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1 Futile Cycles and Small Molecule Regulation

We gathered information regarding reactions that are involved in futile cycling (also known
as Type II extreme pathways [1]), using the E. coli genome scale model iJO1366 [2] and the
COBRApy toolbox [3]. First, we converted it to an irreversible model, by splitting each re-
versible reaction into two distinct irreversible ones and allowing only zero or positive fluxes.
We constrained all exchange reactions to have no flux, and added the following ATP generat-
ing reaction with a constant positive flux (e.g. 1):

ADP + Pi +H+ ⇀ ATP +H2O . (1)

Then, we solve the mass-balance problem while minimizing the sum of all fluxes, which finds
the shortest futile cycle. We then eliminate the cycle by constraining its reaction to have zero
flux, and iteratively run the minimization until no more solutions are found. We found 58
non-overlapping futile cycles, majority of which comprising 2 reactions.

We mapped these reactions to enzymes, using EC number information (where available)
and ended up with 75 unique reactions that take part in futile cycles (FutileCycleReactionsECnumber.csv).
From these, using our SMRN, we find that 37 are regulated by at least one small molecule,
whereas 38 are not regulated (FutileCycleRegulatoryInfo.csv).

In Futile Cycle Not in Futile Cycle
Regulated by small molecule 37 327
Not regulated 38 266

Using a right-tailed Fischer’s exact test (fishertest function, MATLAB) to detect if there
are significantly more small molecule regulation in futile cycle participating reactions, we
verify that there is no significant overrepresentation of regulation in reactions that take part
in futile cycling (p = 0.86). The code for this analysis and its results are freely available on
our GitHub repository (https://github.com/eladnoor/small-molecule-regulation).

2 Reaction Reversibility and Small Molecule Regulation

We used reactions’ ∆rG
′◦ together with reaction stoichiometry and standard physiological

metabolite concentrations of substrates or products and calculated a reversibility index (de-
noted Γ) quantifying the extent to which each reaction is thermodynamically reversible [4]:

ln(Γ) ≡ 2

Ns +Np

·
(

∆rG
′◦

RT
+ (Np −Ns) · ln(0.001)

)
(2)

where Ns and Np are the number of substrates and products respectively (excluding water).
The threshold value we considered for reversibility is Γ = 1000, as it represents a relative
concentration range of 1000 for all substrates and products. Any reaction with a value of Γ
higher than 1000 was assumed to be irreversible whereas when Γ < 1000, it was considered
to be reversible. We mapped this information to central carbon metabolism reactions, and
ended up with 32 reversible and 8 irreversible reactions. From these, using our SMRN, we
found that 19 reversible reactions are known to be regulated by small molecule(s), whereas
13 are not. Regarding irreversible reactions, we found that 7 are known to be regulated,
whereas 1 is not known to be regulated by any small molecule.
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Reversible Irreversible
Γ ≤ 1000 Γ > 1000

Regulated by small molecule 19 7
Not regulated 13 1

We consequently performed Gene Set Enrichment Analysis using the Fischer exact test and
verified that there is no significant over-representation of regulation in reactions with larger
reversibility indexes (p-value: 0.1). Expanding our analysis to the full SMRN network, we
again find no statistical significance (p-value = 0.25):
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3 Metabolic Control Analysis

3.1 What is elasticity?

Metabolic Control Analysis [5] is a mathematical framework to understanding the dynamics
and control of metabolic networks. In particular, it defines local properties called elasticities
that can be used to quantify how the control of metabolic fluxes depends on other quantities
in the system (i.e. the topology of the metabolic network, and the levels of metabolites).
Scaled elasticity is defined as the infinitesimal response of a single flux (v) to one of the
parameters (a), using a partial derivative of the log-scaled functions:

εva ≡
∂ ln(v)

∂ ln(a)
=
∂v

∂a

a

v
(3)

The elasticity has several properties which make it desirable for modeling metabolic sys-
tems. In particular, for a variety of kinetic rate laws (e.g. Michaelis-Menten kinetics), the
elasticity (for Michaelis-Menten kinetics, the substrate elasticity is bounded between 0 and
1).

