SUPPORTING INFORMATIONS

α-Ketothioamide derivatives: a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH)

Séverine Ravez^{1≠}, Cyril Corbet^{2≠}, Quentin Spillier^{1,2}, Alice Dutu¹, Anita D. Robin³, Edouard Mullarky³, Lewis C. Cantley³, Olivier Feron², Raphaël Frédérick^{1*}

¹ Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, B-1200 Brussels, Belgium.

² Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium.

³ Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065. Department of Medicine, Weill Cornell Medical College, New York, NY 10065

Content

I. Synthetic procedure of compounds 20-35	S2
II. Enzymatic assay optimization	S7
III. NMR Spectral Data	S9

I. Synthetic procedure of compounds 20-35

I-(*2*-*Fluorophenyl*)-*2*-*morpholino-2*-*thioxoethanone* (**20**). This compound was synthesized according to the general procedure describe above. 1-(2-Fluorophenyl)ethanone (1.50 g, 11.10 mmol) and dibromine (0.65 mL, 13.00 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-(2-fluorophenyl)-ethanone and this intermediate was reacted in a second time with morpholine (2.84 mL, 32.50 mmol) and sulfur (0.52 g, 16.20 mmol) in DMF (10 mL). Methanol was used for recrystallization to afford the title compound as a yellow solid (1.09 g, 39%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 83-85°C. ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 3.48-3.50 (m, 2H), 3.71-3.73 (m, 2H), 3.90-3.92 (t, 2H, *J* = 4.8 Hz), 4.26-4.28 (t, 2H, *J* = 4.8 Hz), 7.10-7.16 (Ddd, 1 ArH, *J*_{HF} = 10.9 Hz *J*_{HH} = 8.3 and 1.0 Hz), 7.29-7.33 (DDd, 1 ArH, *J*_{HH} = 7.8 and 1.0 Hz), 7.59-7.61 (m, 1 ArH), 8.00-8.05 (Ddd, 1 ArH, *J*_{HF} = 15.2 Hz *J*_{HH} = 7.6 and 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ_C (ppm) 44.97, 49.65, 63.86, 63.87, 114.30 (d, *J*_{CF} = 22 Hz), 120.91 (d, *J*_{CF} = 23 Hz), 122.74 (d, *J*_{CF} = 23 Hz), 129.49 (d, *J*_{CF} = 23 Hz), 133.76 (d, *J*_{CF} = 23 Hz), 158.06 (D, *J*_{CF} = 255 Hz), 181.35 (C=O), 194.23 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₂FNO₂S (M + H)⁺ 254.0645, found 254.0644.

I-(*3*-*Fluorophenyl*)-2-*morpholino-2-thioxoethanone* (21). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(3-fluorophenyl)ethanone (0.50 g, 2.30 mmol), morpholine (0.6 mL, 6.90 mmol) and sulfur (0.11 g, 3.45 mmol) in DMF (10 mL). Methanol was used for recrystallization to afford the title compound as a yellow solid (0.13 g, 23%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 95-97°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.59-3.62 (t, 2H, J = 4.8 Hz), 3.70-3.73 (t, 2H, J = 4.8 Hz), 3.90-3.93 (t, 2H, J = 4.8 Hz), 4.32-4.34 (t, 2H, J = 4.8 Hz), 7.30-7.35 (DDdd, 1 ArH, $J_{\rm HF} = 16.4$ Hz $J_{\rm HH} = 8.1$ and 2.5 Hz), 7.46-7.51 (DDd, 1 ArH, $J_{\rm HH} = 8.1$ Hz $J_{\rm HF} = 5.4$ Hz), 7.68-7.72 (Ddd, 1 ArH, $J_{\rm HF} = 9.0$ Hz $J_{\rm HH} = 1.6$ Hz), 7.76-7.78 (Ddd, 1 ArH, $J_{\rm HF} = 7.7$ Hz and 1.1 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 47.07, 51.87, 66.25, 66.38, 116.03 (d, $J_{\rm CF} = 23$ Hz), 121.31 (d, $J_{\rm CF} = 23$ Hz), 125.59 (d, $J_{\rm CF} = 23$ Hz), 130.58 (d, $J_{\rm CF} = 23$ Hz), 135.34 (d, $J_{\rm CF} = 23$ Hz), 161.45 (D, $J_{\rm CF} = 247$ Hz), 186.05 (C=O), 194.59 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₂FNO₂S (M + H)⁺ 254.0645, found 254.0644.

1-(4-Fluorophenyl)-2-morpholino-2-thioxoethanone (22). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(4-fluorophenyl)ethanone (0.50 g, 2.30 mmol), morpholine (0.6 mL, 6.90 mmol) and sulfur (0.11 g, 3.45 mmol) in DMF

(10 mL). Methanol was used for recrystallization to afford the title compound as a beige solid (0.23 g, 41%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 131-133°C. ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 3.59-3.71 (m, 4H), 3.89-3.91 (t, 2H, J = 4.8 Hz), 4.31-4.34 (t, 2H, J = 4.8 Hz), 7.15-7.19 (m, 2 ArH), 8.02-8.05 (m, 2 ArH). ¹³C NMR (100 MHz, CDCl₃): δ_C (ppm) 47.17, 51.97, 66.39, 66.53, 116.19 (2C, d, J = 22 Hz), 129.74, 132.63 (2C, d, J = 9 Hz), 165.17 (D, J = 257 Hz), 186.38 (C=O), 195.16 (C=S). HRMS (ESI⁺): m/z calcd for C₁₂H₁₂FNO₂S (M + H)⁺ 254.0645, found 254.0642.

I-(*2*-*Chlorophenyl*)-*2*-*morpholino*-*2*-*thioxoethanone* (**23**). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(2-chlorophenyl)ethanone (0.50 g, 2.14 mmol), morpholine (0.56 mL, 6.42 mmol) and sulfur (0.10 g, 3.21 mmol) in DMF (10 mL). Acetonitrile was used for recrystallization to afford the title compound as a yellow solid (0.20 g, 36%). R_f 0.3 (cyclohexane/EtOAc 8:2). Mp: 78-80°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.82-3.92 (m, 6H), 4.26-4.28 (m, 2H), 7.40-7.60 (m, 3 ArH), 7.92-7.94 (m, 1 ArH). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 47.70, 52.15, 66.01, 66.06, 127.29, 130.73, 132.41, 132.69, 133.80, 134.58, 185.07 (C=O), 195.72 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₃ClNO₂S (M + H)⁺ 270.0350, found 270.0350.

I-(*3*-*Chlorophenyl*)-*2*-*morpholino-2-thioxoethanone* (24). This compound was synthesized according to the general procedure describe above. 1-(3-Chlorophenyl)ethanone (2.00 g, 12.90 mmol) and dibromine (0.78 mL, 15.50 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-(3-chlorophenyl)-ethanone and this intermediate was reacted in a second time with morpholine (3.38 mL, 38.80 mmol) and sulfur (0.62 g, 19.40 mmol) in DMF (10 mL). The residue was purified by silica gel chromatography (cyclohexane/EtOAc, 8:2) and the obtained oil was collected by filtration with diethyl ether to give the title compound as a yellow solid (1.50 g, 43%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 92-94°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.59-3.61 (t, 2H, *J* = 4.8 Hz), 3.70-3.72 (t, 2H, *J* = 4.8 Hz), 3.90-3.92 (t, 2H, *J* = 4.8 Hz), 4.31-4.33 (t, 2H, *J* = 4.8 Hz), 7.42-7.46 (DD, 1 ArH, *J* = 7.8 Hz), 7.57-7.59 (Ddd, 1 ArH, *J* = 8.0 and 1.0 Hz), 7.85-7.87 (Ddd, 1 ArH, *J* = 7.8 and 1.4 Hz), 7.96-7.97 (dd, 1 ArH, *J* = 1.8 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 47.21, 52.00, 66.39, 66.52, 127.98, 129.61, 130.28, 134.33, 135.05, 135.30, 186.07 (C=O), 194.60 (C=S). HRMS (ESI⁺): *m*/z calcd for C₁₂H₁₂CINO₂S (M + H)⁺ 270.0277, found 270.0278.

I-(4-Chlorophenyl)-2-morpholino-2-thioxoethanone (25). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(2-chlorophenyl)ethanone (0.50 g, 2.14 mmol), morpholine (0.56 mL, 6.42 mmol) and sulfur (0.10 g, 3.21 mmol) in DMF (10 mL). Acetonitrile was used for recrystallization to afford the title compound as a yellow solid (0.22 g, 38%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 135-137°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.58-3.71 (m, 4H), 3.89-3.92 (t, 2H, *J* = 4.8 Hz), 4.31-4.33 (t, 2H, *J* = 4.8 Hz), 7.46-7.48 (D, 2 ArH, *J* = 8.8 Hz), 7.93-7.95 (D, 2 ArH, *J* = 8.6 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 47.18, 51.97, 66.39, 66.53, 129.36 (2C), 131.22 (2C), 131.74, 141.06, 186.45 (C=O), 194.94 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₃ClNO₂S (M + H)⁺ 270.0350, found 270.0350.

1-(2-Bromophenyl)-2-morpholino-2-thioxoethanone (26). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(2-bromophenyl)-ethanone (0.50 g, 1.81 mmol), morpholine (0.48 mL, 5.43 mmol) and sulfur (0.08 g, 2.72 mmol) in DMF (10 mL). Ethanol was used for recrystallization to afford the title compound as a colorless solid (0.28 g, 52%). R_f 0.3 (cyclohexane/EtOAc 8:2). Mp: 81-83°C. ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 3.48-3.85 (m, 4H), 3.90-3.92 (t, 2H, J = 4.8 Hz), 4.25-4.28 (t, 2H, J = 4.8 Hz), 7.27-7.40 (ddd, 1 ArH, J = 1.8 and 7.8 Hz), 7.40-7.46 (ddd, 1 ArH, J = 1.2 and 7.5 Hz), 7.59-7.62 (dd, 1 ArH, J = 1.1 and 7.9 Hz), 7.84-7.87 (dd, 1 ArH, J = 1.8 and 7.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ_C (ppm) 47.86, 52.28, 66.02, 66.05, 120.59, 127.69, 132.96, 133.64, 134.02, 136.45, 185.56 (C=O), 194.99 (C=S). HRMS (ESI⁺): m/z calcd for C₁₂H₁₂BrNO₂S (M + H)⁺ 313.9844, found 313.9845.

I-(*3-Bromophenyl*)-2-*morpholino-2-thioxoethanone* (27). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(3-bromophenyl)-ethanone (0.50 g, 1.81 mmol), morpholine (0.48 mL, 5.43 mmol) and sulfur (0.08 g, 2.72 mmol) in DMF (10 mL). Methanol was used for recrystallization to afford the title compound as a colorless solid (0.14 g, 26%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 104-106°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.61-3.64 (t, 2H, J = 4.8 Hz), 3.72-3.74 (t, 2H, J = 4.8 Hz), 3.90-3.93 (t, 2H, J = 4.8 Hz), 4.33-4.35 (t, 2H, J = 4.8 Hz), 7.36-7.40 (m, 1 ArH), 7.73-7.75 (m, 1 ArH), 7.90-7.92 (m, 1 ArH), 8.13-8.15 (m, 1 ArH). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 44.79, 49.58, 63.97, 64.11, 120.80, 126.03, 128.08, 130.10, 132.81, 134.81, 183.54 (C=O), 192.09 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₂BrNO₂S (M + H)⁺ 313.9844, found 313.9844.

