Supplemental tables:

Super Pathway		Sub Pathway	Biochemical Name	Fold change
			Two-Way	Welch's
			ANOVA	Two-Sample
			Contrasts	t-Test
			MEF Nf2 ^{-/-} MEF Nf2 ^{f/f}	FH912 FC912
	Nicotinate and Nicotinamide Metabolism	nicotinamide adenine dinucleotide (NAD+)	<u>1.61</u>	<u>4.55</u>
		nicotinamide adenine dinucleotide reduced (NADH)	<u>1.34</u>	<u>3.79</u>
		nicotinamide adenine dinucleotide phosphate (NADP+)	1.22	6.09
		adenosine 5'diphosphoribose	0.29	1.08
	Riboflavin Metabolism	riboflavin (Vitamin B2)	0.95	<u>1.3</u>
		flavin adenine dinucleotide	<u>0.81</u>	<u>0.76</u>
	Pantothenate and CoA Metabolism	pantothenate	<u>1.11</u>	<u>2.1</u>
		phosphopantetheine	<u>2.01</u>	<u>5.81</u>
Vitamins and		coenzyme A	<u>3</u>	<u>0.54</u>
Cofactors	Ascorbate Metabolism	gulono-1,4-lactone	2.04	<u>5.06</u>
	Tocopherol Metabolism	alpha-tocopherol	0.65	1
	Folate Metabolism	5-methyltetrahydrofolate	1.03	<u>1.59</u>
	Hemoglobin Metabolism	bilirubin (Z,Z)	1	1.46
	Thiamine Metabolism	thiamin (Vitamin B1)	<u>1.54</u>	0.91
		thiamin diphosphate	<u>0.41</u>	0.74
	Vitamin B6 Metabolism	pyridoxine (Vitamin B6)	1	<u>0.5</u>
		pyridoxal	0.68	1.16

Table S1. Elevated levels of vitamins and cofactors in Nf2-deficient cell lines.

Samples were processed and analyzed as in Table 1.

Super Pathway	Sub Pathway	Biochemical Name	Two-Way ANOVA Contrasts	Welch's Two- Sample t- Test
	MEF Nf2 ^{-/-} MEF Nf2 ^{f/f}	FH912 FC912		
	Glycine, Serine and	glycine	0.92	<u>0.86</u>
		serine	<u>0.75</u>	0.93
	Threonine Metabolism	threonine	0.82	<u>0.77</u>
		N-acetylthreonine	<u>0.87</u>	1.12
	Alanine and Aspartate	aspartate	1.01	<u>0.77</u>
	Metabolism	asparagine	<u>0.49</u>	1.4
		glutamate	<u>1.4</u>	0.98
		glutamine	<u>0.37</u>	<u>0.85</u>
	Glutamate Metabolism	N-acetylglutamate	0.72	<u>4.8</u>
		glutamate, gamma- methyl ester	<u>1.57</u>	<u>0.65</u>
	Histidine Metabolism	histidine	<u>0.75</u>	1.08
	Lysine Metabolism	lysine	<u>0.8</u>	<u>0.64</u>
		N6-acetyllysine	0.34	0.96
Aminoacids		2-aminoadipate	<u>0.56</u>	<u>0.65</u>
	Phenylalanine and Tyrosine Metabolism	phenylalanine	<u>0.76</u>	0.99
		phenylacetylglycine	0.23	1
		tyrosine	<u>0.67</u>	1.18
		tryptophan	0.69	0.97
	Tryptophan Metabolism	C- glycosyltryptophan*	<u>0.79</u>	<u>0.75</u>
	Leucine, Isoleucine and Valine Metabolism	leucine	0.83	<u>0.81</u>
		4-methyl-2- oxopentanoate	0.95	<u>0.65</u>
		isovalerylcarnitine	0.28	1
		isoleucine	<u>0.74</u>	1.12
		valine	<u>0.6</u>	1.09
	Methionine, Cysteine,	methionine	<u>0.75</u>	0.93
	SAM and Taurine	N-acetylmethionine	<u>0.77</u>	0.98
	Metabolism	hypotaurine	<u>1.46</u>	0.38

Table S2. Reduced amino acids levels in *Nf2***-deficient cell lines**. Samples were processed and analyzed as in Table 1.