3.2 Single-substrate Control in Michaelis-Menten Kinetics

To illustrate the concept of elasticity, let us consider an enzyme-catalyzed reaction, described
by a one-substrate irreversible Michaelis-Menten kinetic rate law:

v = V + s

KM + s
(4)
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where s is the substrate concentrations (in units of molar), and KM is the Michaelis-Menten
coefficient (also in molar).
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The scaled elasticity for s is given by:

εvs =
∂v

∂s

s

v
= V + KM + s− s

(KM + s)2
s

v

=
KM

(KM + s)2
(KM + s) =

KM

KM + s
= 1− s

KM + s
(5)
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Note that the scaled elasticity is bounded between 0 and 1. More specifically, εvs is max-
imized (i.e. the substrate has the highest control potential) at low substrate concentrations,
and minimized at high substrate concentrations.

As shown by Noor et al. [6], this formula for substrate elasticity can be generalized to
reversible Michaelis-Menten reactions [7, 8], where the saturation term is separated from
the thermodynamic term:

v = V + · κ · γ

κ ≡ s/KS

1 + s/KS + p/KP

γ ≡ 1− p/s

K ′eq
(6)

where p is the product concentration, KS and KP are the Michaelis-Menten constants for
the substrate and product, and K ′eq is the apparent equilibrium constant. In this case, the
elasticity of the substrate is:

εvs = γ−1 − κ (7)
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Finally, in order to compare this result to the irreversible case, we show that

εvs = γ−1 − κ =

(
1− p/s

K ′eq

)−1
− s/KS

1 + s/KS + p/KP

> 1− s/KS

1 + s/KS + p/KP

> 1− s/KS

1 + s/KS

= 1− s

Ks + s
, (8)

which is exactly the elasticity of the substrate in the irreversible case (Equation 5). So,
assuming a reaction is irreversible provides an underestimation of the elasticity. Nevertheless,
in cases where p→ 0, we can see that εvs → 1− s

Ks+s
.

3.2.1 Reversible Monod-Wyman-Changeux Kinetics

A common model for cooperativity in enzyme kinetics was developed by Monod-Wyman-
Changeux (MWC kinetics). It is described by the same 3-term rate law as reversible Michaelis-
Menten kinetics (Equation 6), but with a different expression for κ:

κn ≡
s/KS · (1 + s/KS + p/KP )n−1

L+ (1 + s/KS + p/KP )n
, (9)

where n is the cooperativity coefficient. The substrate elasticity is given by [8]:

εvs = γ−1 − s/KS

1 + s/KS + p/KP

+ n

(
s/KS

1 + s/KS + p/KP

− s/KS · (1 + s/KS + p/KP )n−1

L+ (1 + s/KS + p/KP )n

)
= γ−1 − κ+ n(κ− κn) . (10)

We note, that

κ =
s/KS

1 + s/KS + p/KP

=
s/KS · (1 + s/KS + p/KP )n−1

(1 + s/KS + p/KP )n

>
s/KS · (1 + s/KS + p/KP )n−1

L+ (1 + s/KS + p/KP )n
= κn (11)

and therefore

εvs = γ−1 − κ+ n(κ− κn) > γ−1 − κ . (12)

So, the MWC elasticity is always larger than the reversible Michaelis-Menten elasticity which,
in turn, is larger than the irreversible elasticity.

3.3 Regulatory Effectors

Although previous publications have derived elasticities associated with small-molecule ef-
fectors for different types of rate laws [9, 10], the relationship between the elasticity and
the relative activity of the enzyme has not been discussed. Here, we will demonstrate that
in almost all cases, there is a direct trade-off between the two, namely that a regulator must
decrease the activity of the enzyme in order to have a non-zero elasticity.