1-(4-Bromophenyl)-2-morpholino-2-thioxoethanone (28). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(4-bromophenyl)-ethanone (0.50 g, 1.81 mmol), morpholine (0.47 mL, 5.44 mmol) and sulfur (0.08 g, 2.71 mmol) in DMF (10 mL). Cyclohexane was used for recrystallization to afford the title compound as a colorless solid (0.11 g, 19%). R_{*f*} 0.2 (cyclohexane/EtOAc 8:2). Mp: 157-159°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.58-3.61 (t, 2H, *J* = 4.8 Hz), 3.69-3.72 (t, 2H, *J* = 4.8 Hz), 3.89-3.92 (t, 2H, *J* = 4.8 Hz), 4.31-4.34 (t, 2H, *J* = 4.8 Hz), 7.63-7.65 (D, 2 ArH, *J* = 8.6 Hz), 7.85-7.87 (D, 2 ArH, *J* = 8.6 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 47.18, 51.97, 66.39, 66.54, 129.91, 131.26 (2C), 132.17, 132.35 (2C), 186.59 (C=O), 194.89 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₂BrNO₂S (M + H)⁺ 313.9844, found 313.9841.

1-(2-Iodophenyl)-2-morpholino-2-thioxoethanone (29). This compound was synthesized according to the general procedure describe above. 1-(2-Iodophenyl)ethanone (1.00 g, 4.00 mmol) and dibromine (0.24 mL, 4.87 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-(2-iodophenyl)-ethanone and this intermediate was reacted in a second time with morpholine (1.06 mL, 12.20 mmol) and sulfur (0.19 g, 6.10 mmol) in DMF (10 mL). The residue was purified by silica gel chromatography (cyclohexane/EtOAc, 8:2) to give the title compound as a yellow oil (0.70 g, 47%). R_f 0.2 (cyclohexane/EtOAc 8:2). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.80-3.85 (m, 4H), 3.91-3.93 (t, 2H, *J* = 4.8 Hz), 4.27-4.30 (t, 2H, *J* = 4.8 Hz), 7.17-7.21 (DDd, 1 ArH, *J* = 7.5 and 1.5 Hz), 7.43-7.47 (Ddd, 1 ArH, *J* = 7.5 and 1.1 Hz), 7.74-7.77 (Dd, 1 ArH, *J* = 7.8 and 1.5 Hz), 7.97-7.99 (Dd, 1 ArH, *J* = 7.9 and 1.1 Hz). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₃INO₂S (M + H)⁺ 361.9706, found 361.9706.

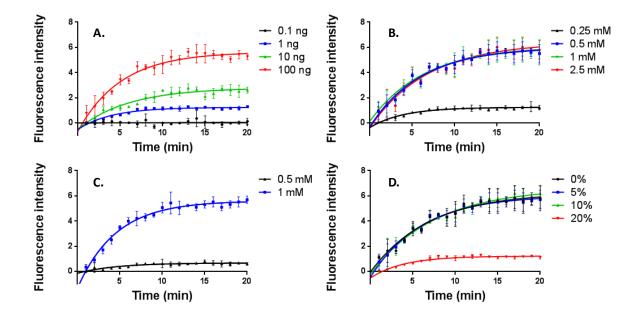
1-(3-Iodophenyl)-2-morpholino-2-thioxoethanone (**30**). This compound was synthesized according to the general procedure describe above. 1-(3-Iodophenyl)ethanone (1.00 g, 4.06 mmol) and dibromine (0.24 mL, 4.87 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-(3-iodophenyl)-ethanone and this intermediate was reacted in a second time with morpholine (1.07 mL, 12.18 mmol) and sulfur (0.19 g, 6.09 mmol) in DMF (10 mL). The residue was purified by silica gel chromatography (cyclohexane/EtOAc, 8:2) to give the title compound as a yellow solid (0.75 g, 51%). R_f 0.3 (cyclohexane/EtOAc 8:2). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.60-3.625 (t, 2H, J = 4.8 Hz), 3.70-3.72 (t, 2H, J = 4.8 Hz), 3.91-3.93 (t, 2H, J = 4.8 Hz), 4.31-4.33 (t, 2H, J = 4.8 Hz), 7.21-7.25 (DD, 1 ArH, J = 7.8 Hz),

7.92-7.94 (Dd, 2 ArH, J = 7.1 and 0.7 Hz), 8.32-8.33 (dd, 1 ArH, J = 1.6 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 46.60, 51.40, 65.79, 65.92, 93.94, 128.43, 129.94, 134.59, 137.76, 142.47, 185.29 (C=O), 193.88 (C=S). HRMS (ESI⁺): m/z calcd for C₁₂H₁₃INO₂S (M + H)⁺ 361.9706, found 361.9704.

1-(4-Iodophenyl)-2-morpholino-2-thioxoethanone (**31**). This compound was synthesized according to the general procedure describe above. 1-(4-Iodophenyl)ethanone (1.00 g, 4.06 mmol) and dibromine (0.24 mL, 4.87 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-(3-iodophenyl)-ethanone and this intermediate was reacted in a second time with morpholine (1.07 mL, 12.18 mmol) and sulfur (0.19 g, 6.09 mmol) in DMF (10 mL). The residue was purified by silica gel chromatography (cyclohexane/EtOAc, 8:2) to give the title compound as a yellow solid (0.92 g, 63%). R_f 0.3 (cyclohexane/EtOAc 8:2). Mp: 175-177°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.59 (m, 4H), 3.82 (t, 2H, *J* = 4.8 Hz), 4.21 (t, 2H, *J* = 4.8 Hz), 7.67 (D, 2 ArH, *J* = 8.1 Hz), 7.98 (D, 2ArH, *J* = 8.1 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 46,92, 51.83, 65.54, 65.88, 103.86, 130.92 (2C), 132.27, 138.13 (2C), 186.51 (C=O), 192.99 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₃INO₂S (M + H)⁺ 361.9706, found 361.9705.

1-(2-Nitrophenyl)-2-morpholino-2-thioxoethanone (32). This compound was synthesized according to the general procedure describe above using 2-bromo-1-(2-nitrophenyl)-ethanone (0.50 g, 2.05 mmol), morpholine (0.54 mL, 6.17 mmol), and sulfur (0.09 g, 3.07 mmol) in DMF (10 mL). A mixture of cyclohexane/EtOAc (8:2) was used for recrystallization to afford the title compound as a yellow solid (0.15 g, 26%). R_f 0.3 (cyclohexane/EtOAc 8:2). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.86-3.88 (t, 2H, *J* = 4.8 Hz), 3.94-3.96 (t, 2H, *J* = 4.8 Hz), 4.11-4.13 (t, 2H, *J* = 4.8 Hz), 4.22-4.24 (t, 2H, *J* = 4.8 Hz), 7.62-7.66 (m, 1 ArH), 7.74-7.78 (m, 1 ArH), 7.84-7.86 (m, 1 ArH), 8.04-8.06 (m, 1 ArH). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 49.06, 52.33, 66.36, 66.71, 123.84, 131.70, 132.57, 134.03, 134.92, 145.78, 182.95 (C=O), 191.17 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₂N₂O₄S (M + H)⁺ 281.0590, found 281.0586.

1-(3-Nitrophenyl)-2-morpholino-2-thioxoethanone (33). This compound was synthesized according to the general procedure describe above using commercial 2-bromo-1-(3-nitrophenyl)-ethanone (1.50 g, 6.17 mmol), morpholine (1.61 mL, 18.52 mmol) and sulfur (0.29 g, 9.26 mmol) in DMF (10 mL). Methanol was used for recrystallization to afford the


title compound as a yellow solid (1.26 g, 73%). R_f 0.1 (cyclohexane/EtOAc 8:2). Mp: 179-181°C. ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 3.58-3.60 (t, 2H, J = 4.8 Hz), 3.67-3.69 (t, 2H, J = 4.8 Hz), 3.86-3.89 (t, 2H, J = 4.8 Hz), 4.28-4.30 (t, 2H, J = 4.8 Hz), 7.63-7.67 (DD, 1 ArH, J = 8.6 Hz), 8.26-8.29 (m, 1 ArH), 8.38-8.40 (m, 1 ArH), 8.73-8.74 (dd, 1 ArH, J = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ_C (ppm) 47.42, 52.12, 66.41, 66.57, 124.56, 128.36, 130.20, 135.18, 148.51, 184.29 (C=O), 193.48 (C=S). HRMS (ESI⁺): m/z calcd for C₁₂H₁₂N₂O₄S (M + H)⁺ 281.0590, found 281.0588.

1-(4-Nitrophenyl)-2-morpholino-2-thioxoethanone (**34**). This compound was synthesized according to the general procedure describe above using commercial 2-bromo-1-(4-nitrophenyl)-ethanone (1.50 g, 6.17 mmol), morpholine (1.61 mL, 18.52 mmol) and sulfur (0.29 g, 9.26 mmol) in DMF (10 mL). Methanol was used for recrystallization to afford the title compound as a yellow solid (0.81 g, 47%). R_f 0.1 (cyclohexane/EtOAc 8:2). Mp: 171-173°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm)) 3.59 (t, 2H, J = 4.8 Hz), 3,73 (t, 2H, J = 4.8 Hz), 3.92 (t, 2H, J = 4.8 Hz), 4.33 (t, 2H, J = 4.8 Hz), 8.16 (D, 2 ArH, J = 8.2 Hz), 8.32 (D, 2 ArH, J = 8.2 Hz). HRMS (ESI⁺): m/z calcd for C₁₂H₁₂N₂O₄S (M + H)⁺ 281.0590, found 281.0588.

1-([1,1'-biphenyl]-4-yl)-2-morpholino-2-thioxoethanone (35). This compound was synthesized according to the general procedure describe above using commercial 1-([1,1'biphenyl]-4-yl)-2-bromoethanone (1.00 g, 3.64 mmol), morpholine (0.94 mL, 10.92 mmol) and sulfur (0.17 g, 5,46 mmol) in DMF (10 mL). The residue was purified by silica gel chromatography (cyclohexane/EtOAc, 8:2) to give the title compound as a yellow solid (0.69 g, 61%). R_f 0.2 (cyclohexane/EtOAc 8:2). Mp: 132-134°C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 3.55-3.58 (t, 2H, J = 4.8 Hz), 3.68-3.71 (t, 2H, J = 4.8 Hz), 3.82-3.85 (t, 2H, J = 4.8Hz), 4.28-4.30 (t, 2H, J = 4.8 Hz), 7.32-7.45 (m, 3 ArH), 7.52-7.55 (m, 2 ArH), 7.61-7.63 (D, 2 ArH, J = 8.5 Hz), 7.99-8.01 (D, 2 ArH, J = 8.5 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 45.93, 50.75, 65.19, 65.34, 126.12 (2C), 126.40 (2C), 127.38, 127.84 (2C), 129.23 (2C), 130.72, 138.32, 146.01, 186.33 (C=O), 194.52 (C=S). HRMS (ESI⁺): m/z calcd for $C_{18}H_{17}NO_2S (M + H)^+ 312.1052$, found 312.1052.

