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Limit case death-birth process

It is relatively straightforward to show that in the limit of large transmission rates, the here used model
tends exactly to the birth-death process on a network. For illustrative purposes we do not provide a general
proof but demonstrate the exact mapping in the limit of large transmission rates for an exemplary microscopic
configuration. It will become apparent that the presented approach can readily be adapted to any generalizations
of the presented configuration and thus be used to build a general proof. This last step, however, is left for the
interested reader.
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Figure S1: Infection from multiple neighbours.

Consider the situation from Figure 1 with 3 hosts connected in a line and the central node being susceptible. The
birth-death process does not account for a susceptible state, and hence the middle node would immediately be
infected by one of its neighbours. Which neighbour infects the middle node is determined by the relative fitness
scores of the neighbours, fwt := 1 resp. fmt. The probability to be infected by the wild-type then writes:

P (Iwt) =
1

1 + fmt
, (1)

and by the mutant:

P (Imt) =
fmt

1 + fmt
. (2)

In the classical SIS case, however, the scenario from Figure 1 might occur. Further, several possibilities exist
for the next event. Any of the infected nodes might recover or the middle node might get infected by any of
its neighbours. For the sake of argument we assume that the middle node changed its status to susceptible at
time t = 0 and we assess the probabilities of these potential next events at a specific time t∗ after its state
change.

The probability that at time t∗ both infected nodes are still infected is simply given by:

Pno−recovery(t∗, γ) = (1− (1− e−γt
∗
))2 = e−2γt

∗
. (3)

Assuming that none of the neighbours recovered, the probability that at time t∗ there has been an infection
event for the middle node is simply given by:

Pinfection(t∗, βwt + βmt) = 1− e−(βwt+βmt)t
∗
, (4)

and the probability that this infection was by the wild-type and mutant, respectively is:

P (Iwt) =
βwt

βwt + βmt
, (5)

P (Imt) =
βmt

βwt + βmt
. (6)
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What we would like to assess it the situation at time t∗ = 0, so at the moment the middle node recovered,
this in the limit of large transmission rates, in order to determine whether our SIS model is equivalent to a
death-birth process.

We use the following Ansatz: Let t∗ = 1√
βwt

and take the limit βwt →∞ with βmt
βwt

= const.

Clearly, limβwt→∞
1√
βwt

= 0. Also, it is straightforward to show that in this limit the probability of any of the

neighbours to recover tends to 0:

lim
βwt→∞

Pno−recovery(
1√
βwt

, γ) = lim
βwt→∞

e
−2 γ√

βwt = 1. (7)

For the probability of the middle node to become infected, we can use the constant relation between the
transmission rates and write βmt = fmt · βwt. Equation 8 then becomes:

lim
βwt→∞

Pinfection(
1√
βwt

, βwt(1 + fmt)) = lim
βwt→∞

1− e−
√
βwt(1+fmt) = 1. (8)

This leaves us with a certain infection event: either infection of the middle node by the wild-type or by the
mutant neighbour. If we rewrite Equations 5 and 6 we see that we exactly recover the death-birth case:

P (Iwt) =
1

1 + fmt
, (9)

P (Imt) =
fmt

1 + fmt
. (10)

This approach can easily be extended to a more general configuration with n wild-type andmmutant neighbours.
This is, however, left for the interested reader.
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