Description of Supplementary Files

File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

File Name: Supplementary Data 1 Description: RNAseq data related to Figure 1

File Name: Supplementary Data 2 Description: GO term enrichment data related to Figure 1

File Name: Supplementary Data 3 Description: HU sensitivity suppressor screen data related to Figure 2

File Name: Supplementary Data 4 Description: RNAseq data related to Figure 6

File Name: Supplementary Data 5 Description: Fitness data related to Figure 6.

File Name: Supplementary Software 1 Description: R scripts and Cellprofiler pipelines used for the analysis of the data generated in this manuscript

File Name: Peer Review File

Supplementary Fig. 1. The number of genes induced or repressed upon HU exposure in WT cells. The number of differentially expressed genes was determined using the Tuxedo protocol.

Supplementary Fig. 2. Lsm1 regulates RNA abudance of HU-responsive genes as well as more general DNA replication stress genes. (a) Correlation between the expression ratios for the differentially expressed genes identified in WT cells in this study upon HU exposure and the study of Dubacq et al. (2006) at 1, 2 and 4 hours in HU. (b) Correlation between the expression ratios for the differentially expressed genes identified in WT cells in this study upon HU exposure and WT cells in MMS in the study of Shalem et al. (2008) or Jaehnig et al. (2013). (c) Venn Diagram representing the overlap between the genes showing log2 expression ratios inferior to -1 or superior to +1 in the study of Shalem et al. (2008) or Jaehnig et al. (2013) and the genes showing differential expression upon HU exposure and in $Ism1\Delta$ cells in this study. DE: Differentially Expressed

Supplementary Fig. 3. Cell-cycle progression of the WT and *Ism1* Δ strain under normal growth or in presence of HU. Flow cytometry histograms of DNA contents in wild type and Ism1 Δ cells. Cells were arrested in G1 and then released into S phase in the absence or presence of HU. The positions of cells with 1C and 2C DNA contents are indicated.

Supplementary Fig. 4. YOX1 RNA abudance increases in *Ism1* Δ and *pat1* Δ cells. log2 expression ratios comparing YOX1 mRNA levels in WT and *Ism1* Δ cells obtained by RNA-Seq (grey) or qRT-PCR (red) or log2 expression ratios comparing YOX1 mRNA levels in WT and *pat1* Δ cells obtained by qRT-PCR (orange). The means and two biological replicates are shown. Each qRT-PCR biological replicate included at least 2 technical replicates.

Supplementary Fig. 5. Full immuno-blot image related to Fig. 5b. Yox1-FLAG protein abundance was probed using anti-FLAG antibody. Pgk1 was used as loading control.

Supplementary Fig. 6. ALD6 mRNA abundance decreases in *Ism1* Δ cells. log2 expression ratios comparing ALD6 mRNA levels in WT and *Ism1* Δ cells obtained by RNA-Seq (grey) or qRT-PCR (red). The means and two biological replicates are shown. Each qRT-PCR biological replicate included at least 2 technical replicates.

		down-regulated genes			up-regulated genes	
method	condition	number of DE genes identified	overlap with cuffdiff (%)		number of DE genes identified	overlap with cuffdiff (%)
cuffdiff		258	NA	-	333	NA
EBSeq	untreated	564	198 (35%)		521	208 (40%)
edgeR		703	236 (34%)		800	305 (38%)
cuffdiff		332	NA	-	499	NA
EBSeq	1h HU	682	265 (39%)		867	382 (44%)
edgeR		762	319 (42%)		911	455 (50%)
cuffdiff		686	NA	-	911	NA
EBSeq	2h HU	817	514 (63%)		959	697 (73%)
edgeR		1509	666 (44%)	_	1578	888 (57%)
cuffdiff		1051	NA	=	1203	NA
EBSeq	4h HU	1026	793 (77%)		1085	860 (79%)
edgeR		1753	1024 (58%)		1887	1176 (62%)

Supplementary Table 1. Comparison of RNA-seq results obtained with Cuffdiff, EBSeq or edgeR

