Why are HRs prevalent in proteins, if they have high pathogenic potential?
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Supplementary Figure 1

Study outline, questions investigated and datasets analyzed.



[ |
A o
0 b
Phenotypes Proteins 2 - S ~ 8 - -
5 o - - '
Growth > - 1 ®» 1
" Suw | T oo 322841 = 2 7 o
Normal conditions (4) |l % i I 5 £ S € x 5 e |
® 3 B so o x E Q¥ <
With chemical insult (122) 4p S o g o @ N Eg I o0
' Qwu | 2o o o 1 I
Morphological O _g:_ T 2T 2 T o £5 Ta
] -3 = 4
Organizational (6) A 5 52 . . 5 £« '
s 5 " 27 & g i
Cellular (217) { z_1 + "
=583 N=614 © “n555 o555 © “he555 n555
NonHRP (3585) @ HRP (614) CLES: 63.6% Z-score: 5.3 Z-score: 6.3
O Length-matched NonHRPs Il Length-matched HRPs
c -e— No. of protein—protein interactions -e-No. of link communities in PPI network d 8 - 8 7] T
— - o
-eo-No. of genetic interactions ~o-No. of link communities in genetic network =
8 - £33 5 8 81 2.
“ % Q_U_) ®1 +~ 17 ! T x - %
o x 0 < o | o !
o] 1 @ ES¥] 1 8 !
o g0 o= EB o oy
N A Q S ] Qll ' 8 c QL
— 8ol ! xa !
99 Qas< ! £a o | !
25 T Qo - c |
& > 10 =] o =
4 v - S £ o :
T o Z « S 24
S e]
ol 4 -+ od =+ .
e J n=2315 n=719 n=2315 n=719
CLES: 73.0% CLES: 74.6%
, :‘ ' ‘ J ] ‘ Au“l‘ , I NonHRPs with amino acid bias IlHRP
w 141 AR e MR, TR
| *¥ Vv V¥ \? e o f
T T T T T T
g _ w0
ocog
T :
5 Q- 3 -
ES ©
® < . —_
Bl 291«
g o5 @ I = o
2 ¢ . a S Il
. - 9 £ 5 o
CS o+ =] B ] Q
S = O o B
2g R 0o
9= 22 £ EQ
'y o £ 22 A
o ° <4
2 E o ne. <Z( = - % o
< =) =
52
53 4L o
ém — n=82 n=60 n=18 n=18
[T T [T [T [T T OR: NA OR: NA
1 20 40 60 80 100
Randomization events O NonHRP Ml HRP

Supplementary Figure 2
Control calculations for physiological importance and functional versatility of HRPs

(a) Scaled gene to phenotype (scaled-G2P) network of yeast non-essential genes, reconstructed by merging phenotypes that had more
than 49% genetic overlap (left panel). Boxplot of distribution of the number of phenotypes in the scaled G2P network among HRPs and



NonHRPs (right panel). Statistical significance was assessed using Wilcoxon rank sum test, with effect sizes displayed as CLES.

Different features such as (i) protein length (Ekman, D. et al., Genome Biol 7, R45, 2006) and (ii) low complexity sequences, especially
amino acid compositional bias (Coletta, A. et al. BMC Syst Biol 4, 43, 2010), can influence the propensity of proteins to interact with
multiple partners and hence its functionality. To investigate the effect of protein length on the functionality of HRPs, we obtained length
matched controls and compared their distributions. To investigate whether the observed trends for functionality are similar between
proteins with homorepeats and NonHRPs containing non-repeat amino acid bias we first identified all yeast NonHRPs that contain
compositional bias. Boxplots of distribution of the number of protein-protein interactions and link communities in PPI network among (b)
length-matched HRPs and NonHRPs and (d) HRPs and NonHRPs with amino acid bias. Statistical significance was assessed using
Wilcoxon rank sum test and FDR corrected for multiple testing within each class, with effect sizes displayed as CLES. HRPs tend to
have more interactions and are involved in more processes than their length-matched counterparts. HRPs have more protein
interactions and participate in more biological processes than proteins with non-repetitive amino acid bias. Collectively, these results
suggest that HRPs are more functionally versatile than proteins with similar lengths and those, which contain amino acid bias.

(c) Proteins with homorepeats are functionally more versatile than NonHRPs with similar biological functions. Significance estimates
are provided as —log P values (upper panel) and effect size estimates are provided as median differences (lower panel) for each one of
the 100 randomizations comparing distributions of HRPs and randomly selected but functionally similar NonHRPs for (i) No. of protein-
protein interactions, (ii) No. of link communities in PPI network, (iii) No. of genetic interactions and (iv) No. of link communities in genetic
network. Statistical significance was assessed using Wilcoxon rank sum test. The solid black line in the upper panel represents a p-
value of 0.05.