Without loss of generality, we will keep the separable form of the rate law

v = V + · κ · γ · θ(x)

where we add a multiplicative term θ(x) that will represent the decrease of activity due to the
small-molecule regulation (x). As long as θ(x) is the only term affected by x, i.e. ∂κ

∂x
= ∂γ

∂x
= 0,

the exact forms of κ and γ are irrelevant.
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3.3.1 Activation

First, consider a cooperative [11, 12] activator with Hill coefficient h and activation coeffi-
cient KA:

θ =
ah

Kh
A + ah

. (13)

The elasticity with respect to the activator concentration x will thus be:

εva =
∂v

∂a

a

v
= V + κ γ

h ah−1(Kh
A + ah)− h ah−1ah

(Kh
A + ah)2

a

v

= h
Kh
A

Kh
A + ah

= h(1− θ) (14)

3.3.2 Pure non-Competitive Inhibition

Next, we consider a pure non-competitive inhibitor with Hill coefficient h and inhibition
coefficient KI:

θ = 1− xh

Kh
I + xh

=
Kh
I

Kh
I + xh

(15)

The following plot shows the response of θ to the concentration x in log-log scale.
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In this case, the elasticity with regards to the inhibitor concentration would be:

εvx =
∂v

∂x
· x
v

= V + κ γ
−h xh−1

(Kh
I + xh)2

x

v

= −h x
h (Kh

I + xh)

(Kh
I + xh)2

= −h xh

Kh
I + xh

= −h(1− θ) . (16)

Plotting the elasticity as a function of x, we see that it is a monotonically decreasing
negative function:
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This means that substrates have the most control (|εvs| → 1) when they are much be-
low saturation (s � KM) while inhibitors have the most control (|εvx| → h) when they are
saturated (x� KI).

3.3.3 Competitive Inhibition

Competitive inhibition is one case, where a separable kinetic rate law is not sufficient since
∂κ
∂x
6= 0. To analyze this case, we pick a simple one-substrate irreversible reaction, where the

inhibitor affects the KM according to the following formula:

v = V + s

KM

(
1 + xh

Kh
I

)
+ s

(17)

In this case, we can define an effective inhibition constants KIC , that will allow us to rewrite
this rate law in a form identical to non-competitive inhibition:

KIC ≡ KI
h

√
KM + s

KM

v = V + s

KM

(
1 + xh

Kh
I

)
+ s

= V + s

KM

(
1 + xh (KM+s)

Kh
IC KM

)
+ s

=

= V + s

KM + s+ xh (KM+s)

Kh
IC

= V + s

KM + s
· 1

1 + xh

Kh
IC

(18)

so we can see here that in this case θ =
Kh

IC

Kh
IC + xh

, exactly like in the case of non-competitive
inhibition. Of course, the difference here is that KIC is not a binding constant but rather
a function of s, KM , and KI . Nevertheless, we can use the same formula for the elasticity
(since KIC is a constant with regards to x):

εvx =
∂v

∂x

x

v
= −h(1− θ) . (19)

Note, that since KIC > KI , then also θ in this case is larger (closer to 1) than the equivalent
value of the inhibition term in the non-competitive case, and thus εvx would be higher (closer
to zero). Therefore, assuming non-competitive inhibition by default would be an overesti-
mate of the absolute elasticity |εvx|.

Unlike for the case of pure non-competitive inhibition, where θ is a multiplicative term in
the rate law, a competitive inhibition also affects the elasticity of the substrate:

εvs = 1− s

KM

(
1 + xh

Kh
I

)
+ s

< 1− s

KM + s
(20)
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Therefore, as is the case for reversible reactions (Equation 8), the substrate elasticity would
be higher than the simple irreversible elasticity – i.e. it would be underestimated.

3.3.4 Product Inhibition

It is often the case, that the product of a reaction also acts as a competitive inhibitor, i.e.
following this rate law:

v = V + s

KS

(
1 + ph

Kh
P

)
+ s

. (21)

The product and substrate elasticities would thus follow exactly the case analyzed in the
previous section, except for the product p instead of an inhibitor x.

