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S.1. FULLY CONVOLUTIONAL REGRESSION NETWORK
FOR IMAGE SEGMENTATION

The first part of CellNet is a real-valued regression from
a grayscale microscopic image to a probability density map
to make the detection and localization task easier (Fig. S.1).
Here, a probability density map is represented as mixture of
Gaussians without mixing coefficient:

Y =

K∑
k=1

N ((i, j)|µk,Σk) (S.1)

where (i, j) is pixel index of the input grayscale image
matrix X, Y is the output probability density map matrix,
and K is the number of Gaussians in the density map.
N ((i, j)|µk,Σk) represents bivariate Gaussian distribution
with mean (µ = [µx, µy]T ) and isotropic covariance (Σ =
σ2I2×2). The mean vector refers to center position of each
microsphere and the standard deviation refers to a third
of radius of each microsphere (i.e., r = 3σ). We can
estimate the number of microspheres in each image frame by
summing its density map because each Gaussian distribution
in the density map refers to a microsphere, and integral of a
Gaussian distribution equals 1 [1]:∑

i,j

Yi,j = K. (S.2)

Moreover, the simple representation (means and variances)
of the density map enables easy detection of multiple objects
using the Flattening algorithm that is discussed in Section
S.2.

The fully convolutional regression network (FCRN) en-
ables pixel-wise training and prediction, then the network
produces same size of output as its input (i.e., X = RH×W

and Y = RH×W ) [1], [2]. We modified the original FCRN
and the network structure is shown in Table. S.2. Compared
to the deep model from [1], the major distinction of our
model is that isotropic Gaussian distribution is used as
label data to obtain size information of objects. In the
network structure, the convolution layers extract features
in the input grayscale images, and the filter weights were
randomly initialized without bias terms. The deconvolution
layer performs upsamping to reconstruct size of output as
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Fig. S.1. Probability density map regression. (a) Grayscale microscopic
image (input of FCRN). Ten microspheres with different sizes are included
in the image. (b) Probability density map (output of FCRN). Each micro-
sphere is regressed by Gaussian distribution

the input size, and initial weights of the deconvolution filter
were set to be bilinear interpolation filter without bias terms.
The structure can be properly modified depending on the
situation. As a loss function, we utilized Euclidean loss (L2

distance or mean square error) as:

L =
1

2N

N∑
n=1

||Y −Ylabel||2 (S.3)

where N = H×W . It should be noted that the input images
have to be subtracted by the mean image.

To train the designed FCRN, stochastic gradient descent
with weight decay was used as a back-propagation algorithm,
and the weights were updated in stochastic mode. Learning
rate of gradient descent was set to 0.001 during first 10
epochs, and then changed to 0.0001 in the remaining epochs.
The weight decay was 0.0005. Label data was constructed
by manually pointing out the center points and sizes of
microspheres, and Gaussian distribution was computed based
on these value. For the mixed micro-particle experiment,
totally 200 images with different light conditions were used
to train the network. During the training process, we moni-
tored absolute error of density map integration (S.2), which
is abs(Kreal − Kpredict) to determine proper epoch of the
optimization. As training epoch progressed, the integration
error decreased, and predicted density map got similar to the
label shown in Fig. S.1 (b) (Fig. S.2 (a)). Error did not show
more convergence after the epoch 10 (Fig. S.2 (b)). Whole
training process above was implemented using MATLAB and
MatConvNet [3].

The FCRN enables robust detection of cells regardless
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Fig. S.2. Training and test result. (a) As the number of epochs
increase, trained output of FCRN resembles the label shown in Fig. S.1.
(b) Integration error of both training and test process converge to under 0.3.
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Fig. S.3. Robustness of the FCRN regression. FCRN regression and
detect/localization results under the different light condition are compared
to verify the robustness of the FCRN. Both bright (a) and dark (b) images
are consistent.

of microscope light and focus condition by using train-
ing dataset obtained from various conditions. Naive image
processing cannot consistently segment the image without
changing the tuning parameters. Fig. S.3 shows the robust-
ness of FCRN by comparing FCRN and Flattening results
of different light conditions’ original microscopic images.

S.2. FLATTENING FOR EXTRACTION OF MEANS AND
VARIANCES IN MIXTURE OF GAUSSIANS

Flattening is a simple algorithm that can extract means and
variances from a predicted density map. Complicated pattern
recognition techniques are inappropriate for inference of
means and variances because the number of objects changes
in every image and is not exactly given. However, flattening
algorithm which we have developed uses a fast and simple

TABLE S.1
STRUCTURE OF FCRN

No. Layers Size
(filter, pool) Stride Pad Input size

(H ×W ×D)

1 Conv - ReLU 3 1 1 100× 500× 1
2 Max pooling 2 2 0 100× 500× 32
3 Conv - ReLU 3 1 1 50× 250× 32
4 Conv - ReLU 3 1 1 50× 250× 64
5 Deconv 3 - - 50× 250× 32
6 Conv - ReLU 3 1 0 101× 501× 32
7 Conv - LRN 2 1 1 99× 499× 16
8 Euclidean loss - - - 100× 500× 1

* Note that ReLU is rectified linear unit, Conv is convolution, Deconv is
deconvolution (or convolution transpose) and LRN is local response
normalization.