II. Enzymatic assay optimization

PHGDH oxidizes 3-PG to 3-PPyr with NAD⁺ as the electron acceptor to yield NADH. The formation of 3-PPyr is directly correlated with the NADH formation (Ex 340 nm / Em 460 nm). Thus, the enzymatic activity of PHGDH can be monitored by following the fluorescence intensity at an excitation wavelength of 340 nm and emission wavelength of 460 nm. Prior to developing a robust quantitative assay, we initially set out to optimize the activity of the PHGDH. Oxidoreductase activity was screened at varying enzyme, cofactor and substrate concentrations by monitoring the oxidation of NADH spectrophotometrically. The tolerance of the enzymatic assay to DMSO was studied at a DMSO concentration ranging from 5% to 20% (**Fig. S1**). For this present study, the concentrations of Tris HCl pH 8.8, NaCl and DTT were set at 100 mM, 400 mM and 0.2 mM, respectively, and the temperature was kept at 25°C.

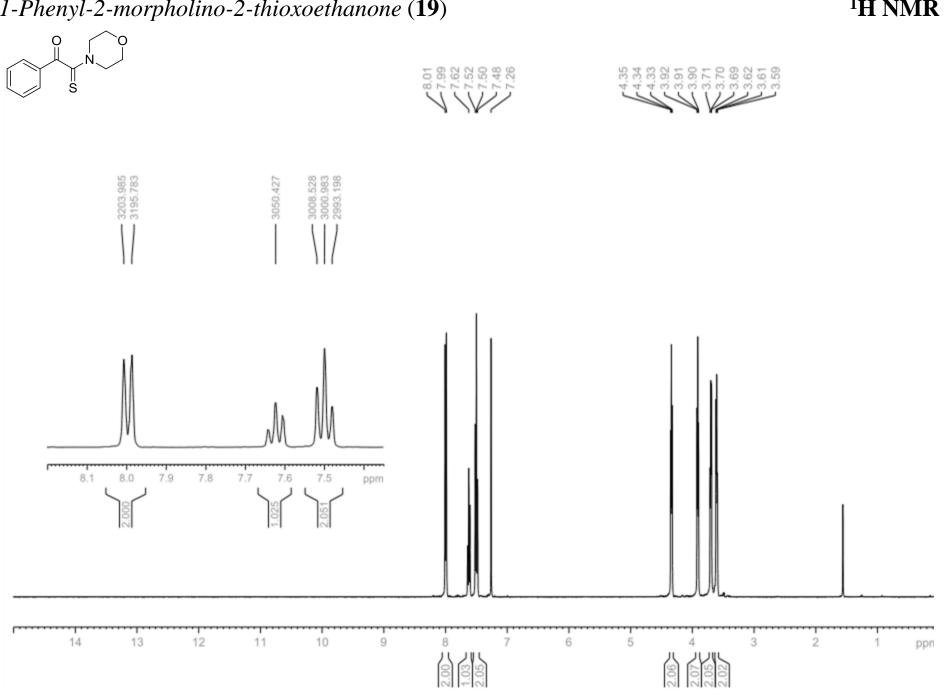
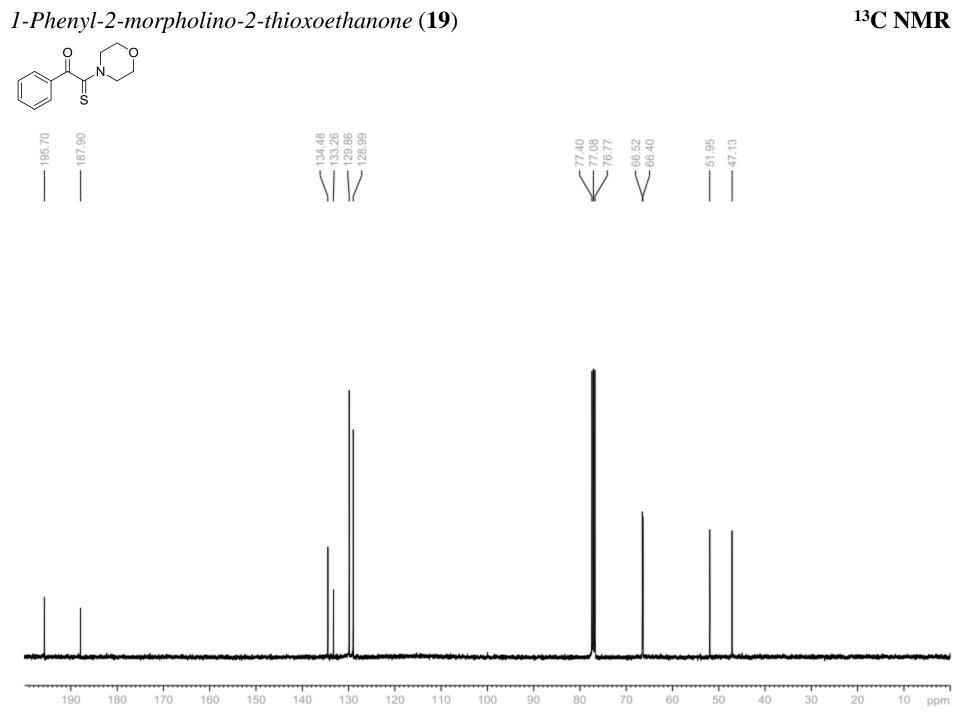
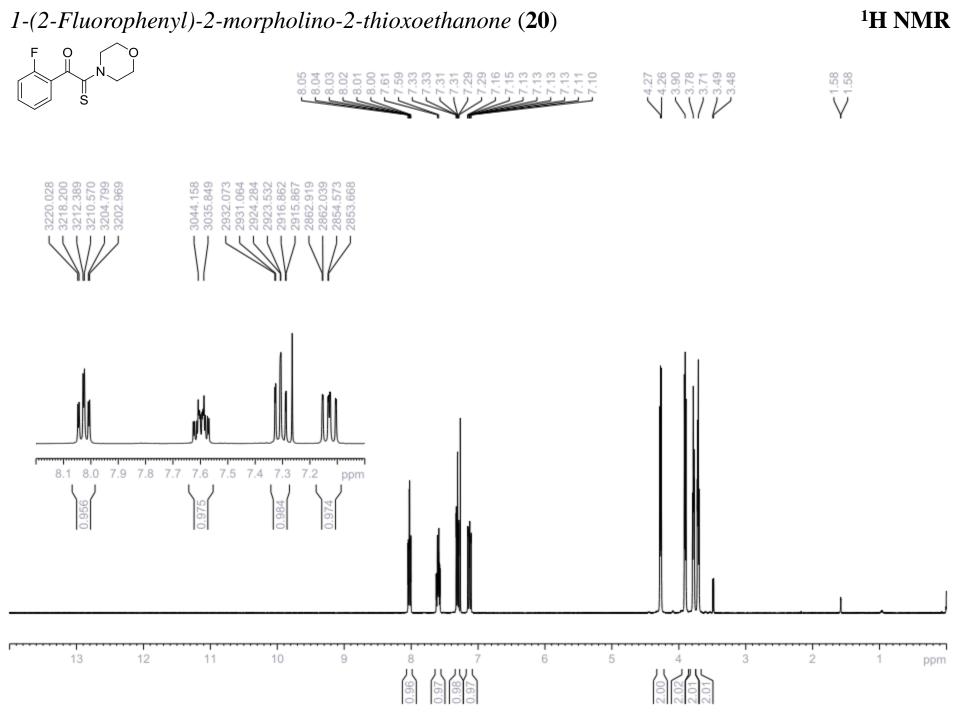
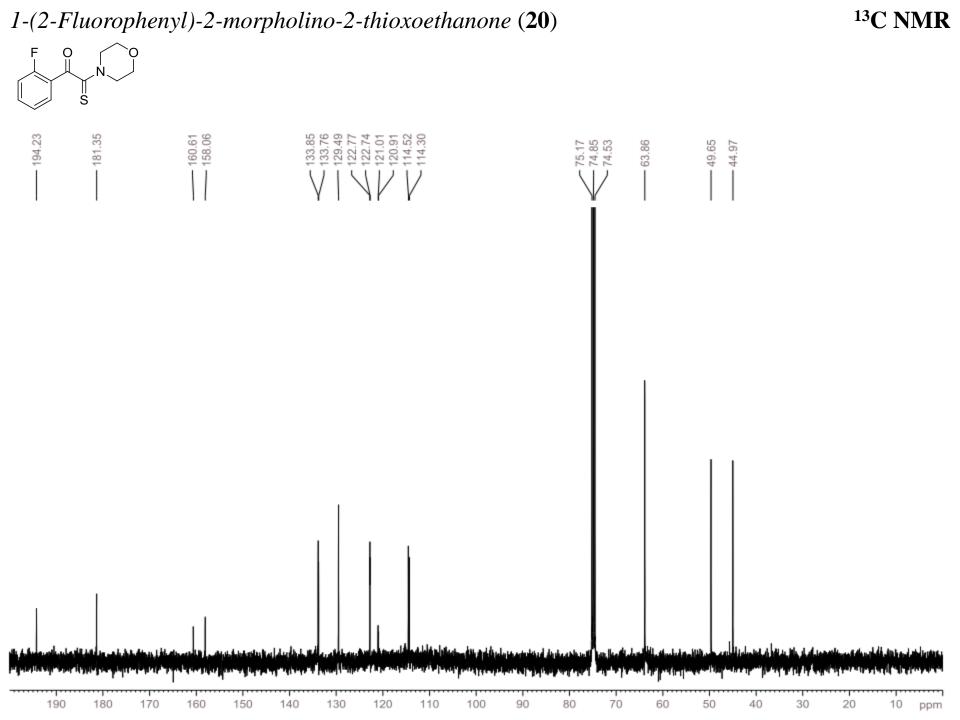
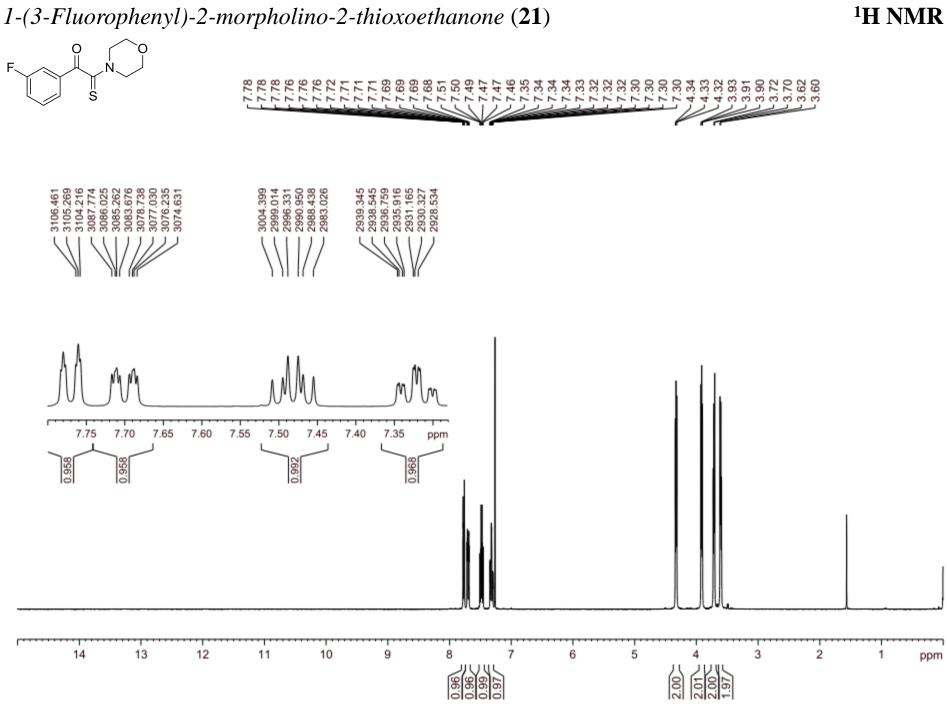