3.3.5 Uncompetitive Inhibition

Uncompetitive inhibition is another case where substrate and inhibitor saturations are entan-
gled:

v = V + s

KM + s
(

1 + xh

Kh
I

) (22)

However, the same procedure as in competitive inhibition can also be used here, by defining
an effective constant KIU , that will allow us to rewrite this rate law in a form identical to
non-competitive inhibition:

KIU ≡ KI
h

√
KM + s

s

v = V + s

KM + s
(

1 + xh

Kh
I

) = V + s

KM + s
(

1 + xh (KM+s)

Kh
IU s

) =

= V + s

KM + s+ xh (KM+s)

Kh
IU

= V + s

KM + s
· 1

1 + xh

Kh
IU

(23)

which shows that just like in the case of competitive inhibition, θ =
Kh

IU

Kh
IU + xh

, and the formula
for elasticity remains

εvx = −h(1− θ) . (24)

3.3.6 Generalized Inhibition Model

A general formula for reversible reactions with non-cooperative competitive, uncompetitive,
mixed and pure non-competitive inhibition is given in Chapter 5 of Sauro [13]:

v =

V +

KS

(
s− p

Keq

)(
1 + b x

aKI

)
(

1 + s
KS

+ p
KP

)
+ x

KI

(
1 + s

aKS
+ p

aKP

) . (25)

The parameter b represents the amount of inhibition, i.e. the activity of the enzyme when
the inhibitor is bound to it. If we assume there is no activity in the bound state, also known
as complete inhibition, then we can set b = 0. Then, depending on the value of a, the
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above formula converges to the different cases discussed earlier. For example, if a → ∞,
then this rate law is equivalent to competitive inhibition. When a = 1 it is equivalent to pure
non-competitive inhibition. Finally, if a → 0 (more precisely, when KI � aKI), it becomes
uncompetitive inhibition.

The elasticity we get for this general form is:

εvx =
b x
aKI

1 + b x
aKI

−
x
KI

(
1 + s

aKS
+ p

aKP

)
(

1 + s
KS

+ p
KP

)
+ x

KI

(
1 + s

aKS
+ p

aKP

) (26)

as with previous cases, we can define an effective KE:

KE1 ≡ KI
a

b
(27)

KE2 ≡ KI

1 + s
KS

+ p
KP

1 + s
aKS

+ P
aKP

(28)

and therefore that we rewrite the rate law from Eq. 25 as:

κ ≡ 1

KS

(
1 + s

KS
+ p

KP

)
γ ≡ s− p

Keq

θ ≡
1 + x

KE1

1 + x
KE2

v = V + · κ · γ · θ (29)

The elasticity thus becomes:

εvx =
x

KE1

1 + x
KE1

−
x

KE2

1 + x
KE2

=

(
1− 1

1 + x
KE1

)
−

(
1− 1

1 + x
KE2

)

= −

(
1

1 + x
KE1

− 1

1 + x
KE2

)
= −

(
1−

1 + x
KE1

1 + x
KE2

)
· 1

1 + x
KE1

= −(1− θ) · 1

1 + x
KE1

(30)

and after replacing KE1 back with its definition:

εvx = − (1− θ) ·
(

1 + b
x

aKI

)−1
(31)

As expected, in all cases of complete inhibition (b = 0), we reach exactly the same con-
clusion as in the extreme cases, namely:

εvx = −(1− θ) (32)

3.3.7 The Monod-Changeux-Jacob model

Probably the most widespread model for cooperativity of substrate and effector binding was
proposed by Monod et al. [12]. In this model the rate law is given by the following formula:

v = V + · s

KM + s
·

(
1 + s

KM

)h (
1 + a

KA

)h (
1 + x

KI

)−h
L+

(
1 + s

KM

)h (
1 + a

KA

)h (
1 + x

KI

)−h (33)
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where a is the concentration of an inhibitor, and KM , KA and KI are the dissociation con-
stants for the active form of the enzyme (for s, a and x respectively), n is the number of
subunits, and L is the allosteric constant. As before, we can define the saturation term κ and
the relative activity term θ (i.e. the decrease from maximal activity):

