SUPPORTING INFORMATION

ATP evokes Ca²⁺ signals in cultured foetal human cortical astrocytes entirely

through G protein-coupled P2Y receptors

Margit S. Muller and Colin W. Taylor

Department of Pharmacology, University of Cambridge, Tennis Court Road,

Cambridge, CB2 1PD, United Kingdom.

Drug	Action ¹	Target in context of detected mRNA ²
ADP	Agonist of $P2Y_1$, $P2Y_{12}$, $P2Y_{13}$, and	Agonist of $P2Y_1$ and $P2Y_6$
	possibly P2Y ₆ receptors	receptors
ATP	Agonist of P2Y and P2X receptors	Agonist of P2Y and P2X
2' amina LITD	Agapist of D2V recentors	Agaptet of D2V receptors
		Agonist of P212 receptors
2-APB	Inhibits IP ₃ R and SOCE	
BzATP	Agonist of all P2X subtypes, high	Agonist of P2X ₅ receptors
	affinity for P2X ₁ , most commonly used	
	as a P2X7 agonist, full agonist at	
	human P2X ₅ with affinity similar to	
	ATP	
BTP-2	Inhibits SOCE	
2'-thio-UTP	Agonist of P2Y ₂ receptors	Agonist of P2Y ₂ receptors
α,β-meATP	Agonist of $P2X_1$, $P2X_3$, human $P2X_4$	Agonist of P2X₄ and
	and P2X _{4/6} receptors	P2X _{4/6} receptors
MRS2365	Agonist of P2Y ₁ receptors	Agonist of P2Y ₁ receptors
NF546	Agonist of P2Y ₁₁ receptors	Agonist of P2Y ₁₁ receptors
SKF96365	Inhibits SOCE	
Thapsigargin	Inhibits ER/SR Ca ²⁺ -ATPase (ER Ca ²⁺	
	pump)	
U73122	Inhibits PLC	
U73343	Inactive analogue of U73122	
UDP	Agonist of P2Y ₆ and P2Y ₁₄ receptors	Agonist of P2Y ₆ receptors
UTP	Agonist of P2Y ₂ , P2Y ₄ and P2Y ₁₁	Agonist of $P2Y_2$ and $P2Y_{11}$
	receptors	receptors

Table S1. Properties of the drugs used

¹The pharmacology of P2 receptor agonists is described in von Kugelgen & Hoffmann (2015), and Syed & Kennedy (2012).

²Targets of the agonists are described in the context of the P2X and P2Y receptors for which mRNA was detected in cultured foetal cortical human astrocytes (Fig. 1E).

Purinoceptor	Quantitect Primers
P2Y ₁	Hs_PURINOCEPTORY1_1_SG
$P2Y_2$	Hs_PURINOCEPTORY2_1_SG
$P2Y_4$	Hs_PURINOCEPTORY4_1_SG
$P2Y_6$	Hs_PURINOCEPTORY6_2_SG
P2Y ₁₁	Hs_PURINOCEPTORY11_1_SG
P2Y ₁₂	Hs_PURINOCEPTORY12_2_SG
P2Y ₁₃	Hs_PURINOCEPTORY13_1_SG
P2Y ₁₄	Hs_PURINOCEPTORY14_1_SG
$P2X_1$	Hs_PURINOCEPTORX1_1_SG
$P2X_2$	Hs_PURINOCEPTORX2_1_SG
P2X ₃	Hs_PURINOCEPTORX3_1_SG
$P2X_4$	Hs_PURINOCEPTORX4_1_SG
P2X ₅	Hs_PURINOCEPTORX5_1_SG
$P2X_6$	Hs_PURINOCEPTORX6_1_SG
P2X ₇	Hs_PURINOCEPTORX7_1_SG

Table S2. Primers used for qPCR analyses

All primers were from Qiagen.