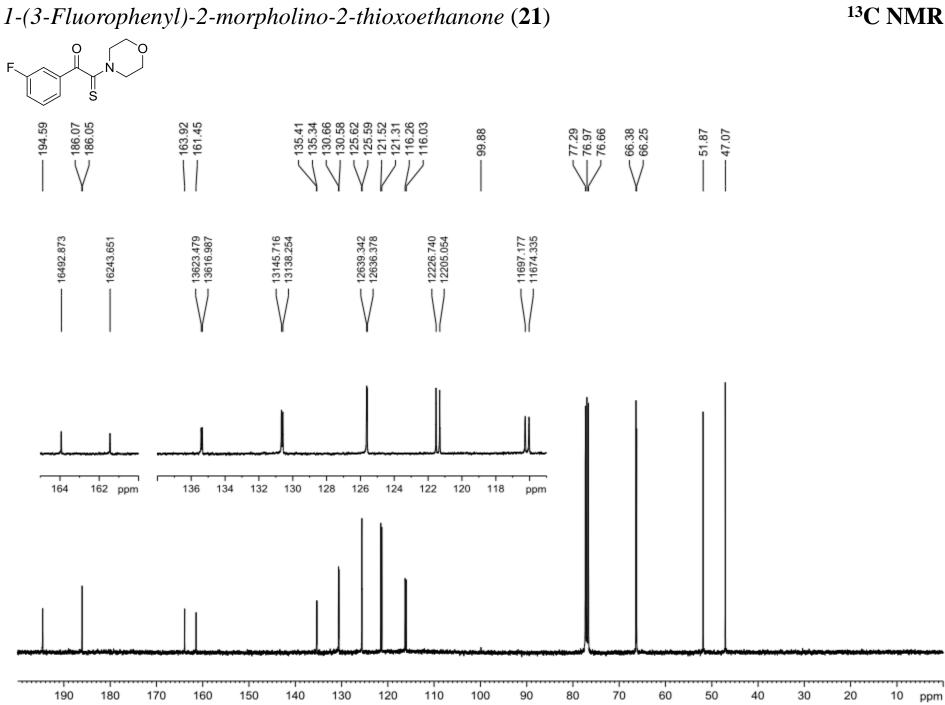
Figure S1. Optimization of the enzymatic assay for drug screening. (**A**) Variation of PHGDH concentration (2.5 mM 3-PG, 1 mM NAD). (**B**) Variation of 3-PG concentration (100 ng PHGDH, 1 mM NAD). (**C**) Variation of NAD concentration (100 ng PHGDH, 2.5 mM 3-PG). (**D**) Influence of DMSO (100 ng PHGDH, 2.5 mM 3-PG, 1 mM NAD). Data were analyzed using GraphPad software.

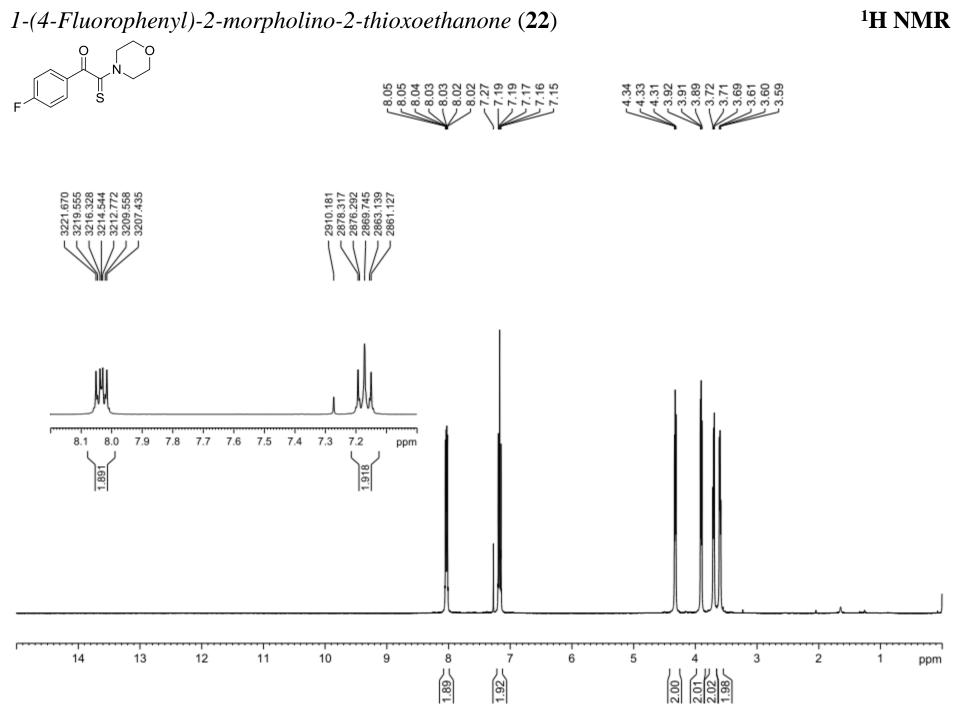

Minimizing the amount of enzyme was an important consideration for controlling the cost of assays. Thus, we sought to determine enzyme concentrations that would generate a sufficient fluorescent signal. Representative curves obtained with PHGDH quantity ranging from 1 ng to 100 ng, are shown in **Fig. S1A**. As depicted, a quantity of 100 ng of PHGDH was sufficient to achieve a robust assay window. The concentration of 3-PG and NAD⁺ in an assay is also an important consideration. Concentration of 3- PG was varied between 0.25 and 2.5 mM and two concentrations of NAD⁺ were evaluated (**Fig. S1B** and **Fig. S1C**). Optimal concentrations of 3-PG and NAD were 0.5 mM and 1 mM respectively to detect a correct fluorescent signal. Compounds from the database were stored at 10 mM in DMSO and the final concentration of DMSO in assay solutions was 10%. As depicted in

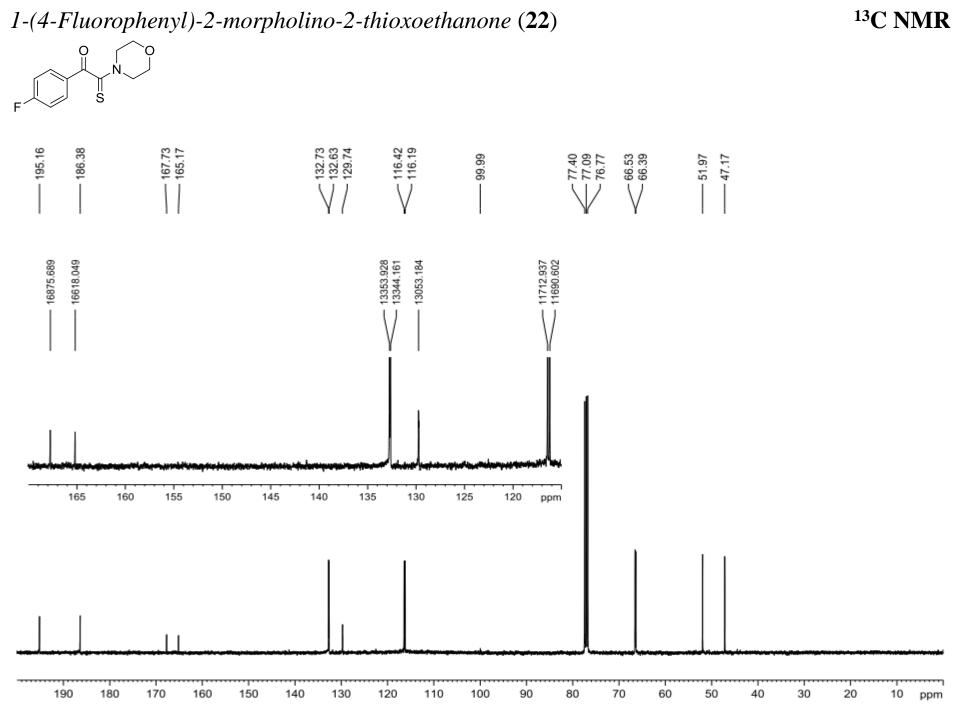

Fig. S1D, this percentage of DMSO was tolerated by PHGDH. Thus, the optimized conditions consisted of PHGDH (100 ng), 3-PG (0.5 mM), and NAD (1 mM). In these conditions, the rate of substrate conversion was found to be linear during the five first minutes. The K_m value of 3-PG was then determined by fitting the data to the Michaelis–Menten equation. The calculated K_m value (0.19 ± 0.03 mM) is consistent with the reported K_m value of 0.26 ± 0.03 mM.

