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Pair approximation for two strains on a graph

We consider the SIS spread of two pathogen strains on a random graph. The strains have transmission rates β1
and β2, and recovery rates γ1 and γ2, respectively. Individuals can only be infected by one disease at a time.
Expressing the SIS dynamics in terms of pairs [1] we have:

d[S]

dt
= −β1[SI1]− β2[SI2] + γ1[I1] + γ2[I2],

d[I1]

dt
= β1[SI1]− γ1[I1],

d[I2]

dt
= β2[SI2]− γ2[I2].

The differential equation for [SI1] pairs is:

d[SI1]

dt
= −β1[SI1]− γ1[SI1]− β1[I1SI1]− β2[I2SI1] + γ1[I1I1] + γ2[I2I1] + β1[SSI1]. (1)

This equation reflects the fact that [SI1] pairs can be produced or lost through the following processes (in order
of the terms appearing in the above equation): infection of the S individual in an [SI1] pair; recovery of the I
individual in an [SI1] pair; infection of the S individual in [SI1] pair from a third party I1 individual; ditto for
I2; recovery of an I1 individual in an [I1I1] pair; recovery of an I2 individual in an [I2I1] pair; and infection of
an [SS] pair by an third party I1 individual. Analogously, the equation for [SI2] is:

d[SI2]

dt
= −β2[SI2]− γ2[SI2]− β1[I2SI1]− β2[I2SI2] + γ1[I1I2] + γ2[I2I2] + β2[SSI2]. (2)

Using the population size N we can express the number of susceptibles as

[S] = N − ([I1] + [I2]). (3)

The number of [SS], [I1I1] and [I2I2] pairs can be expressed using the number of connections k:

[SS] = k[S]− [SI1]− [SI2], (4a)

[I1I1] = k[I1]− ([SI1] + [I2I1]), (4b)

[I2I2] = k[I2]− ([SI2] + [I1I2]). (4c)

We can express the coupling term [I1I2] as,

d[I1I2]

dt
= −(γ1 + γ2)[I1I2] + (β1 + β2)

k1
k

[SI1][SI2]

[S]
, (5)

where k1 is the excess degree relating to the degree distribution by k1 = var(k)/k + k − 1 (see [2]). Further we
used the triplet closure:

[XY Z] =
k1
k

[XY ][Y Z]

[Y ]
.
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Using equations 3, 4a, 4b, 4c and 5 along with the triplet closure we rewrite equations 1 and 2 and get the
ordinary differential equations that govern the two-strain pair approximation:

d[I1]

dt
= β1[SI1]− γ1[I1]

d[I2]

dt
= β2[SI2]− γ2[I2]

d[SI1]

dt
= (β1(k1 − 1)− 2γ1) [SI1] + γ1k[I1] + (γ2 − γ1)[I1I2]− k1

k

2β1[SI1]2

N − ([I1] + [I2])
− k1

k

(β1 + β2)[SI1][SI2]

N − ([I1] + [I2])

d[SI2]

dt
= (β2(k1 − 1)− 2γ2) [SI2] + γ2k[I2] + (γ1 − γ2)[I1I2]− k1

k

2β2[SI2]2

N − ([I1] + [I2])
− k1

k

(β1 + β2)[SI1][SI2]

N − ([I1] + [I2])

d[I1I2]

dt
= −(γ1 + γ2)[I1I2] +

k1
k

(β1 + β2)[SI1][SI2]

N − ([I1] + [I2])

We non-dimensionalize by dividing by the population size, x1 = [I1]/N and x2 = [I2]/N , and the total number
of pairs, y1 = [SI1]/(kN), y2 = [SI2]/(kN) and y3 = [I1I2]/(kN).

dx1
dt

= β1ky1 − γ1x1
dx2
dt

= β2ky2 − γ2x2

dy1
dt

= (β1(k1 − 1)− 2γ1) y1 + γ1x1 + (γ2 − γ1)y3 − k1
2β1y

2
1 + (β1 + β2)y1y2
1− (x1 + x2)

dy2
dt

= (β2(k1 − 1)− 2γ2) y2 + γ2x2 − (γ2 − γ1)y3 − k1
2β2y

2
2 + (β1 + β2)y1y2
1− (x1 + x2)

dy3
dt

= −(γ1 + γ2)y3 + k1
(β1 + β2)y1y2
1− (x1 + x2)