κ ≡ s

KM + s

θ ≡

(
1 + s

KM

)h (
1 + a

KA

)h (
1 + x

KI

)−h
L+

(
1 + s

KM

)h (
1 + a

KA

)h (
1 + x

KI

)−h
v = V + · κ · θ (34)

To simplify the form of the equations, let

g(x) ≡
(

1 +
s

KM

)h(
1 +

a

KA

)h(
1 +

x

KI

)−h
(35)

so that θ = g(x)
L+g(x)

, which we write in shorthand as θ = g
L+g

. Then,

εvx = V + · κ · ∂θ
∂x
· x
v

= V + · κ · L

(L+ g)2
· ∂g
∂x
· x
v

(36)

Now, we can calculate that
∂g

∂x
=
−h

KI + x
· g (37)

Substituting this form of ∂g
∂x

into the prior equation, we arrive at

εvx = V + · κ · g

L+ g
· −hx
KI + x

· L

L+ g
· 1

v
(38)

Note that the first three terms are precisely equal to v, so they cancel with the last term. Also
note that L

L+g
= 1− g

L+g
= 1− θ. Thus, we arrive at

εvx =
∂ ln v

∂ lnx
=
∂ ln θ

∂ lnx
= −h x

KI + x
(1− θ) . (39)

In [9], the elasticity of the inhibitor was calculated for this rate law (denoted as effector
strength or XI in the original text) and matches the form above. Although the final formulae
for the elasticities in the MWC case are not identical to the other cases dealt with before, we
can still reach a similar conclusion, where the absolute value of the elasticity is larger when
the relative activity is smaller.

3.4 Multi-substrate Reactions

So far, we focused only on reactions that have a single substrate. Below, we calculate elas-
ticities for multi-substrate reactions (with substrates s1 . . . sn), assuming general irreversible
convenience kinetics with a pure non-competitive inhibitor, namely

v = V + · κ · θ

κ =

∏
i si/Ki∏

i(1 + si/Ki)− 1
. (40)
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Here, the elasticity with respect to the inhibitor is a separate multiplicative factor and
therefore is exactly the same as in section 3.3.2. Calculating the elasticity of substrate si, we
get

εvsj =
∂v

∂sj
· sj
v

=
∂κ

∂sj
· sj
κ

=

∏
i 6=j(1 + si/Ki)− 1∏
j(1 + si/Ki)− 1

= 1− (sj/Kj) ·
∏

i 6=j(1 + si/Ki)∏
i(1 + si/Ki)− 1

= 1− sj/Kj

1 + sj/Kj

·
( ∏

i(1 + si/Ki)∏
i(1 + si/Ki)− 1

)
. (41)

In order to compare this result to the mono-substrate case, we first note that the multi-
plicative term (in parentheses) is larger than 1 since the denominator is obviously smaller
than the numerator. Therefore:

εvsj < 1− sj/Kj

1 + sj/Kj

= 1− sj
Kj + sj

(42)

which is exactly the expression for the substrate elasticity in the case of mono-substrate irre-
versible reactions (Equation 5). Thus, we conclude that the mono-substrate reaction scheme
is an over-estimate of the true elasticity in a multi-substrate reaction scheme (following con-
venience kinetics).