Super Pathway	Sub Pathway	Biochemical Name	Fold change		
			Two-Way ANOVA Contrasts		
			MEF Nf2 ^{-/-} MEF Nf2 ^{f/f}	MEF Nf2 ^{f/f} Ceru MEF Nf2 ^{f/f}	MEF Nf2 ^{-/-} Ceru MEF Nf2 ^{-/-}
Energy	TCA Cycle	citrate	<u>1.47</u>	<u>1.34</u>	0.93
		succinate	<u>2.62</u>	<u>1.91</u>	0.75
		fumarate	<u>1.23</u>	<u>1.44</u>	<u>1.17</u>
		malate	<u>1.94</u>	<u>1.8</u>	1.03
	Oxidative Phosphorylation	acetylphosphate	<u>1.8</u>	<u>1.67</u>	<u>0.33</u>
		pyrophosphate	0.81	1.25	0.63
		phosphate	1.01	<u>1.2</u>	0.92

Table S3. Different response to cerulenin treatment in Nf2-deficient and control cell

lines. MEF $Nf2^{ff}$ Ceru – WT MEFs treated with 5 μ M cerulenin for 24 hours prior to sample preparation, MEF $Nf2^{-f}$ Ceru – Nf2-knockout MEFs treated with 5 μ M cerulenin for 24 hours prior to sample preparation. Samples were processed and analyzed as in Table 1.

Supplemental Materials and Methods

List of qPCR primers:

Actb (potential normalizer) Fwd: CCAGCAGATTGTGATCAGCA;

Rev: CTTGCGGTGCACGATGG

Acaca Fwd: TGACAGACTGATCGCAGAGAAAG;

Rev: TGGAGAGCCCCACACACA

Acacb Mm01204683_m1

Acl Fwd: TGACAGACTGATCGCAGAGAAAG;

Rev: TGGAGAGCCCCACACACA

Acsl1 Fwd: GTACATAGCACCAGAAAAGATTGAAAAT;

Rev: GGTACCACAACTATGAGAAAGG

Acss2 Fwd: AGTCCCCACCAGTTAAGAGGC;

Rev: GTGTACAAGATGAAGAGTGGGTCCT

Cpt1c Fwd: GTGTTCCGCCCAGTATGAGAG;

Rev: GAGAGTGAGTCCCTACACGGAAG

Cpt2 Fwd: ATATGATGGCTGAGTGCTCCA; Rev: AGAGCTCAGGCAGGGTGAC

Fasn (Taqman set) Mm00662319_m1

Lpin1 Mm00550511_m1

Mlycd Fwd: CCGCTGCCATCTTCTACTCC; Rev: GATAGGCGACAGGCTTGAAAA

Srebp1 Fwd: GGCCGAGATGTGCGAACT; Rev: TTGTTGATGAGCTGGAGCATGT

Acyl-CoA quantification. Acetyl-CoA, malonyl-CoA, and propionyl-CoA standards were individually prepared as 1 mM stock in water and stored at -80°C until use. All acyl-CoA standards were diluted in 50 mM ammonium formate:acetonitrile (30:70, v/v) to prepare a set of calibration standards. In addition, propionyl-CoA was chosen as the recovery standard (RS) ².

Cells were grown in 30 cm tissue culture dishes in complete media until confluent. 5 μM cerulenin was added to part of the cells 12 hours after plating and incubated for 24 hours. Cells were tripsynized, and cell pellets snap-frozen (dry ice – ethanol). Thawed pellets with RS added, ~1g per sample type, were pulse sonicated in 10% perchloric acid and neutralized with neutralization buffer (2 M KOH, 0.4 M KCl and 0.4 M imidazole),

and then centrifuged at $8,000 \times g$ at 4° C for 20 min, in preparation for solid phase extraction (SPE).

SPE was conducted with a Waters Oasis HLB 3 cc extraction cartridge (WAT094226, Milford, MA). The acidified cell extracts (2% formic acid) from each sample were loaded on a SPE cartridge and eluted with 0.2 mL water, 0.2 mL methanol, and 3 mL methanol sequentially. The last 3 mL portion of eluates was collected and then was evaporated using a SpeedVac concentrator. The residuals were re-dissolved in 50 mM ammonium formate:acetonitrile (30:70, v/v).