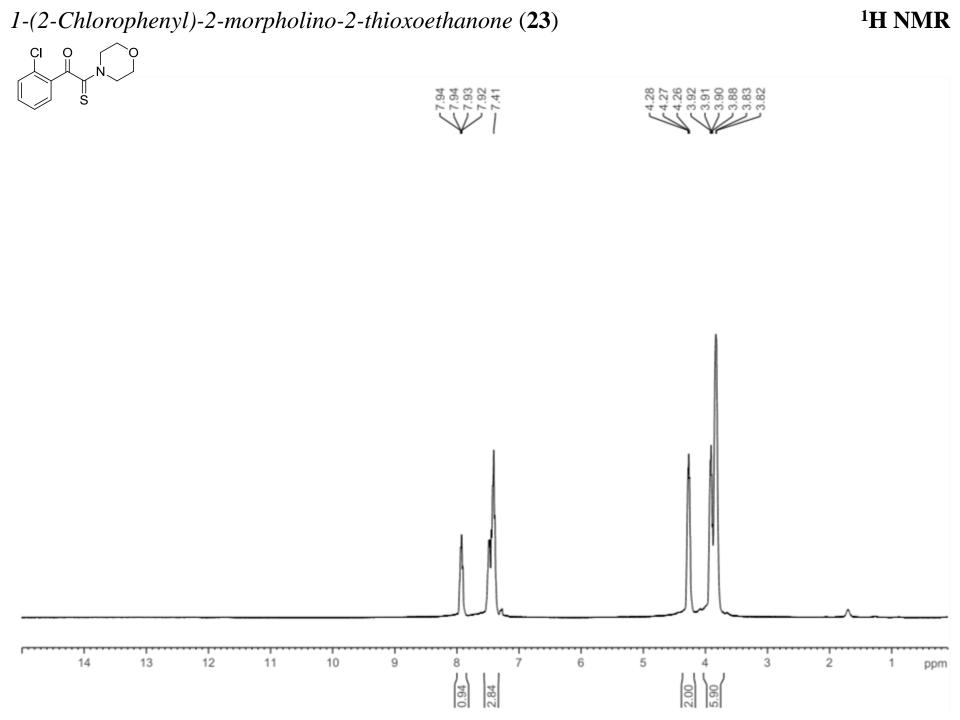

III. NMR Spectral Data

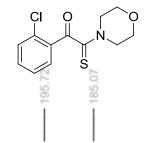


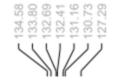

1-Phenyl-2-morpholino-2-thioxoethanone (**19**)