DE : Differentially Expressed

		cuffdiff			EE	EBSeq		edgeR		
condition	aono	log2 EC	p-value	FDR corrected	log2 FC	posterior	log2 FC	p-value	FDR corrected	
condition	yene	10g2 1 C		p-value		probability ¹			p-value	
	ACF4	0,185	3,70E-01	6,76E-01	0,186	1,18E-12	0,190	2,09E-01	3,99E-01	
	ARL3	0,497	1,62E-02	1,12E-01	0,497	1,38E-08	0,499	8,44E-04	6,61E-03	
untroated	HHT1	1,010	5,00E-05	1,63E-03	1,011	1,00E+00	1,014	2,30E-14	3,00E-12	
unitealeu	RRS1	0,682	1,50E-04	3,99E-03	0,683	1,00E+00	0,686	1,26E-08	5,08E-07	
	TMA16	0,941	5,00E-05	1,63E-03	0,942	1,00E+00	0,946	1,65E-14	2,19E-12	
	YOX1	0,454	1,88E-02	1,22E-01	0,454	1,21E-07	0,458	9,92E-04	7,47E-03	
	ACF4	0,336	1,33E-01	3,57E-01	0,336	2,68E-12	0,325	4,93E-02	1,39E-01	
	ARL3	0,437	4,29E-02	1,76E-01	0,437	1,05E-09	0,426	1,04E-02	4,34E-02	
16 UU	HHT1	1,801	5,00E-05	1,11E-03	1,802	1,00E+00	1,789	5,49E-23	1,01E-20	
ШНО	RRS1	0,386	7,17E-02	2,46E-01	0,387	1,78E-01	0,377	9,04E-02	2,17E-01	
	TMA16	1,079	5,00E-05	1,11E-03	1,079	1,00E+00	1,068	1,86E-09	7,75E-08	
	YOX1	0,958	5,00E-05	1,11E-03	0,956	1,00E+00	0,947	7,49E-07	1,53E-05	
	ACF4	0,510	5,60E-03	2,74E-02	0,500	7,25E-07	0,500	2,94E-04	1,06E-03	
26 UU	ARL3	0,645	4,50E-04	3,60E-03	0,635	3,07E-01	0,631	1,37E-08	1,12E-07	
	HHT1	1,321	5,00E-05	5,58E-04	1,313	1,00E+00	1,309	7,11E-40	1,24E-37	
211 HU	RRS1	0,647	1,50E-04	1,47E-03	0,638	1,00E+00	0,634	7,96E-12	1,07E-10	
	TMA16	1,034	5,00E-05	5,58E-04	1,024	1,00E+00	1,021	5,04E-25	3,22E-23	
	YOX1	0,572	1,25E-03	8,27E-03	0,563	4,38E-04	0,560	1,26E-05	6,01E-05	
	ACF4	0,630	1,45E-03	6,30E-03	0,623	1,44E-04	0,631	2,10E-06	8,16E-06	
	ARL3	0,425	1,25E-02	3,77E-02	0,420	3,81E-07	0,427	2,66E-04	7,54E-04	
	HHT1	1,356	5,00E-05	3,47E-04	1,351	1,00E+00	1,355	3,19E-55	4,82E-53	
411 HU	RRS1	0,746	5,00E-05	3,47E-04	0,741	1,00E+00	0,745	9,25E-17	1,19E-15	
	TMA16	1,233	5,00E-05	3,47E-04	1,226	1,00E+00	1,231	4,60E-32	1,89E-30	
	YOX1	1,141	5,00E-05	3,47E-04	1,134	1,00E+00	1,139	1,64E-23	4,00E-22	

Supplementary Table 2. Expression data from cuffdiff, EBSeq and edgeR for the genes identified in Fig. 2

FC : Fold-Change; Red shading indicates statistically supported differential expression ¹ Values superior or equal to 0.95 are considered significant for posterior probability in EBSeq