A Waters Acquity H-class ultra-high performance liquid chromatography (UPLC, Milford, MA) was used to inject 10 μL of the processed samples or the calibration standards to an Acquity HSS T3 column (2.1 x 50 mm; particle size 1.8 μm) and to elute with the isocratic mobile phase, 50 mM ammonium formate:acetonitrile (30:70, v/v). All injected samples were eluted over 10 min at 0.4 mL/min at 30°C, and the eluates were directly introduced into the coupled mass spectrometer (MS) for quantitative analysis.

Quantitation was conducted by a Thermo triple quadrupole mass spectrometer (TSQ Quantum Access, Waltham, MA). The mass spectrometric conditions were set as the followings: electrospray voltage: +4 kV; sheath gas pressure: 45 psi; auxiliary gas pressure: 20 psi; ion sweep gas pressure: 2 psi; collision gas pressure: 1.5 mTorr; and capillary temperature: 380°C. Unit resolution was selected for ion scans ³. Multiple reaction monitoring (MRM) was used to detect the elution of the target acyl-CoAs. The mass transitions for acetyl-CoA, malonyl-CoA, and propionyl-CoA are 810→303, 854→347, and 824→317, respectively ¹. The areas under individual resolved peaks were integrated using Xcalibur software (version 2.1, Thermo).

Supplemental figure legends

Figure S1A. Immunoblot detection of reexpressed Merlin level in mouse schwannoma cells. SC4-9 cells were transfected with pBabe-Merlin-puro and pBabe-puro plasmids. Levels of Merlin were detected 24 hours after transfection. β-Actin was used for loading control.

Figure S1B. Immunoblot quantification of Casp3 cleavage caused by Fasn inhibition. Quantification performed using ImageJ software. Mean values and CI95 are shown on graphs. **** $- p \le 0.0001$.

Figure S1C. Increased Casp3 cleavage in *Nf2*^{-/-} **MEFs transfected with anti-***Fasn* **siRNA and treated with GSK2194069.** Cells were transfected by electroporation with anti-*Fasn* and scrambled (negative control) siRNAs, final concentration 100 nM, and plated into 6-well plates (250,000 cells/well). To compare the GSK2194069 effects to *Fasn* knockdown, cells transfected with non-silencing siRNA were treated with 0.5 μM GSK2194069 for 12 hours before lysis. Lysates were analyzed by immunoblotting using rabbit anti-FASN and anti-cleaved Casp3 antibodies. Typical blots are shown. 1 – vehicle, 2 – GSK2194069, 3 – anti-*Fasn* siRNA *Fasn177858*, 4 – anti-*Fasn* siRNA *Fasn177854* **Figure S1D.**

Figure S2. Modulation of the effect of FASN inhibitors by genetic knockdown of acetyl-CoA carboxylase (ACC1) and malonyl-CoA (MCD) decarboxylase activity.

A) Effect of *Acaca* knockdown on cerulenin toxicity. Cells were transfected by electroporation with anti-*Acaca* and scrambled (negative control) siRNAs. Indicated amounts of cerulenin were added in 24 hours and incubated for 48 hours. Parallel

transfections for immunoblotting knockdown control were done in a 6-well format. Each

lysate type was run in duplicate for transfer consistency control. Experiments were done in quadruplicates and repeated 3 times. Mean values and 95% confidence intervals are shown on graphs. **B)** Effect of *Acaca* knockdown on GSK2194069 toxicity. Cells were transfected by electroporation with anti-*Acaca* and scrambled (negative control) siRNAs. Indicated amounts of cerulenin were added in 24 hours and incubated for 48 hours. Parallel transfections for immunoblotting knockdown control were done in a 6-well format. **C)** Effect of *Mlycd* knockdown on GSK2194069 toxicity. Cells were transfected by electroporation with anti-*Mlycd* and scrambled (negative control) siRNAs. Indicated amounts of cerulenin were added in 24 hours and incubated for 48 hours. Parallel transfections for knockdown control were done in a 6-well format. Experiments were done in quadruplicates and repeated 4 times. Mean values and 95% confidence intervals are shown on graphs.

