 fragment 

(residues 186-299) detected in human AD brains can increase the level of inflammatory 

molecules in SHY5Y neuronal cell line (69). Following intracerebroventricular injection of LPS, 

it was shown that microglial and NF-κB activation are more pronounced in apoE4-TR than in 

apoE3-TR mice, indicating that NF-κB signaling pathway might mediate brain inflammation in 

apoE4-TR mice (70).  

The missense mutation (R47H) of Triggering Receptor Expressed on Myeloid Cells 2 

(TREM2), a protein expressed specifically in microglia in the brain, is associated with AD risk 

by dysregulating neuroinflammation and increasing AD pathology (71-76). Interestingly, apoE is 

an endogenous ligand of TREM2 (77). The uptake of apoE-Aβ complexes is reduced in 

macrophages from human subjects carrying the TREM2 variant (78). It will be informative to 

further investigate whether apoE affects TREM2-mediated neuroinflammatory responses in an 

isoform-specific manner in the pathogenesis of AD. 
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