Gene promoter scanned	Transcription factor	Coord (relative) coo	inates to START lon)	Strand	% of Max score	Motif	YETFASCO motif ID
		-987	-978	-	76,8	GTTGATTGGG	#2196
		-855	-846	-	75,4	GTTAATGGTG	#2196
ALD6	Yox1	-660	-651	+	77	CTAAATGACT	#2196
		-298	-289	-	81,6	AGTAATTGGC	#2196
		-296	-289	+	100	CAATTACT	#453
		-162	-155	-	97,3	TAATTACA	#453
		-545	-536	-	76,7	GTTAATGACT	#2196
ICS2	Yox1	-303	-296	-	76,3	TAATTAGG	#453
		-302	-295	-	80,6	ATAATTAG	#498
		-268	-259	-	78,3	GTTTATTACG	#2196
	Marcel	-823	-816	-	84,2	TTCGTCAA	#1369
		-384	-375	+	80,2	CCCCAAACGG	#2139
		-383	-374	+	93,8	CCCAAACGGG	#2139
		-344	-329	-	79,9	CTTCCCAAAGAGGAAA	#1015
		-344	-329	-	78,2	CTTCCCAAAGAGGAAA	#1485
ALDO	WICHTT	-344	-330	-	86	TTCCCAAAGAGGAAA	#1298
		-344	-329	-	78,7	CTTCCCAAAGAGGAAA	#1544
		-341	-330	-	86,2	TTCCCAAAGAGG	#1543
		-341	-332	-	85,1	CCCAAAGAGG	#2139
		-337	-330	-	78,6	TTCCCAAA	#1369
		-993	-986	+	80,5	TCCGCAAT	#1369
	Mcm1	-924	-917	-	91,1	TTCGCAAT	#1369
		-580	-573	+	82,9	AAAATAGG	#1368
1052		-304	-297	-	82,9	AATTAGGT	#1367
1032		-303	-296	-	85,4	TAATTAGG	#1368
		-40	-33	+	79,6	TTCGTTAT	#1369
		-303	-296	-	85,4	TAATTAGG	#1368
		-40	-33	+	79,6	TTCGTTAT	#1369

Supplementary Table 3. YETFASCO scanning results for ALD6 and ICS2 promoter regions

Supplementary Table 4. Strains used in this study.

Lab ID	Strain name	Genotype	Source
BY4741	WT	MATa leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	1
RLKY6	lsm1∆	$MAT\alpha$ Ism1 Δ ::kanMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0	C. Boone
JTY16	lsm1 Δ	MATa leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	2
RLKY15	pat1 Δ	MATα pat1Δ::natMX can1Δ::STE2pr-his5 lyp1Δ::STE3pr-LEU2	C. Boone
RLKY24	WT + pBY011	MAT a pBY011[GAL1-10pr-] leu2∆0 his3∆1 ura3∆0 met15∆0	this study
RLKY27	WT + pBY011- YOX1	MAT a pBY011[GAL1-10pr-YOX1] leu2∆0 his3∆1 ura3∆0 met15∆0	this study
RLKY53	lsm1∆ + pBY011	MAT a lsm1∆::kanMX pBY011[GAL1-10p-] leu2∆0 his3∆1 ura3∆0 met15∆0	this study
RLKY54	lsm1∆ + pBY011- YOX1	MAT a lsm1∆::kanMX pBY011[GAL1-10pr-YOX1] leu2∆0 his3∆1 ura3∆0 met15∆0	this study
RLKY55	pat1∆ + pBY011	MAT a pat1∆::kanMX pBY011[GAL1-10pr-] leu2∆0 his3∆1 ura3∆0 met15∆0	this study
RLKY56	pat1∆ + pBY011- YOX1	MAT a pat1∆::kanMX pBY011[GAL1-10p-YOX1] leu2∆0 his3∆1 ura3∆0 met15∆0	this study
RLKY57	yox1∆	MATa yox1 Δ ::kanMX leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	3
RLKY58	yhp1∆	MATa yhp1 Δ ::kanMX leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	3
RLKY60	lsm1∆ yox1∆	MATa Ism1∆::natMX yox1∆::kanMX can1∆::STE2pr-his5 lyp1∆ Ieu2∆0 his3∆1 ura3∆0 lys2∆0	this study
RLKY61	lsm1 Δ yhp1 Δ	MATa Ism1 Δ ::natMX yhp1 Δ ::kanMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 lys2 Δ 0	this study
RLKY63	pat1∆ yox1∆	MATa pat1∆::natMX yox1∆::kanMX can1∆::STE2pr-his5 Iyp1∆::STE3pr-LEU2 leu2∆0 his3∆1 ura3∆0 lys2∆0	this study
RLKY64	pat1 Δ yhp1 Δ	$MATa pat1\Delta::natMX yhp1\Delta::kanMX can1\Delta::STE2pr-his5Iyp1\Delta::STE3pr-LEU2 leu2\Delta0 his3\Delta1 ura3\Delta0 lys2\Delta0$	this study
RLKY66	xrn1∆	$MAT\alpha xrn1\Delta$::natMX can1 Δ ::STE2pr-his5 lyp1 Δ ::STE3pr-LEU2 leu2 Δ 0 his3 Δ 1 ura3 Δ 0	C. Boone
RLKY81	xrn1 Δ yox1 Δ	$MAT\alpha xrn1\Delta::natMX yox1\Delta::kanMX can1\Delta::STE2pr-his5$ $Iyp1\Delta::STE3pr-LEU2 leu2\Delta0 his3\Delta1 ura3\Delta0 Iys2\Delta0$	this study
RLKY82	xrn1 Δ yhp1 Δ	$MAT\alpha$ xrn1 Δ ::natMX yhp1 Δ ::kanMX can1 Δ ::STE2pr-his5 /yp1 Δ ::STE3pr-LEU2 leu2 Δ 0 his3 Δ 1 ura3 Δ 0 /ys2 Δ 0	this study
RLK43	YOX1-MS2 Lsm1-mCherry	MATa /MATα YOX1-MS2/YOX1 LSM1/LSM1-mCherry-natMX pMS2-CP-GFP(x3) leu2 Δ 0/leu2 Δ 0 his3 Δ 1/his3 Δ 1 ura3 Δ 0/ura3 Δ 0 lys2 Δ 0/LYS2 met15 Δ 0/MET15	this study
RLK45	YOX1-MS2 Pat1-mCherry	MATa /MATα YOX1-MS2/YOX1 PAT1/PAT1-mCherry-natMX pMS2-CP-GFP(x3 leu2 Δ 0/leu2 Δ 0 his3 Δ 1/his3 Δ 1 ura3 Δ 0/ura3 Δ 0 lys2 Δ 0/LYS2 met15 Δ 0/MET15)	this study
RLKY72	xrn1∆ YOX1-MS2 Lsm1-mCherry	MATa /MAT α xrn1 Δ ::kanMX/xrn1 Δ ::kanMX YOX1-MS2/YOX1 LSM1/LSM1-mCherry-natMX pMS2-CP-GFP(x3) leu2 Δ 0/leu2 Δ 0 his3 Δ 1/his3 Δ 1 ura3 Δ 0/ura3 Δ 0 lys2 Δ 0/LYS2 met15 Δ 0/MET15	this study
RLKY71	xrn1∆ YOX1-MS2 Pat1-mCherry	MATa /MAT α xrn1 Δ ::kanMX/xrn1 Δ ::kanMX YOX1-MS2/YOX1 PAT1/PAT1-mCherry-natMX pMS2-CP-GFP(x3) leu2 Δ 0/leu2 Δ 0 his3 Δ 1/his3 Δ 1 ura3 Δ 0/ura3 Δ 0 lys2 Δ 0/LYS2 met15 Δ 0/MET15	this study
RLKY74	YOX1 Lsm1- mCherry	MATa /MAT α YOX1/YOX1 LSM1/LSM1-mCherry-natMX pMS2- CP-GFP(x3) leu2 Δ 0/leu2 Δ 0 his3 Δ 1/his3 Δ 1 ura3 Δ 0/ura3 Δ 0 lys2 Δ 0/LYS2 met15 Δ 0/MET15	this study