Figure S3. Quantification of immunoblot detection of levels of expression and phosphorylation of lipogenesis-related proteins in $Nf2^{-/-}$ and $Nf2^{f/f}$ MEFs. Experiments were repeated 4 times. ImageJ software was used for the band intensity quantification. Band intensities were normalized to beta-Actin band intensity. Mean values and 95% confidence intervals are shown on graphs. Statistical significance p was determined by Holm-Sidak t-test. * $-p \le 0.05$, ** $-p \le 0.01$, *** $-p \le 0.001$, **** $-p \le 0.001$

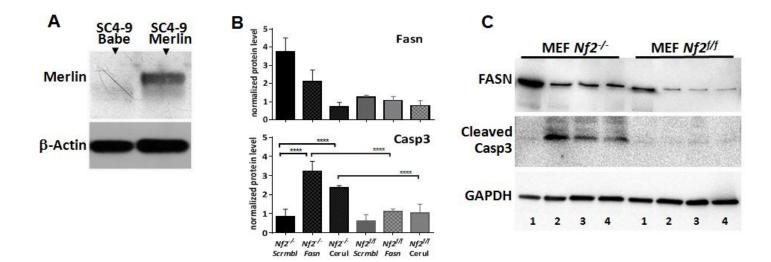

Figure S4. Quantification of immunoblot detection of levels of expression and phosphorylation of lipogenesis-related proteins in SC4-9 Babe and SC4-9 Merlin cells. Data was processed as and analyzed as in Figure S1.

Figure S6. Increased mitochondrial respiration in *Nf2*-deficient cells. Oxygen consumption rate (OCR) was determined in *Nf2*-/- and *Nf2*^{f/f} MEFs in a 96-well format on a Seahorse XF Metabolic Flux analyser using the Seahorse Mito Stress Kit (Seahorse Bioscience, N. Billerica, USA) according to the manufacturer's protocol. Initial cell density was four thousand cells/well. At time points a (20 min), b (50 min), and c (80 min), oligomycin (5 μM), FCCP (1 μM), and antimycin were added.

Figure S7. Decreased levels of fatty acid beta-oxidation gene expression in Nf2deficient cell lines. RNA quantification was performed on $Nf2^{-/-}$ and $Nf2^{f/f}$ MEFs; SC4-9
Babe (SC4-9 cells transiently transfected with empty pBabe-puro plasmid); SC4-9 Merlin (SC4-9 cells transiently transfected with pBabe-Merlin plasmid); and $Nf2^{-/-}$ (FH912) and $Nf2^{f/f}$ (FC912) mouse Schwann cells. All experiments were repeated 2 times. Mean and 95% CI are shown on graphs. Acadl = acyl-CoA dehydrogenase, long chain; Acadm = acyl-CoA dehydrogenase, medium chain; Acadls = acyl-CoA dehydrogenase, short chain; Acox1 = acyl-CoA oxydase 1; Acox3 = acyl-CoA oxydase 3; Acaa1 = acetyl-CoA acyltransferase 1; Echs1 = enoyl CoA hydratase, short chain, 1, mitochondrial; Hadh = hydroxyacyl-CoA dehydrogenase.

References

- Gilibili RR, Kandaswamy M, Sharma K, Giri S, Rajagopal S, Mullangi R. Development and validation of a highly sensitive LC-MS/MS method for simultaneous quantitation of acetyl-CoA and malonyl-CoA in animal tissues. Biomed Chromatogr 2011; 25: 1352-1359.
- 2 Hayashi O, Satoh K. Determination of acetyl-CoA and malonyl-CoA in germinating rice seeds using the LC-MS/MS technique. Biosci Biotechnol Biochem 2006; 70: 2676-2681.
- 3 Kuo YM, Andrews AJ. Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3. PLoS One 2013; 8.