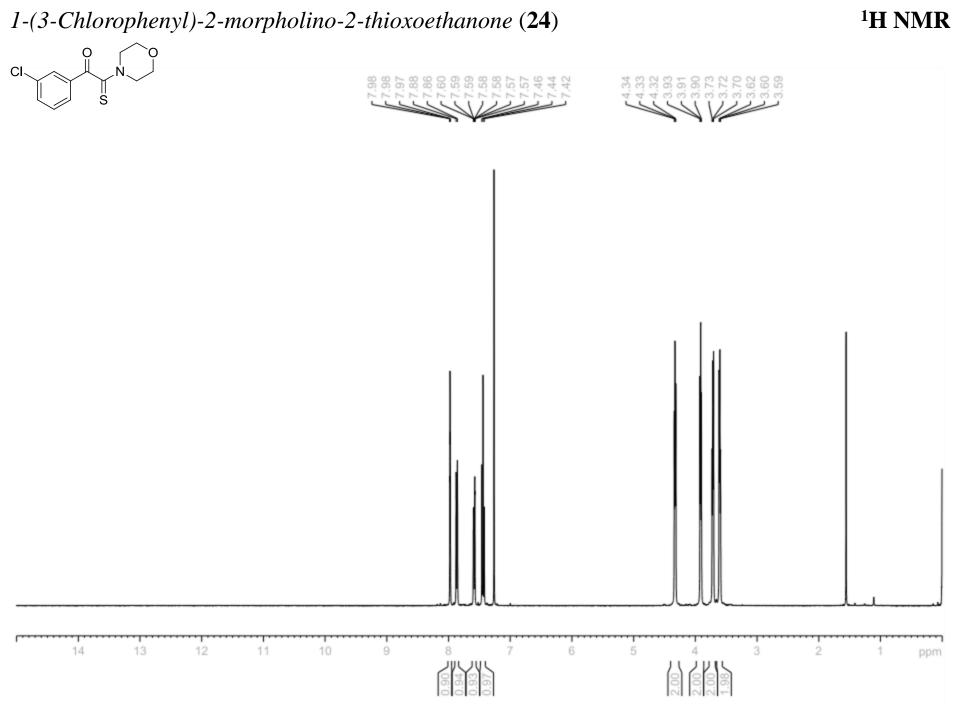


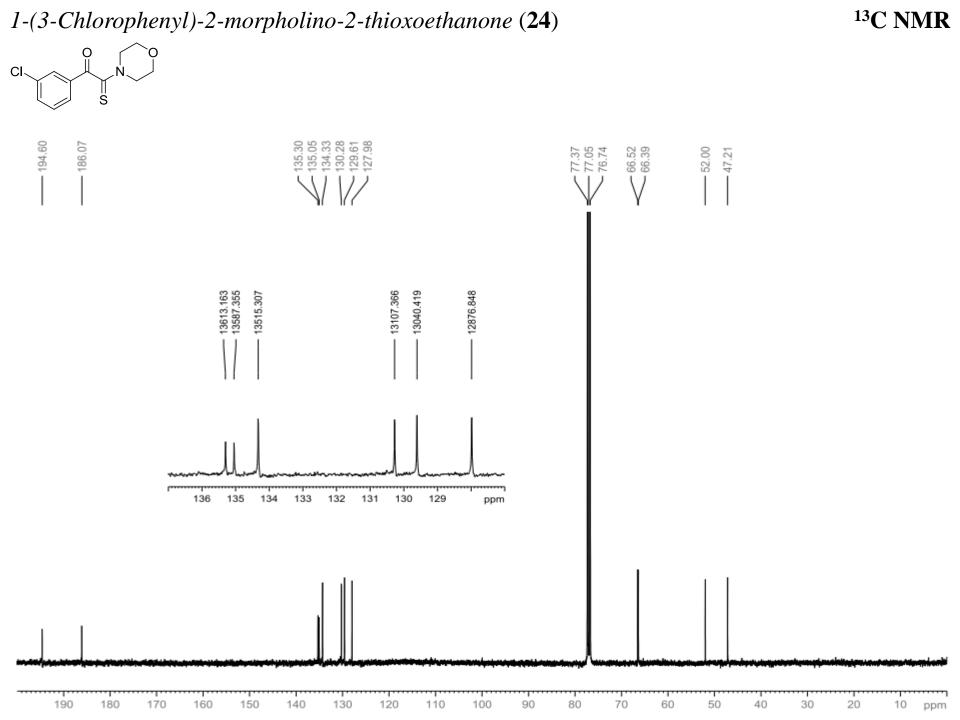


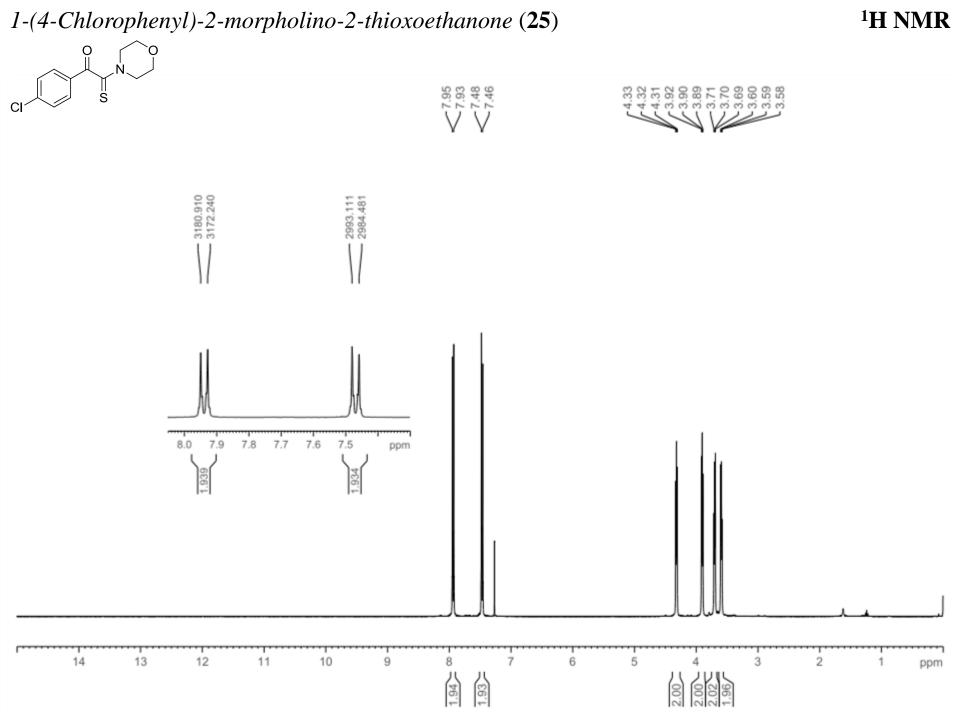


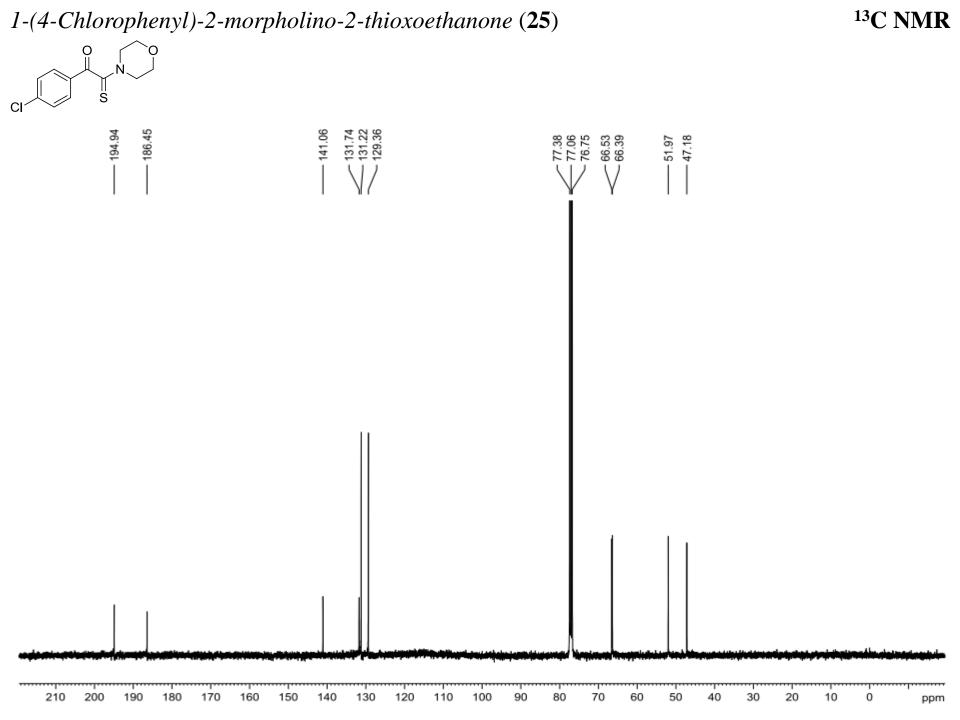


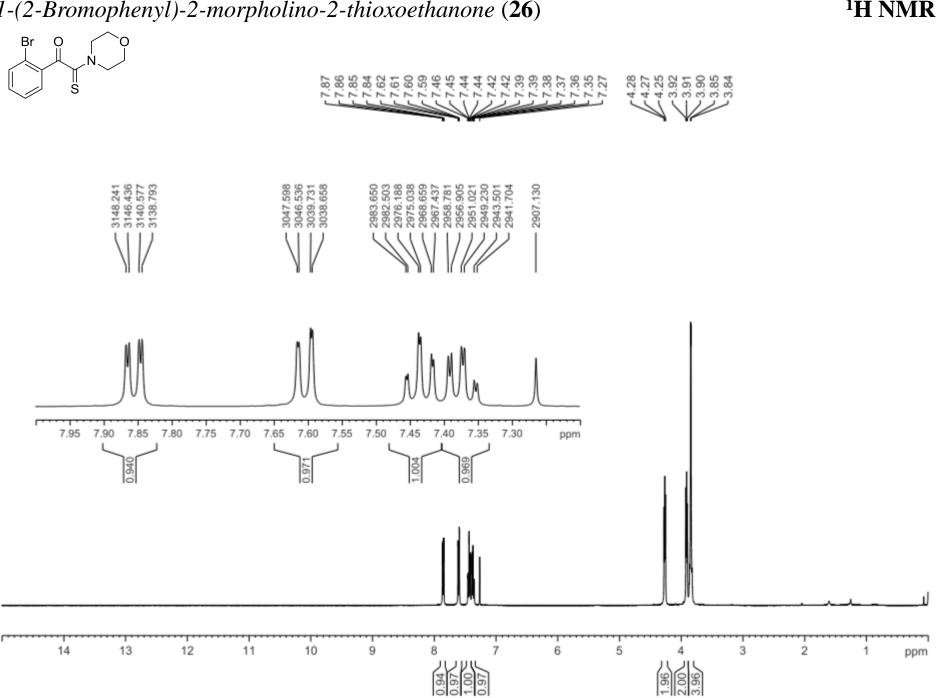


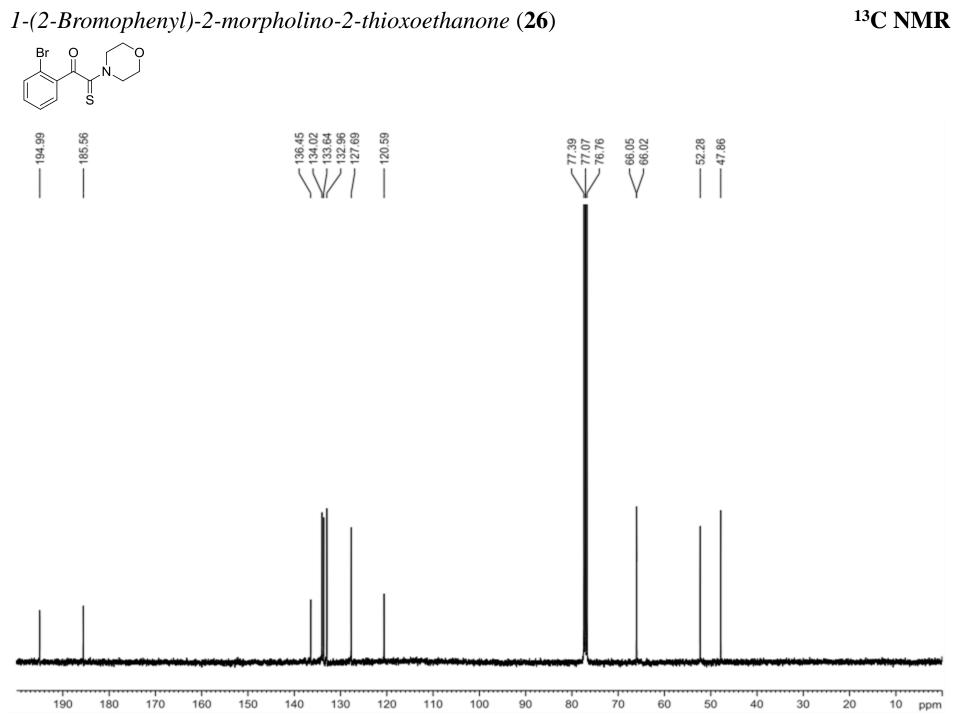

1-(2-Chlorophenyl)-2-morpholino-2-thioxoethanone (23)

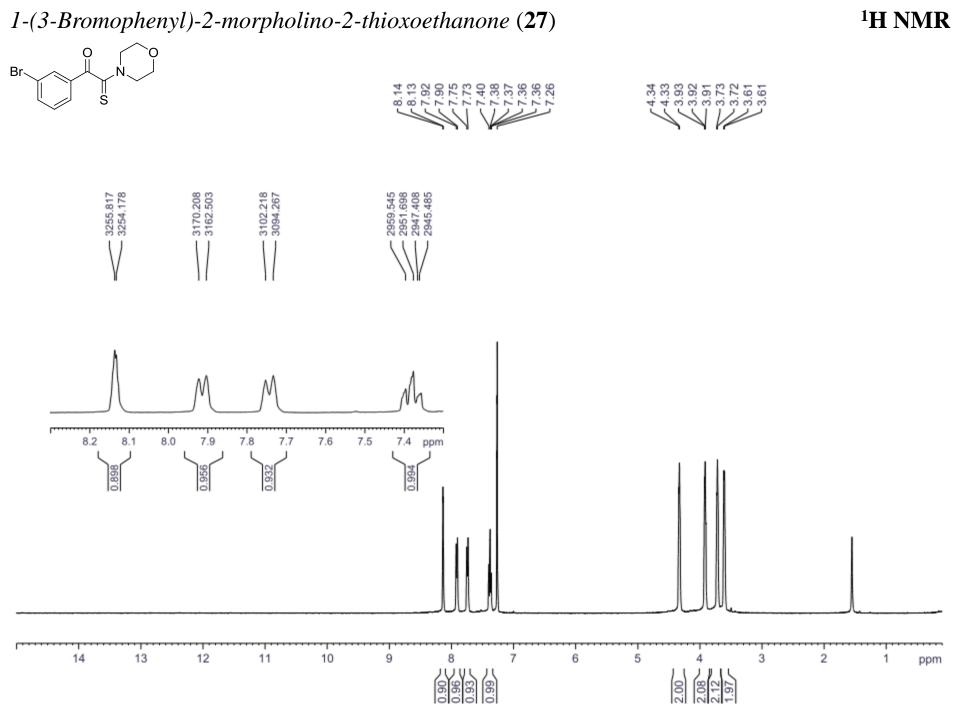


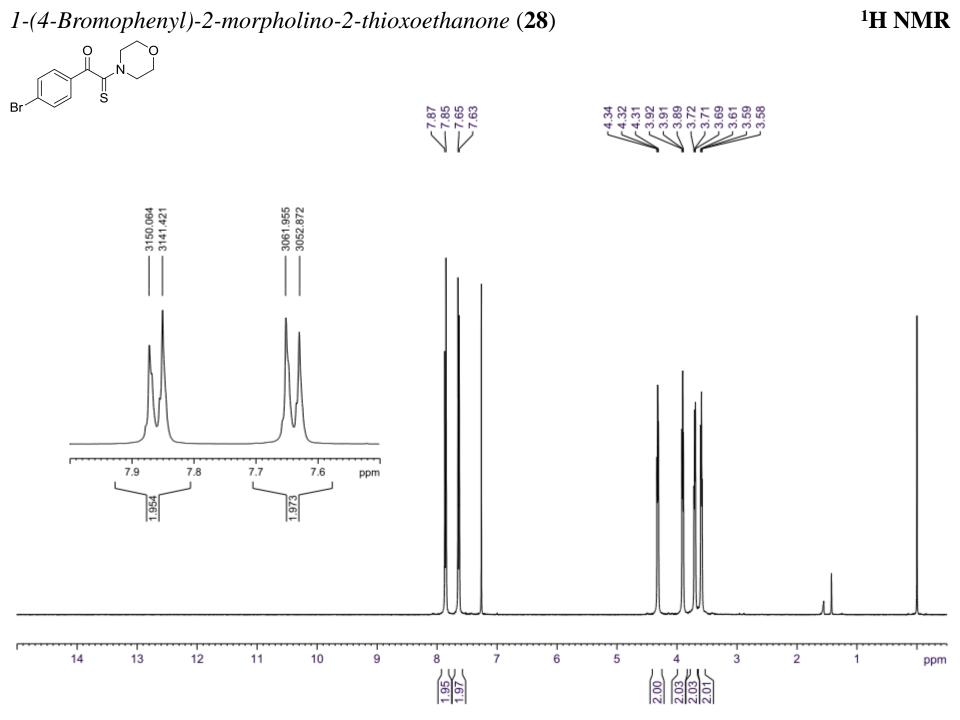


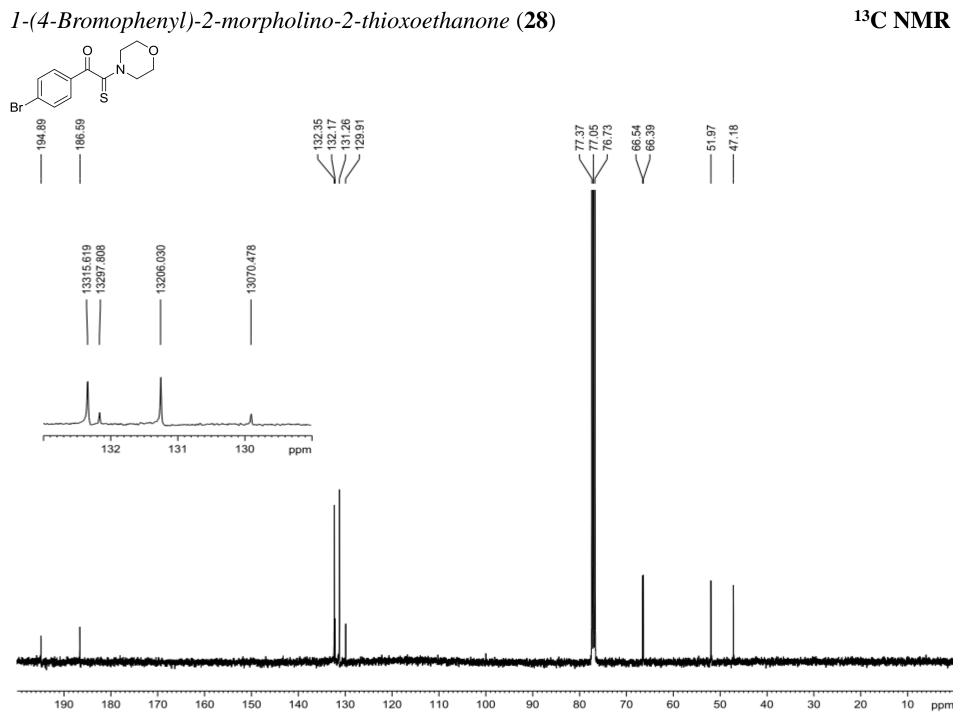


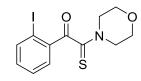

	ugyar in an				feyend option for			And age in such as A		600.000 \$100.00						L.T	-apa-j-siz-filmage		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