RLKY75	YOX1 Pat1- mCherry	MATa /MAT α YOX1/YOX1 PAT1/PAT1-mCherry-natMX pMS2- CP-GFP(x3) leu2 Δ 0/leu2 Δ 0 his3 Δ 1/his3 Δ 1 ura3 Δ 0/ura3 Δ 0 lys2 Δ 0/LYS2 met15 Δ 0/MET15	this study
RLKY76	xrn1∆ YOX1 Lsm1-mCherry	MATa /MATα xrn1∆::kanMX/xrn1∆::kanMX YOX1/YOX1 LSM1/LSM1-mCherry-natMX pMS2-CP-GFP(x3) Ieu2∆0/Ieu2∆0 his3∆1/his3∆1 ura3∆0/ura3∆0 lys2∆0/LYS2 met15∆0/MET15	this study
RLKY77	xrn1∆ YOX1 Pat1-mCherry	MATa/MATα xrn1∆::kanMX/xrn1∆::kanMX YOX1/YOX1 PAT1/PAT1-mCherry-natMX pMS2-CP-GFP(x3) Ieu2∆0/Ieu2∆0 his3∆1/his3∆1 ura3∆0/ura3∆0 lys2∆0/LYS2 met15∆0/MET15	this study
RLKY80	HTA2-mCherry	$MAT\alpha$ HTA2-mCherry-hphMX can1 Δ ::STE2pr-LEU2 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0	this study
RLKY86	YOX1-GFP HTA2-mCherry	MATa HTA2-mCherry-hphMX YOX1-GFP- GFP-HIS3MX can1∆::STE2pr-LEU2 lyp1∆ leu2∆0 his3∆1 ura3∆0	this study
RLKY87	lsm1∆ YOX1-GFP HTA2-mCherry	$\label{eq:main_algor} MATa\ lsm1 \Delta:: kanMX\ HTA2-mCherry-hphMX\ YOX1-GFP-\ GFP-\ HIS3MX\ can1 \Delta:: STE2pr-LEU2\ lyp1 \Delta\ leu2 \Delta 0\ his3 \Delta 1\ ura3 \Delta 0$	this study
NTY13	RPL39pr- tdTomato	MAT α can1 Δ ::RPL39pr-tdTomato-CaURA3::STE2pr-LEU2 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0	4
RLKY83	YOX1-GFP RPL39pr- tdTomato	MATa YOX1-GFP-HIS3MX can1∆::RPL39pr-tdTomato- CaURA3::STE2pr-LEU2 lyp1∆ leu2∆0 his3∆1 ura3∆0	this study
RLKY84	Ism1∆ YOX1-GFP RPL39pr- tdTomato	MATa $lsm1\Delta$::kanMX YOX1-GFP-HIS3MX can1 Δ ::RPL39pr-tdTomato-CaURA3::STE2pr-LEU2 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0	this study
RLKY104	pry3∆ (query)	MAT $lpha$ pry3 Δ ::natMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	C. Boone
RLKY105	ald6∆ (query)	MAT $lpha$ ald6 Δ ::natMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	C. Boone
RLKY106	rad54 Δ (query)	MAT α rad54 Δ ::natMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	C. Boone
RLKY107	yml131W∆ (query)	MAT $lpha$ yml131w Δ ::natMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	C. Boone
RLKY108	mmr1∆ (query)	MAT α mmr1 Δ ::natMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	C. Boone
RLK109	ura3∆ (query)	MAT α ura3 Δ ::natMX can1 Δ ::STE2pr-his5 lyp1 Δ leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	C. Boone
RLKY110	ald6∆	MATa ald6 Δ ::kanMX leu2 Δ 0 his3 Δ 1 ura3 Δ 0 met15 Δ 0	3
RLKY111	YOX1-FLAG	MATa YOX1-FLAG-KanMX leu2 $\Delta 0$ his3 $\Delta 1$ ura3 $\Delta 0$ met15 $\Delta 0$	this study
RLKY112	lsm1∆ YOX1- FLAG	MATa lsm1∆::URA3MX YOX1-FLAG-KanMX leu2∆0 his3∆1 ura3∆0 met15∆0	this study
	All strains in Figure MATa Ism1∆::natM Iys2∆0 MATa pat1∆::natM2 his3∆1 ura3∆0 lys2	re 2 have the following genotypes: X xxx∆::kanMX can1∆::STE2pr-his5 lyp1∆ leu2∆0 his3∆1 ura3∆0 X xxx∆::kanMX can1∆::STE2pr-his5 lyp1∆::STE3pr-LEU2 leu2∆0 ∆0	this study