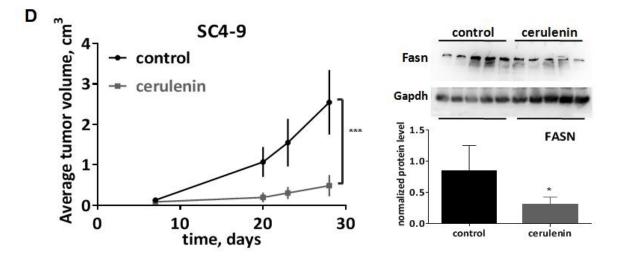
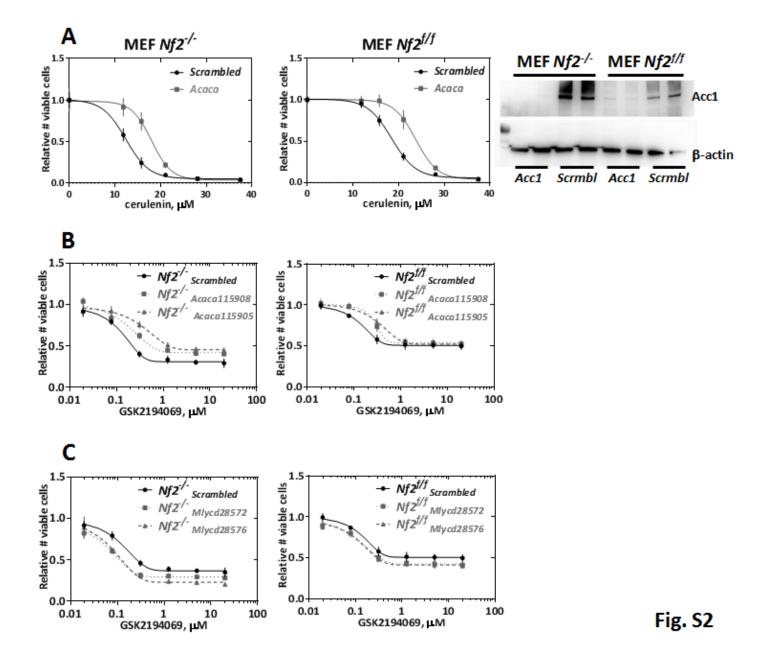
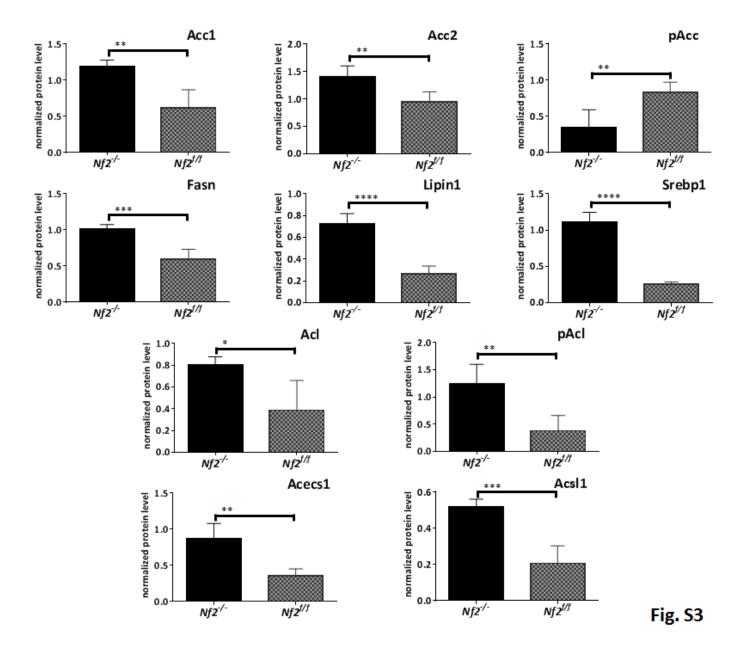
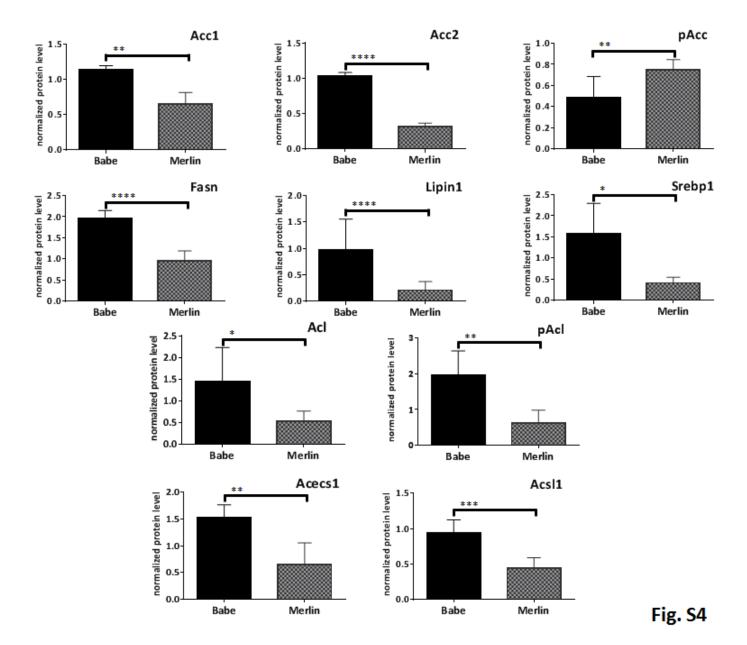
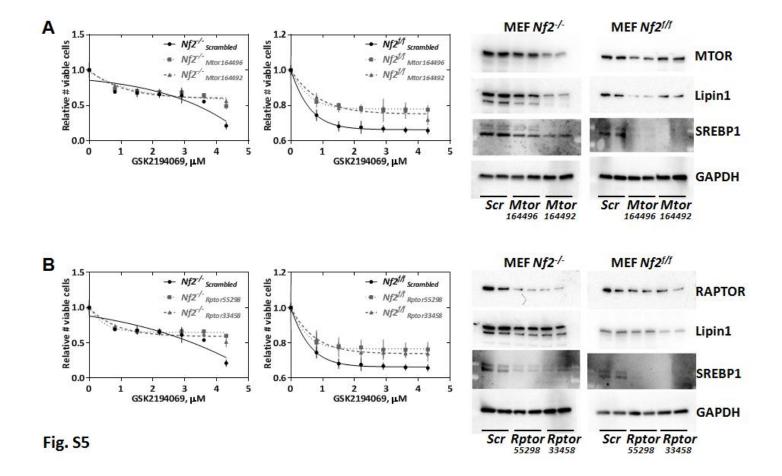






