Genistein up-regulates miR-20a to disrupt spermatogenesis via targeting Limk1

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Relationship between GEN exposure and other sperm characteristics in recruited subjects. (A-I) represents VCL, VSL, VAP, MAD, ALH, BCF, LIN, WOB and STP, respectively.

Supplementary Figure 2: Changes in body weight and testicular index of the mice after treated with GEN at different doses. (A) represents the changes of body weight weekly and (B) represents testicular index in different groups. N = 20 per group.

Supplementary Figure 3: Microscopy of cross section of H&E stained testis from control and GEN treated mice. (A-E) represents testis from mice treated with GEN at doses of 0, 0.5, 5, 50, 250 mg/kg/day, respectively. Scale bars = 50µm. N = 6 per group.

www.impactjournals.com/oncotarget/

Supplementary Figure 4: Changes in sperm quality of mice after treated with GEN at different doses. (A-K) represents sperm concentration, sperm motility, progressive, VAP, VSL, VCL, ALH, BCF, STR, LIN & sperm activity, respectively. N = 20 per group. *P < 0.05 versus control group.

Supplementary Figure 5: Target genes prediction and pathway enrichment of miR-20a in human and mice. (A and C) represent numbers of target gene of miR-20a enriched in pathways in human and mice respectively; **(B and D)** represent *P* value for pathway enrichment respectively. **(E)** represents the target genes both in human and mice by Venn diagram; green (a) and blue (b) spot represents specific target genes enriched in regulation of actin cytoskeleton pathways in human and mice.

Supplementary	Table	1:	Metabolism	results

Metabolite name	Fold vs Control	<i>P</i> value
Dehydroepiandrosterone	0.336	0.011
Dodecanoic acid	1.435	0.020
Capric acid	1.419	0.021
Trizma Acetate	0.695	0.031
7b-Hydroxycholesterol	0.576	0.033
Dodecanedioic acid	0.654	0.038
Pyroglutamic acid	0.754	0.043
Xanthurenic acid	0.444	0.043

Supplementary Table 2: Primers for miR-17-92 and Limk1, as well as references

Name	Primer-F (5'-3')	Primer-R (5'-3')
hsa-miR-17	ACACTCCAGCTGGGCAAAGTGCTTACAGTGC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC
hsa-miR-18a	ACACTCCAGCTGGGACTGCCCTAAGTGCTCC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCAGAAGG
hsa-miR-19a	ACACTCCAGCTGGGTGTGCAAATCTATGCAA	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCAGTTTT
hsa-miR-19b-1	ACACTCCAGCTGGGAGTTTTGCAGGTTTGCA	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCTGGATG
hsa-miR-20a	ACACTCCAGCTGGGTAAAGTGCTTATAGTGC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC
hsa-miR-92a-1	ACACTCCAGCTGGGAGGTTGGGATCGGTTGC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCATTGC
mmu-miR-17	ACACTCCAGCTGGGCAAAGTGCTTACAGTGC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC
mmu-miR-18a	ACACTCCAGCTGGGACTGCCCTAAGTGCTC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAGAAGGA
mmu-miR-19a	ACACTCCAGCTGGGTGTGCAAATCTATGCAA	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCAGTTTT
mmu-miR-19b-1	ACACTCCAGCTGGGAGTTTTGCAGGTTTGCA	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCTGGATG
mmu-miR-20a	ACACTCCAGCTGGGTAAAGTGCTTATAGTGC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC
mmu-miR-92a-1	ACACTCCAGCTGGGAGGTTGGGATTTGTCGC	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCATTGC
U6	CTCGCTTCGGCAGCACA	AACGCTTCACGAATTTGCGT
Limk1	GGGGACACCTACACACTGGT	GGATCTGTTCGATGACTGGAGT
Gapdh	GCACCGTCAAGGCTGAGAAC	GGATCTCGCTCCTGGAAGATG
URP	TGGTGTCGTGGAGTCG	