Furthermore, if we rescale time such that a = γ1t, and define Rj = βj/γj and c = γ2/γ1:

dx1
da

= kR1y1 − x1
dx2
da

= c (kR2y2 − x2)

dy1
da

= (R1(k1 − 1)− 2) y1 + x1 + (c− 1)y3 − k1
2R1y

2
1 + (R1 + cR2)y1y2
1− (x1 + x2)

dy2
da

= c (R2(k1 − 1)− 2) y2 + cx2 − (c− 1)y3 − k1
2cR2y

2
2 + (R1 + cR2)y1y2
1− (x1 + x2)

dy3
da

= −(1 + c)y3 + k1
R1 + cR2

1− (x1 + x2)
y1y2

Equilibrium solution for a single strain. For a single strain, x2 = y2 = y3 = 0, and the non-trivial
equilibrium solution is,

x∗1 =
k(R1(k1 + k − 1)− 2)

2(k1 − k) +R1k(k1 + k − 1)
, (6a)

y∗1 =
R1(k1 + k − 1)− 2

R1(2(k1 − k) +R1k(k1 + k − 1))
. (6b)

Simultaneous spread. We first consider the simultaneous spread of the two strains in a completely suscep-
tible population. Each strain starts from a single infected individual, x1(0) = x2(0) = 1/N . These individuals
are considered to be “far apart” in the network, such that y1(0) = y2(0) = 1/N and y3 = 0. An example of
spreading dynamics is shown in Fig. S1. The dynamics are split into two phases: In a first phase, the two
strains are rather unaffected by one another. In a second phase, once an important fraction of the population
is infected, competition for susceptibles between the two strains takes over. Because the second strain spreads
slower (R2 < R1), it is eventually outcompeted by the first strain.

Note, that for relatively small differences in R the competition phase is much longer than the initial spreading
phase. A closer look at the two phases reveals that the initial spread is characterized by an exponential increase
in the prevalence of strain 2, followed by an exponential decrease of the prevalence of strain 2 during the
competition phase (Fig. S2). Evidently, the longer competition phase is reflected in a slower rate of decline.
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Figure S1: Concurrent spread of two strains on a random graph. Solid lines show the dynamics on a
random graph, dashed lines show the dynamics for a mean field model (and Poisson). Note, that the R1 in the
mean field model is adjusted, such that the equilibrium prevalence for a single strain is the same. Parameters:
k = 4, R1 = 0.6, R2/R1 = 0.95.
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Figure S2: Closer look at the two phases of initial spread followed by competition. Solid lines show
the dynamics on a random graph, dashed lines for the mean-field case. The exponential decay in the competition
phase is clearly visible.
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Figure S3: Relative duration of competition versus initial spread. The right panel shows the same data
as in the left panel, though the curves are scaled to the relative duration at variance zero.

In order to see how higher order network structure might affect the spreading and competition phases, we
compare the length of the competition phase to that of the initial spreading phase (Fig. S3). For the chosen
parameter values, we see a confirmation that for small fitness differences, 0.9 < s < 1, the competition phase
is much longer than the initial spreading phase, up to 80 times longer for k = 4 and over 150 times longer for
k = 8. Initially, as the degree variance of the network increases, so does the duration of the competition phase
relative to the initial phase. However, for low degree networks (k = 4), the relative duration starts to decrease
again above a certain variance (var(k) ≈ 10). This is also observed for higher degree networks (k = 8), although
the effect is lower in magnitude than for low degree networks.

Extinction rate of less fit strain. Beyond comparing the durations of the two phases, we can directly
calculate the exponential decay rate of less fit strain during the competition phase. Since the decay appears to
occur at a constant rate during the competition phase, we can calculate the rate close to the equilibrium point
(x∗1, 0, y

∗
1 , 0, 0). Concentrating on the behaviour of x2, we can rewrite the time derivative as

dx2
dt

= c

(
kR2

y2
x2
− 1

)
x2.

Thus, the prevalence of the less fit strain should decay with a rate,

r = c

(
kR2

y2
x2
− 1

)
.

In the limit a→∞ (t→∞),

lim
a→∞

r = lim
a→∞

c

(
kR2

dy2/da

dx2/da
− 1

)
.

Figure 4 shows that indeed the two limits converge.
Alternatively, the extinction rate can be computed numerically as the maximum eigenvalue of the Jacobian

matrix calculated at the equilibrium point (x∗1, 0, y
∗
1 , 0, 0). Figure S5 shows the calculated decay rate together

with rates extracted from simulations as a function of the degree variance. An increased degree variance
accelerates the extinction dynamics of the less fit strain. Interestingly, the effect is strongest for low fitness
differences.
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Figure S4: Approximation of the ratio of the two strains using the time derivatives.
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Figure S5: Extinction rate of the less fit strain. Left panel: Calculated decay rate (lines) and numerical
approximations of the exponential decay (points) for different fitness differences. Right panel: Extinction rate
as a function of the fitness difference for various degree variances.
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