3.5 A Trade-off between Enzyme Cost and Flux Control

By taking the absolute value of the elasticity, we can compress the results for activators (Equa-
tion 14) and inhibitors (Equations 16, 18, 24, and 32, excluding the MWC model) into one
formula:

|εvx| = h(1− θ) . (43)

This relationship can be visualized in the following plot (for different values of h):
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Since θ represents the fraction of active enzyme, we see here that there is direct trade-
off between the activity of the enzyme and the elasticity. It should be noted, that evolution
can easily adjust θ for an individual enzyme by changing the KA or KI values, even with-
out changing the concentration of the small-molecule effector (assuming it has other crucial
functions in the cell). Therefore, evolution needs to weigh between how much of the enzyme
is ”wasted” by inhibition (or by inactivation), versus how much control it has on the flux.
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This can be viewed as a trade-off between the short-term goal of being able to adjust things
quickly and the long-term goal of allocating resources efficiently in order to grow as fast as
possible.

Another corollary of Equation 43 is that the control can be increased by changing the
Hill coefficient (h). This could be a reason why mechanisms with very high cooperativity
evolve for allosteric regulation [12], as it increases elasticity without the added cost of losing
enzyme activity.

References

[1] N D Price, I Famili, D A Beard, and B Ø Palsson. Extreme pathways and kirchhoff’s
second law. Biophys. J., 83(5):2879–2882, November 2002.

[2] J D Orth, T M Conrad, J Na, J a Lerman, H Nam, A M Feist, and B Ø Palsson. A
comprehensive genome-scale reconstruction of escherichia coli metabolism–2011. Mol.
Syst. Biol., 7, 1 January 2011.

[3] A Ebrahim, J A Lerman, B Ø Palsson, and D R Hyduke. COBRApy: COnstraints-Based
reconstruction and analysis for python. BMC Syst. Biol., 7:74, 8 August 2013.

[4] E Noor, A Bar-Even, A Flamholz, Y Lubling, D Davidi, and R Milo. An integrated
open framework for thermodynamics of reactions that combines accuracy and cover-
age. Bioinformatics, pages 1–8, 2012.

[5] D Fell. Understanding the Control of Metabolism. Portland Press, 1 November 1996.

[6] E Noor, A Flamholz, W Liebermeister, A Bar-Even, and R Milo. A note on the kinetics
of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett.,
587:2772–2777, 2 September 2013.

[7] S J Hofmeyr. Metabolic regulation: a control analytic perspective. J. Bioenerg.
Biomembr., 27:479–490, 1 October 1995.

[8] M J Rohwer and S J Hofmeyr. Kinetic and thermodynamic aspects of enzyme control
and regulation. J. Phys. Chem. B, 114:16280–16289, 16 December 2010.

[9] R Heinrich and A T Rapoport. A linear Steady-State treatment of enzymatic chains.
general properties, control and effector strength. Eur. J. Biochem., 42:89–95, 1 February
1974.

[10] W Liebermeister, J Uhlendorf, and E Klipp. Modular rate laws for enzymatic reactions:
thermodynamics, elasticities and implementation. Bioinformatics, 26(12):1528–1534,
15 June 2010.

[11] J Barcroft and A V Hill. The nature of oxyhæmoglobin, with a note on its molecular
weight. J. Physiol., 39(6):411–428, 8 March 1910.

[12] J Monod, J Wyman, and J P Changeux. On the nature of allosteric transitions: A
plausible model. J. Mol. Biol., 12:88–118, May 1965.

[13] H M Sauro. Enzyme Kinetics for Systems Biology. Future Skill Software, 2011.

[14] H Akashi and T Gojobori. Metabolic efficiency and amino acid composition in the pro-
teomes of escherichia coli and bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A., 99(6):
3695–3700, 19 March 2002.