Table S3. Ca²⁺ signals evoked by P2Y-selective agonists in cultured human foetal astrocytes

Agonist	Activity ¹	Δ[Ca ²⁺] _i		
		pEC ₅₀ ,	Maximal	n
		М	response, nM	
ATP	1, 2, 6, 11	5.94 ± 0.03	180 ± 14	8
ADP	1, 6	6.00 ± 0.11	127 ± 10	3
MRS2365	1	6.20 ± 0.19	97 ± 8	5
UDP	6	ND	1 ± 1	3
UTP	2, 11	4.86 ± 0.18	58 ± 4	5
2'-thio-UTP	2	4.87 ± 0.47	71 ± 3	3
2'-amino-UTP	2	4.57 ± 0.22	51 ± 13	3
NF546	11	ND	4 ± 3	3

¹Activity at the four P2Y subtypes for which mRNA was detected in human astrocytes (P2Y₁, P2Y₂, P2Y₆ and P2Y₁₁) (Fig. 1E). ND, not determined.

Supporting references

Syed, N.-i.-H. and Kennedy, C. (2012) Pharmacology of P2X receptors. *WIREs Membr Transp Signal,* **1**, 16-30.

von Kugelgen, I. and Hoffmann, K. (2015) Pharmacology and structure of P2Y receptors. *Neuropharmacol.*, **104**, 50-61.

Fig. S1 Melting curves for qPCR analyses of the expression of purinoreceptor subtypes. (A, B) Traces show the rate of change of SYBR green fluorescence (dF/dt) as a function of temperature for the primers used to selectively amplify mRNA (Table S2) from BioBank pooled cDNA for the indicated P2Y receptors (A) or P2X receptors (B). Results show four separate determinations for each primer pair. The mean peak of each melting curve is shown in the tables.

Fig. S2 ATP evokes Ca^{2+} signals through P2Y receptors in astrocytes from three donors. (A) Concentration-dependent effects of ATP on the peak increase in $[Ca^{2+}]_i$ in cells from the indicated donors. pEC₅₀ values are shown for each donor. Results show means ± SEM, n = 4-7. Pooled results from the first 2 donors are shown in Fig. 1B. (B) Traces show responses to ATP (100 μ M, solid bar) added to cells in HBS alone or after treatment with thapsigargin (5 μ M, 15 min) with the indicated inhibitors of SOCE (concentrations defined in Fig. 2D). Results show mean (solid line) ± SEM (or range for n = 2, dashed lines), n = 2-7. Summary results from the first 2 donors are shown in Fig. 2F.

Fig. S3 Stimulation of P2Y receptors does not cause translocation of functional P2X receptors to the plasma membrane. Populations of fluo-8-loaded astrocytes in HBS were stimulated with ADP (100 μ M) to selectively activate P2Y receptors and then with α , β -meATP (30 μ M) to allow selective activation of P2X receptors. Traces show [Ca²⁺]_i as means (solid line) ± SEM (dashed line), n = 3.

Fig. S4 Neither P2Y₆ nor P2Y₁₁ receptors evoke Ca²⁺ signals in cultured human foetal astrocytes. (A,B) Responses of cell populations in HBS to ATP (100 μ M) or UDP (300 μ M, agonist of P2Y₆ receptor) (A), or NF456 (3 μ M, agonist of P2Y₁₁ receptor) (B), each applied for the periods shown by solid bars. Traces show [Ca²⁺]_i as means (solid line) ± SEM (dashed line), n = 3.

Fig. S5 2´-azido-UTP does not evoke Ca²⁺ signals. Responses of cell populations in HBS to ATP (100 μ M) or 2´-azido-UTP (100 μ M, a selective agonist of P2Y₄ receptors). Traces show [Ca²⁺]_i as means (solid lines) ± SEM (dashed lines), n = 4.

Fig. S6 Effects of MRS2179, a selective antagonist of P2Y₁ receptors, on the Ca²⁺ signals evoked by ATP and MRS2365. (A, B) Summary results (mean ± SEM, n = 6-7) from astrocytes taken from donor 0000514417 show the effects of MRS2179 (5 μ M, added 5 min before stimulation) on the peak Ca²⁺ signals evoked by MRS2365 (A) or ATP (B). ΔpEC_{50} values are shown, where $\Delta pEC_{50} = p_{EC_{50}}^{+MRS2179}$. $p_{EC_{50}}^{control}$. The results show that the selective P2Y₁ agonist, MRS2365, evokes smaller Ca²⁺ signals that are more susceptible to inhibition by MRS2179 than those evoked by ATP. Traces show [Ca²⁺]_i as means (solid lines) ± SEM (dashed lines).