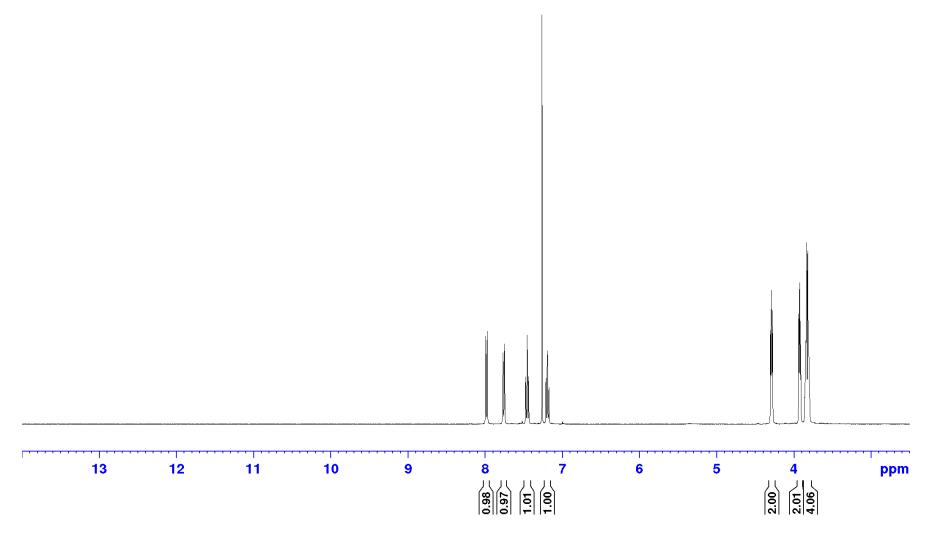


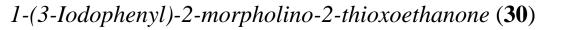


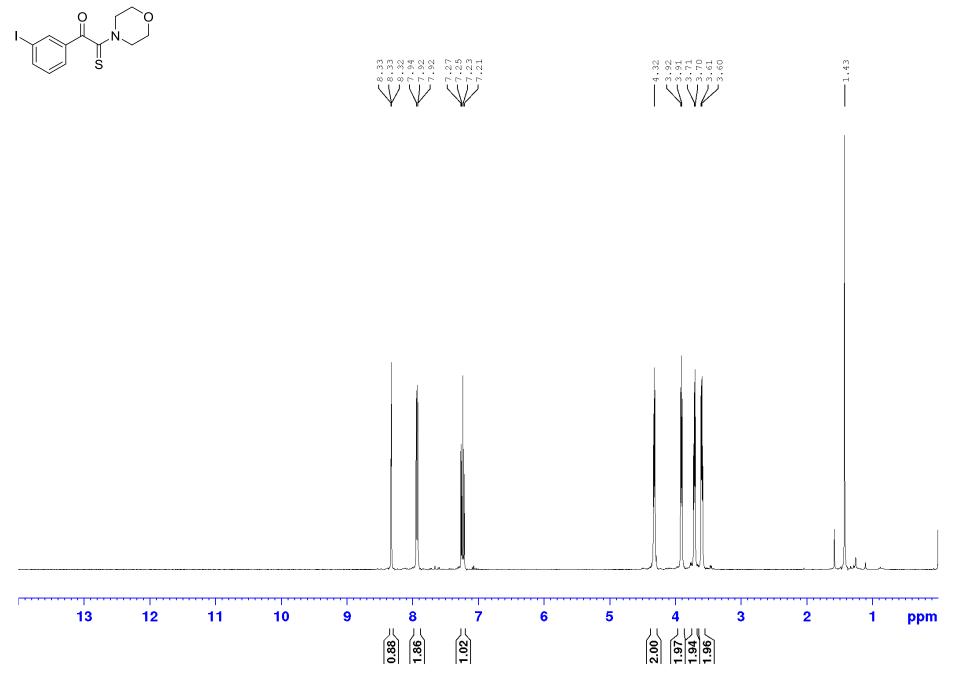


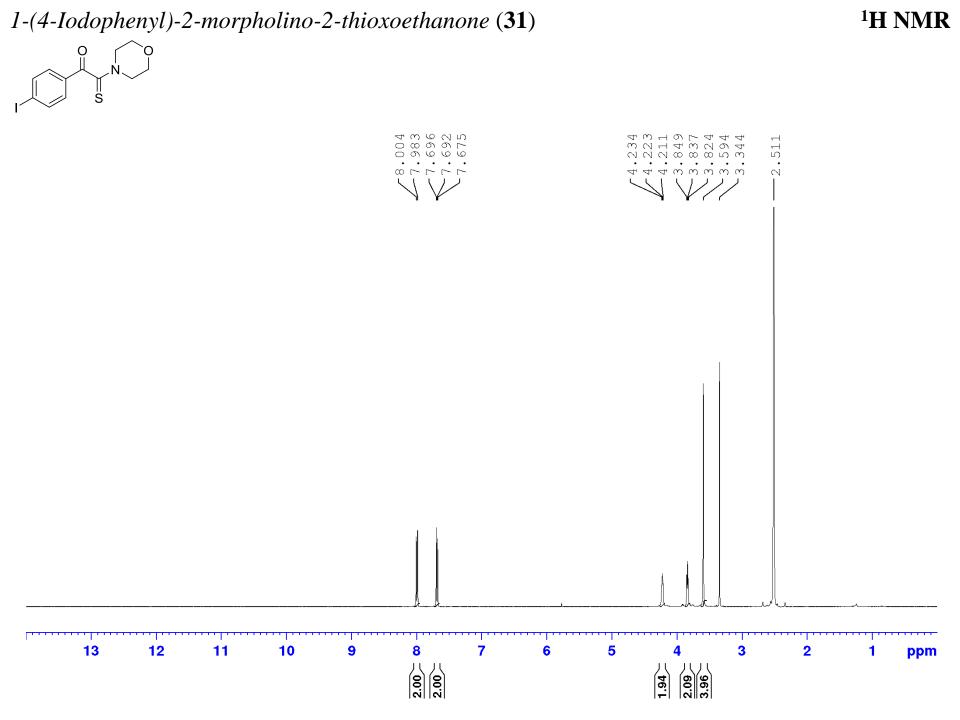

1-(2-Bromophenyl)-2-morpholino-2-thioxoethanone (26)

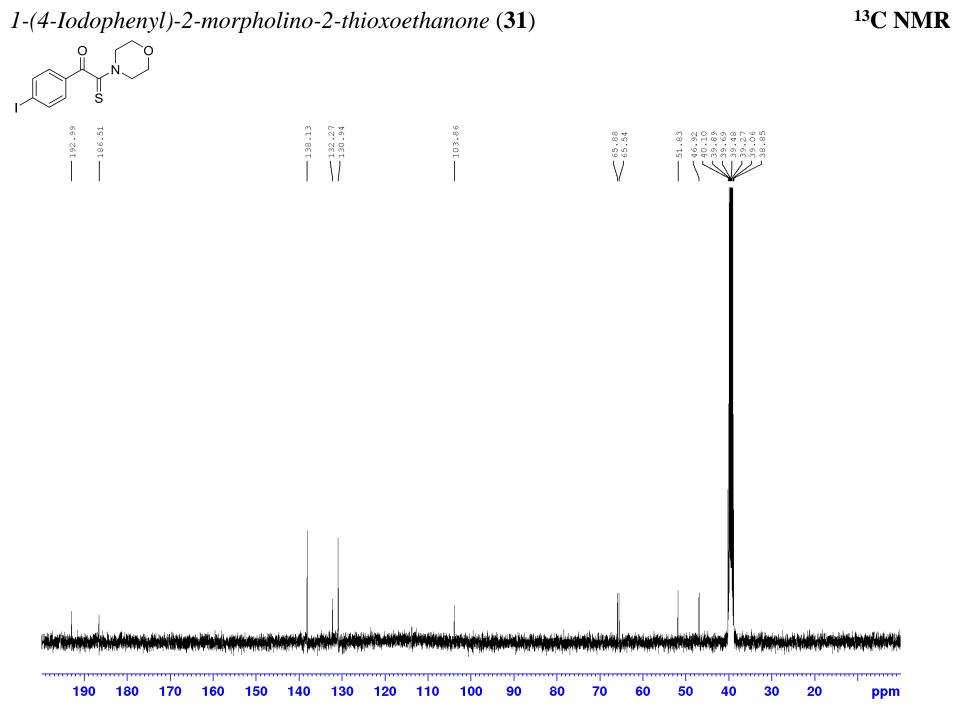

¹³C NMR 1-(3-Bromophenyl)-2-morpholino-2-thioxoethanone (27) O `Ò Br∖ || S - 192.09 - 183.54 134.81 132.81 130.10 128.08 126.03 126.03 74.95 74.64 74.32 64.11 49.58 - 44.79 180 120 70 40 190 170 160 150 140 130 110 100 90 80 60 50 30 20 10 ppm

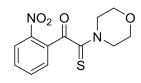

1-(2-Iodophenyl)-2-morpholino-2-thioxoethanone (29)