All strains in Figure 6 have the following genotypes: MATa xxx∆::kanMX yyy∆::natMX leu2∆0 his3∆1 ura3∆0 lyp1∆0 can1∆0::STE2pr- SpHIS5	this study
All strains in Figure 7a-b have the following genotypes: MATa lsm1∆::kanMX leu2∆0 his3∆1 ura3∆0 met15∆0 pBY011[GAL1-10pr-] MATa lsm1∆::kanMX leu2∆0 his3∆1 ura3∆0 met15∆0 pBY011[GAL1-10pr-XXX]	this study
All strains in Figure 7f-g have the following genotypes: MATa xxx∆::NatMX RNR3-GFP-HIS3MX can1pr::RPL39pr-tdTomato-CaURA3 can1∆::STE2pr-LEU2 leu2∆0 his3∆1 ura3∆0 met15∆0 lyp1∆0	this study

References

- 1. Brachmann, C. B. *et al.* Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* **14**, 115–32 (1998).
- 2. Tkach, J. M. *et al.* Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. *Nat. Cell Biol.* **14**, 966–76 (2012).
- 3. Giaever, G. *et al.* Functional profiling of the Saccharomyces cerevisiae genome. *Nature* **418**, 387–391 (2002).
- 4. Hendry, J. A., Tan, G., Ou, J., Boone, C. & Brown, G. W. Leveraging DNA damage response signaling to identify yeast genes controlling genome stability. *G3 (Bethesda).* **5**, 997–1006 (2015).