Algorithm S.1 Flattening algorithm
Input: Y, probability density map
Output: µ,σ2, means and variances

1: Ỹ = F (Y, ε)
2: [pmax, µ̂] = Max(Ỹ)
3: while pmax ≤ ε do
4: σ̂2 = 1

2πpmax

5: µ← [µ; µ̂]
6: σ2 ← [σ2; σ̂2]
7: Ỹ ← Ỹ −N (µ̂, σ̂2)
8: [pmax, µ̂] = Max(Ỹ)
9: end while

strategy for extracting means and variances of mixture of the
arbitrary number of Gaussians (Algorithm. S.1).

The input is a probability density map predicted by the
FCRN and the output is means and variances. In Algorithm.
S.1, Line 1 performs thresholding to the predicted density
map with ε = 0.1 as

F (x, ε) =

{
x if x > ε,

0 otherwise
. (S.4)

Here, the thresholding of the predicted map is an important
step because empty space of predicted density is not exactly
zero differently with label data (Fig. S.4). After performing
the thresholding, main flattening loop is executed as ex-
plained in the manuscript. Here, the relationship of variance
and maximum density is derived as follows:

N (x|θ) =
1

2π|Σ|1/2
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
,

(S.5)

if x = µ then σ2 =
1

2πpmax
(S.6)

S.3. TRACKING ALGORITHM

Tracking part finds the correspondence of objects between
two consecutive frames to trace multiple objects flowing in a
micro-channel (Fig. S.5). To do this, we defined three vectors
that represent positions and sizes of each object computed



(a)

(b)

(c)

Fig. S.4. Thresholding effect to the predicted density map. (a) Original
microscopic image. (b) Countour plot of the predicted density map. (c) After
thresholding the predicted density map.
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Fig. S.5. Correspondences analysis of consecutive frames. Several
objects leave from the frame (1,2, and 3 in n − 1 frame), several objects
come into the frame (7 and 8 in n frame), and remaining objects are matched
to same objects based on the correspondence analysis.

from the flattening algorithm as follows:

px,n = [µx,1, · · · , µx,Kn
]T , (S.7)

py,n = [µy,1, · · · , µy,Kn
]T , (S.8)

sn = [σ2
1 , · · · , σ2

Kn
]T , (S.9)

where px,n and py,n are x and y position vectors of Kn

objects at n frame, respectively. sn is the size vector of Kn

objects at n frame.
It should be noted that Poiseuille flow has a parabolic

velocity profile in which velocity is the fastest at the channel
center and gets slower at the closer position to the channel
wall. Therefore, lateral position of a particle is dominant
to determine its velocity. We defined two principles based
on the properties of Poiseuille flow: 1) there are minimum
and maximum distance in the axial direction that objects
can move within frame time interval, 2) there is small or no
movement in lateral direction. In addition, size of a object
does not change much, so the size vector can also be used
to find correspondences. To formulate the principles, we first
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Fig. S.6. ‘New’ and ‘vanishing’ objects between consecutive frames.
Due to the occlusion, four states are defined: in, out, appearance, and
disappearance.

define error matrices as follows:

Dx := d(px,n,px,n−1) ∈ IKn−1×Kn , (S.10)

Dy := d(py,n,py,n−1) ∈ IKn−1×Kn , (S.11)

Dσ := d(sn, sn−1) ∈ RKn−1×Kn , (S.12)

where d(·) refers to element-wise comparison matrix of two
vectors using Euclidean distances as

d(a, b) =

 abs(a1 − b1) · · · abs(aN − b1)
...

. . .
...

abs(a1 − bM ) · · · abs(aN − bM )

 .

(S.13)

Then, the principles are formulated as boolean matrices as
follows:

Bx :=
(
εx,min <Dx < εx,max

)
, (S.14)

By :=
(
Dy < εy,max

)
, (S.15)

Bxy = Bx �By, (S.16)

where εx,min and εx,max are the minimum and maximum
possible movement of flowing object in horizontal direction,
and εy,max is maximum possible object movement in lateral
direction (treated as noise).