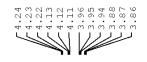


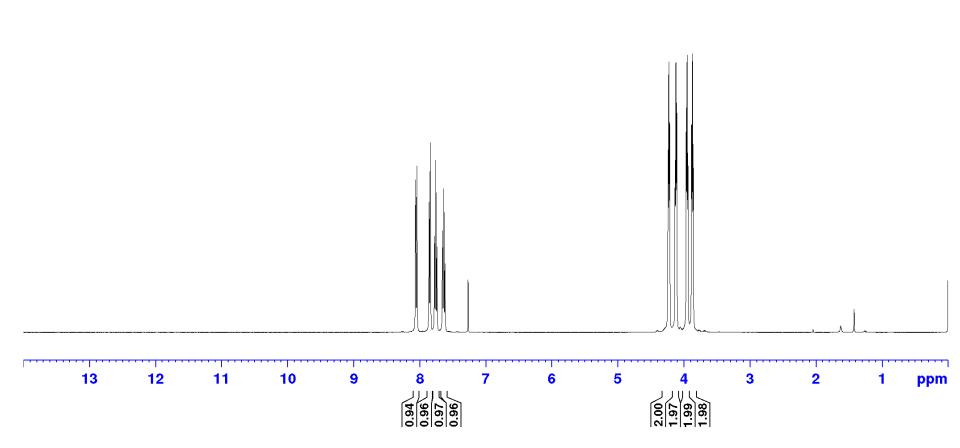


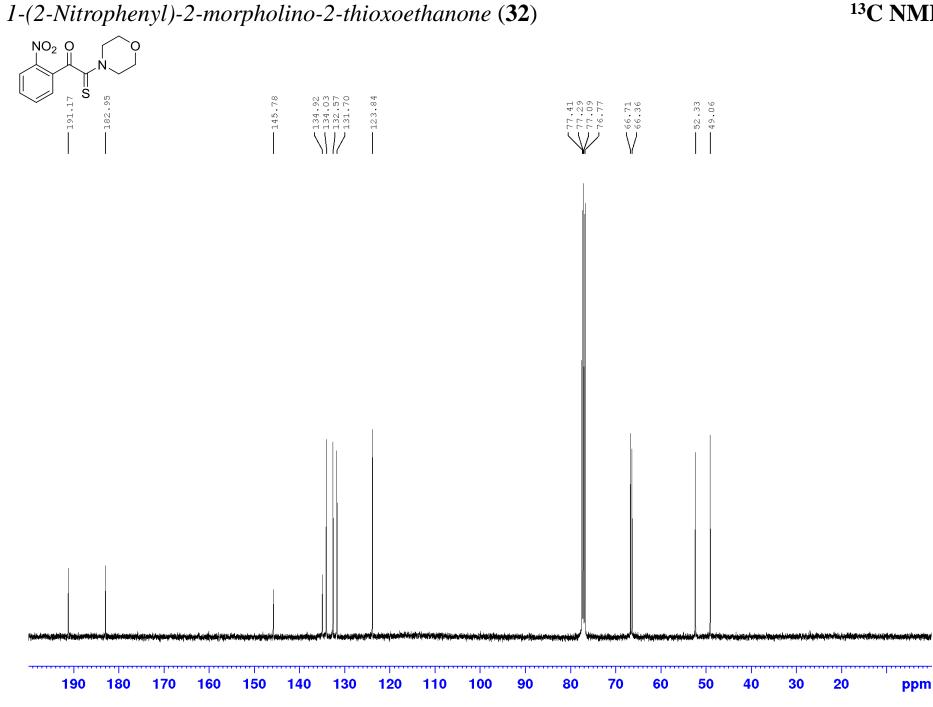


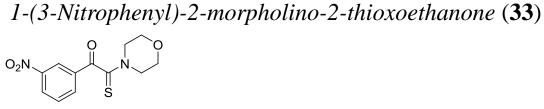


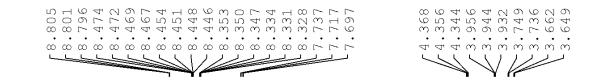
1-(3-Iodophenyl)-2-mor	pholino-2-thioxoeth	anone (30)		¹³ C NMR
0 N N N N N N N N N N N N N N N N N N N		93.94	$\bigwedge_{76.13}^{76.76}$	 26.31
				1
190 180 170 160	· · · ·			

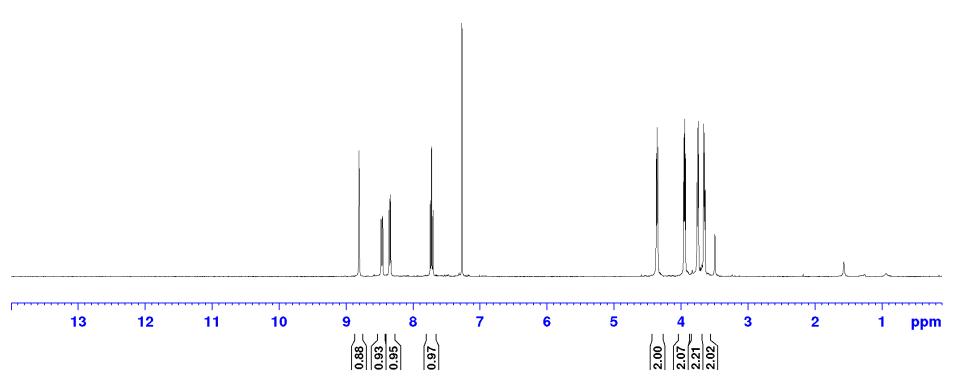


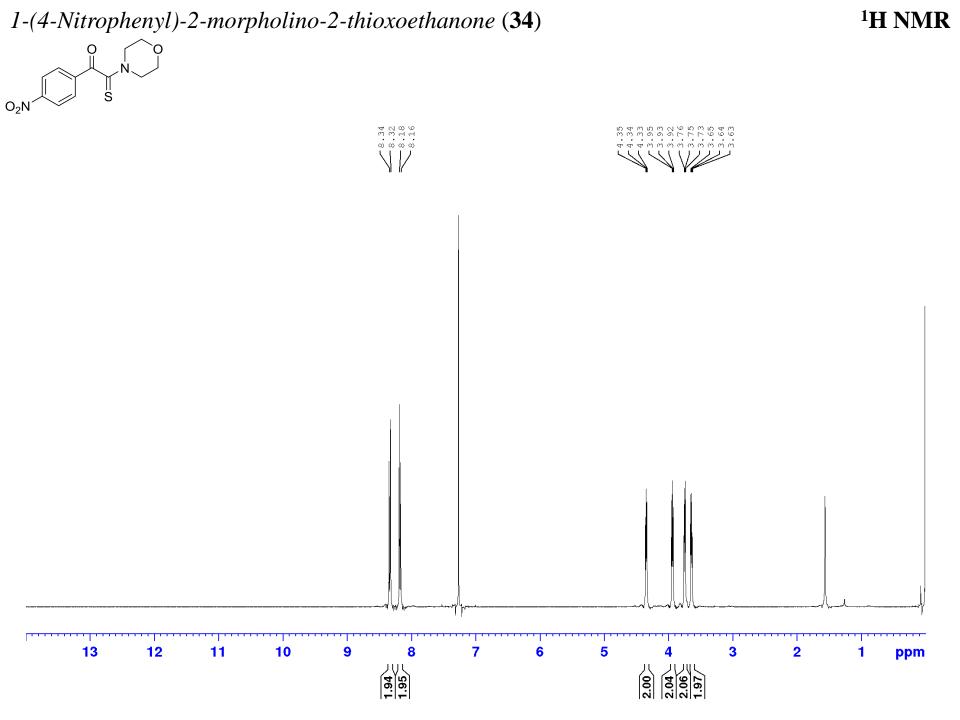


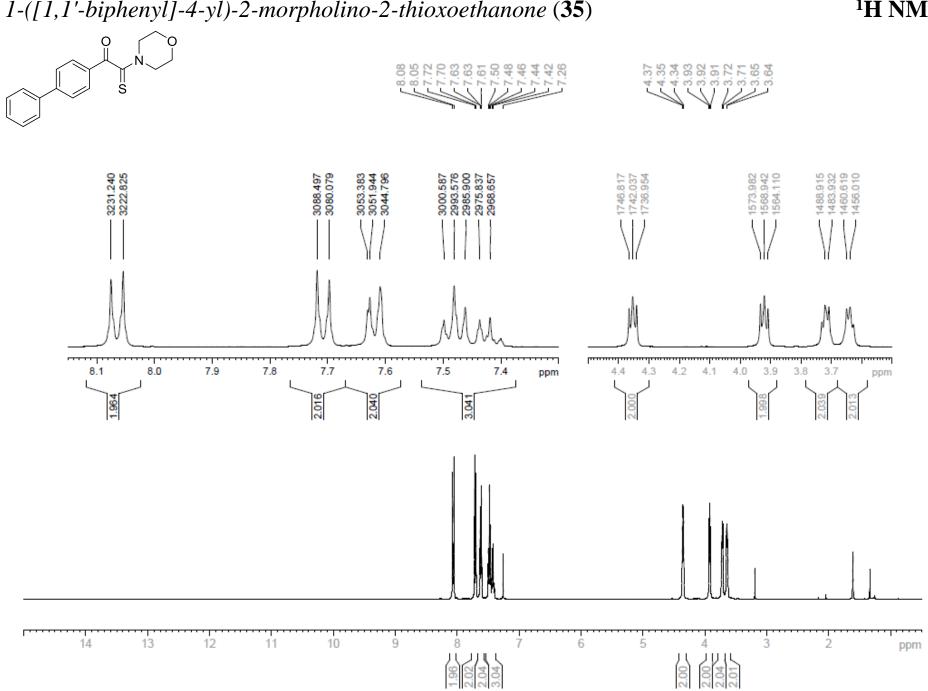

1-(2-Nitrophenyl)-2-morpholino-2-thioxoethanone (**32**)

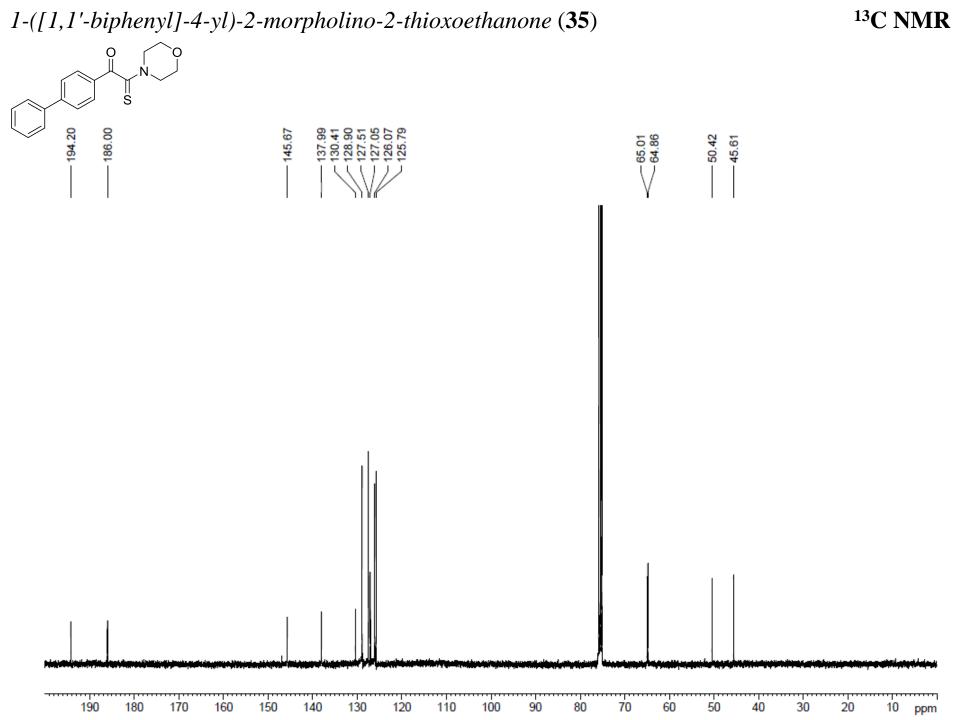












<i>1-(3-Ni</i> ^{0₂N} √		enyl))-2-m	orph	nolin	0-2-t	hiox	oethd	anon	e (33)							¹³ C	NMI
	181.89 					132.80 132.77 127.79	122.18				74.96	74.64	64.02	49.72	45.02				
						1													
ран Шаран Анге Карта и разов 	180	170	in tuli tuli Tangeroon 160	150	140	130	120	110 110	albarbar ba ada bi Pering second	(է,,,,,,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11416 de 1447 f 471 f 1744 f 41 f 474 f 1744 f 41 f 474 f 4	70	nder hele seite Palet Print Palet Palet Print Palet Pa		An article and a second se	30	20	and a speed to per- anti-per- anti-per- 10	ppm

1-([1,1'-biphenyl]-4-yl)-2-morpholino-2-thioxoethanone (35)