12



4 Supplementary Figures

0 1 2 3 4 5 6 7 8 9

Distance in # reactions between metabolite and enzyme

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
ra

ct
io

n 
of

 m
et

ab
ol

ite
­e

nz
ym

e 
pa

irs

a
all iJO1366 pairs

0 1 2 3 4 5 6 7 8 9

Distance in # reactions between metabolite and enzyme

0.00

0.05

0.10

0.15

0.20

0.25

0.30
b

only inhibition

0 1 2 3 4 5 6 7 8 9

Distance in # reactions between metabolite and enzyme

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
ra

ct
io

n 
of

 m
et

ab
ol

ite
­e

nz
ym

e 
pa

irs

c
all SMRN pairs

0 1 2 3 4 5 6 7 8 9

Distance in # reactions between metabolite and enzyme

0.00

0.05

0.10

0.15

0.20

0.25

0.30 d
only activation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of interactions

0

20

40

60

N
o.

 o
f r

ea
ct

io
ns

e
all regulated reactions (N = 365)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of interactions

0

1

2

3

4

5

6 f
only CCM reactions (N = 30)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of interactions

0

20

40

60

80

100

N
o.

 o
f m

et
ab

ol
ite

s

g
all regulating metabolites (N = 323)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of interactions

0

2

4

6
h

only CCM metabolites (N = 45)

Figure S1: Related to Figure 2. Distance between metabolites and enzymes in the (a)
genome-scale metabolite network iJO1366 and (b)-(d) the SMRN of E. coli. In general,
interactions in the SMRN traverse a shorter distance than the typical distance between a ran-
domly chosen metabolite and enzyme in metabolism. Several highly-connected metabolites
(i.e. co-factors) that were removed from the network before preparing the bipartite graph: h,
h2o, co2, o2, pi, atp, adp, amp, nad, nadh, nadp, nadph, coa, thf, 5mthf, 5fthf, methf, mlthf,
nh4, cmp, q8, q8h2, udp, udpg, fad, fadh2, ade, ctp, gtp, h2o2, mql8, mqn8, na1, ppi, acp.
Histogram of the number of interactions for reactions and metabolite in the (e)-(f) entire E.
coli SMRN, and (g)-(h) in the region of the SMRN restricted to the central carbon metabolism
(CCM) of E. coli.
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Figure S2: Related to Figure 2. Number of interactions in the SMRN targeting each pathway
in E. coli metabolism.
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Figure S3: Related to Figure 3. A map of the Central Metabolism reactions in E. coli that are
regulated by small molecule(s) in the SMRN. Red reactions only show evidence of inhibitory
interactions, green reactions only show evidence of activating interactions, and purple reac-
tions show evidence of both activating and inhibiting interactions.
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Figure S4: Related to Figure 3. A map of the reactions branching from central carbon
metabolism for amino acid biosynthesis. Amino acids in red color feedback inhibit the first
enzyme of their biosynthesis pathway, based on the SMRN. For the remaining four amino
acids (Glycine, Alanine, Aspartate and Glutamate) there is no evidence of feedback inhibi-
tion. In the inset on the top-left corner, we present a comparison between the metabolic
cost of each amino acid (as defined by [14]) and the absolute elasticity of the corresponding
inhibited biosynthetic reaction (if it exists) for three growth conditions. We only have infor-
mation for 4 of the 16 regulated biosynthetic pathways. All four non-regulated amino-acids
were assumed to have 0 elasticity (marked in blue).
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Figure S5: Related to Figures 4-5. Schematic of the relationship between kinetic rate laws
and elasticity for (a)-(b) substrates obeying Michaelis-Menten kinetics and (c)-(d) inhibitors
obeying non-competitive inhibition. Importantly, substrate elasticity is maximized at low
substrate concentrations, and inhibitor elasticity is maximized at high inhibitor concentration.
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Figure S6: Related to Figures 4-5. For 45 metabolites, we were able to obtain 2 or more
estimates each of KM and KI values. This enabled us to directly compare, on a single-
metabolite basis, whether the distributions of its KM and KI values differed substantially.
Doing so, we found that 5 metabolites (PEP, ATP, methionine, succinate, and dGMP) each
showed significantly higher values ofKI values compared toKM values (FDR-adjusted Mann-
Whitney p-value < 0.1) and only one metabolite (phosphate) had significantly lower KI

values.
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Figure S7: Related to Figure 2. High confidence edges from literature.
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