To find object correspondences that satisfy the Poiseuille
flow principles ((S.14)-(S.16)), we defined matching matrices
as follows:

My = Bxy � (Dy ⊕ 1), (S.17)
Mσ = Bxy �Dσ, (S.18)

where � and ⊕ refer to element-wise multiplication and
addition, respectively. The matching matrix is multiplication
of a boolean matrix (B) and real (or integer) matrix (D).
Elements of the matching matrix that do not satisfy the
principles are zero, and elements that satisfy the principles
are error value as same as Dy + 1 and Dσ . Since y-
directional possition is usually unchaged and Dy is an
integer matrix, its error is usually zero. Therefore, integer one
is added to each element to prevent that zero error element
becomes boolean zero. Final matching matrix is computed
as weighted summation of two matching matrices as

M = w1My + w2Mσ. (S.19)



Here, we set w1 as 1 and w2 as 2.
Now, we can find correspondences by searching non-

zero elements in M . Each column of the matching matrix
refers to each object in the current frame and each row of
the matching matrix refers to each object in the previous
frame; e.g., if the second column of the matching matrix
is [0, 0, 0, 1.2, 0]T , then the second object of current frame
matches to the fourth object in the previous frame. If the
column or row of the matching matrix has two or more non-
zero elements, then the smallest value is taken. In the case of
Fig. S.5, the correspondences can be represented as follow:

Cmatching = {4(n−1) = 1(n), 5(n−1) = 3(n), 6(n−1) = 2(n),

7(n−1) = 5(n), 8(n−1) = 6(n), 9(n−1) = 4(n)}.
(S.20)

We also have to consider in state of the current frame, and
out state of the previous frame. If all elements of a column
are zeros, then that column refers to in state object. If all
elements of a row are zeros, then that row refers to out state
object; in case of Fig. S.5,

Cout = {1(n−1), 2(n−1), 3(n−1)}, (S.21)

Cin = {7(n), 8(n)}. (S.22)

We also have to consider occlusion of objects. Height of a
micro-channel is usually larger than the size of particles and
the microscope just observes horizontal plane; thus, at the
top view, flowing particles can vertically overlap in several
frames (called occlusion). Therefore, not only in and out
of objects but also appearance and disappearance should
be considered. For example, in the case of Fig. S.6, in=F,
out=A, appearance=B (or C), disappearance=D (or E), and
matching=NULL at n frame.

To find all states (in, out, appearances and disappearances),
we utilized predicted positions of each object based on the
previous frames and applied it as additional principles as
follows:

Bx̂ := (d(p̂x,n,px,n) < ε̂x,max) (S.23)

where

p̂x,n = px,n−1 + v̂x,n−1, (S.24)
v̂x,n = px,n − px,n−1, (S.25)
p̂x,n = 2px,n−1 − px,n−2. (S.26)

Here, ε̂x,max is maximum error of predicted position in x.
Using the predicted positions, the matching matrix is updated
as follows:

Bs := Bxy ⇐ Bx̂, (S.27)
My = Bs � (My ⊕ 1), (S.28)
Mσ = Bs �Mσ, (S.29)

where ⇐ refers to a replacement of a block in Bxy as Bx̂.
Let us consider some objects are vanished at n frame that

existed at n − 1 frame. If the predicted x-position of the
vanished object is larger than the frame width (W = 500 in
our case), then it may be out. If the predicted x position is

TABLE S.2
STRUCTURE OF A CELL CLASSIFIER

No. Layers Size
(filter, pool) Stride Pad Input size

(H ×W ×D)

1 Conv - ReLU 3 1 0 21× 21× 1
2 Max pooling 2 2 0 19× 19× 20
3 Conv - ReLU 3 1 0 9× 9× 20
4 Max pooling 2 2 0 7× 7× 50
5 Conv - ReLU 3 1 0 3× 3× 50
6 FC - - - 1× 1× 300
7 Softmax - - - 1× 1× 3

* FC: fully connected layers.

within the frame, then it may be disappearance due to the
occlusion.

We can also consider some objects that appear at n frame
that did not exist at n− 1 frame. If the observed x-position
is smaller than εx,max, then it may be in. On the other hand,
if the observed x-position is larger than εx,max, then it may
be appearance. All these states are formulated as follows:

out: W − µ̂x,n ≤ εx,max when µx,n−1 is vanished
disapp.: W − µ̂x,n > εx,max when µx,n−1 is vanished

in: µx,n ≤ εx,max when µx,n is new one
app.: µx,n > εx,max when µx,n is new one

By considering all these principles, tracking algorithm
enables robust tracking of multiple objects including occlu-
sions. Even though there is detection error on the predicted
density map and flattening algorithm, the tracking algorithm
can compensate wrong object counts during the tracking.

S.4. DETECTION AND LOCALIZATION ACCURACY

The flattening algorithm can perform both detection and
localization tasks. The integration error in Fig. S.2(b) repre-
sents detection accuracy of CellNet. We evaluated localiza-
tion accuracy by the extraction accuracy of flattening. Totally
560 beads in 100 image frames were used to evaluate the
localization accuracy. The position errors are epos,x = 0.35±
0.24 pixels and epos,y = 0.41 ± 1.37 pixels, respectively.
Lastly, the estimated radius (3σ) error is epos,3σ = 0.66 ±
0.85 pixels.
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