Fig. S1

mitochondrial respiration

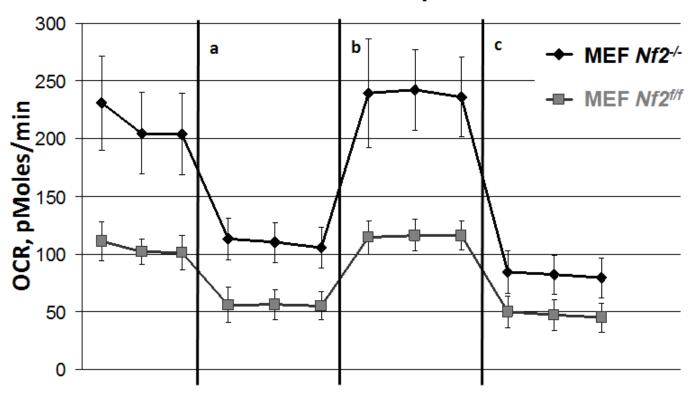


Fig. S6

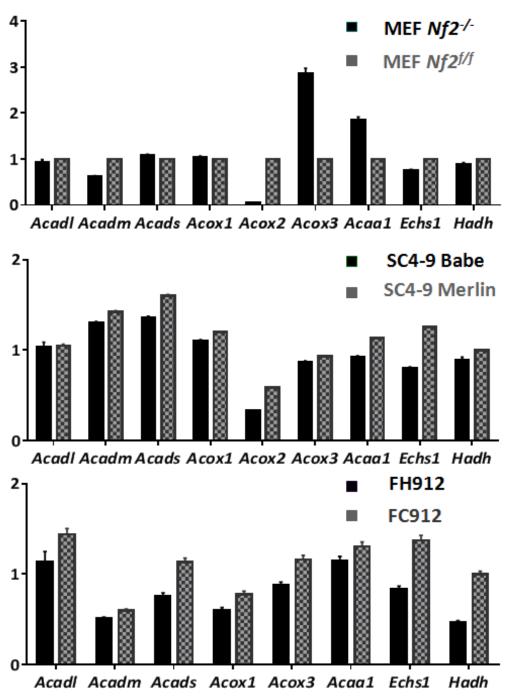


Fig. S7