Barplots showing percentages of HRPs and NonHRPs with a high number of (e) protein-DNA and (f) protein-RNA interactions. Since
the number of data points was limited, we classified transcription factors and RNA binding proteins into tertiles representing proteins

with low, medium and high number of protein-DNA and protein-RNA interactions, respectively. Statistical significance was assessed

using Fisher’s exact test, with effect size represented by OR.
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Supplementary Figure 3
Influence of the type of amino acid of homorepeat on different features analyzed in this study.

(a) Estimation of Likelihood Ratios (LRs) from conditional probabilities for different types of features (categorical or quantitative)
analyzed in this study and its interpretation. Quantitative features were categorized into low or high classes based on tertile cut-offs. (b)
The heatmap presents LRs for all HRPs and proteins with different amino acid repeat types, with the numbers in the parenthesis the
corresponding to the number of proteins with a particular amino acid type. Categorical features are marked with asterisks. For
quantitative features, the class analyzed (high or low) is presented in the parenthesis. LRs greater than 1 are marked in green, with the
intensity of the color representing its magnitude.
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Supplementary Figure 4
Influence of the length of different amino acid repeat types on different features analyzed in this study.

Each cell in the heatmap represents the Pearson correlation coefficient defining the extent and type of correlation (positive/negative)
between the lengths of a specific amino acid repeat (given as column names) and the feature analyzed (row names). The numbers in
the parentheses indicate the number of proteins with a particular amino acid repeat type. Correlation coefficients >0.70 were found to
be statistically significant upon correcting for multiple testing.
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Supplementary Figure 5
PolyQ in Snf5 influences cell division and mediates protein-protein interactions.

(a) Budding index of cells after re-inoculation of stationary phase cultures from WT or AHR in YPD or YPG after 1, 3 and 4h. Statistical
significance was assessed using ANOVA. (b) Immunoblot analysis for HA-tagged WT and AHR Snf5 in the immunoprecipitate. (c)
Number of Snf5 protein-protein interactions previously known, as retrieved from BioGRID (Chatr-Aryamontri, A. et al., Nucleic acids
research 41, D816-23, 2013) and identified in this study. (d) Proteins interacting with Snf5 in a polyQ dependent manner (observed in
WT but absent in AHR) in YPD and YPG connected to the diverse biological processes. The interactors are identified with a minimum of
3 unique peptide hits in at least 2 of the 3 experiments and classified according to the associated biological processes. The pie chart on
top shows the number of polyQ-mediated interactions in each condition.
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Supplementary Figure 6
Stringent regulation of HRP activity by coarse- and fine-tuning.

Previously we showed that intrinsically disordered proteins are tightly regulated (Gsponer, J., et al. Science 322, 1365-8, 2008). This
raises the question of whether the stringent regulation of HRPs is confounded by protein disorder. To address this, we compared the
regulatory features between HRPs and NonHRPs with low and high intrinsic disorder content. Boxplot of distributions of protein
abundance, translational rate and protein half-life among HRPs and NonHRPs with (a) low and (b) high disorder content. Irrespective of
the disorder content, HRPs tend to have lower translational rates and low protein half-life compared to NonHRPs, though the protein
abundance is comparable. Thus, stringent protein regulation of HRPs is more pronounced compared to NonHRPs with similar disorder
content. To investigate if HRPs and proteins with non-repetitive amino acid bias are regulated with similar stringency, we compared the
regulatory features between HRPs and NonHRPs with amino acid bias. (¢) Boxplots showing the distributions of protein abundance,
translational rate and protein half-life among HRPs and NonHRPs with amino acid bias. HRPs tend to be less abundant with lower
translational rates and protein half-lives. This suggests that HRPs are more stringently controlled than NonHRPs without amino acid
bias. Statistical significance was determined using Wilcoxon rank sum test corrected for multiple testing within each class of
comparisons. Effect sizes are provided as CLES. (d) Distribution (grey histogram) showing the random expectation of the over-
expression toxicity HRPs, with the red arrow showing the observed number of over-expression toxicity HRPs. Enrichment of HRPs in
over-expression toxicity genes was tested using permutation test, by performing 10,000 iterations. The Z-score indicates the distance of
the actual observation to the mean of random expectation in terms of number of standard deviation. P-values were estimated as the
ratio of randomly observed proteins greater than or equal to the number of actually observed HRPs to the total number of random
samples (10,000).Over-representation of HRPs among over-expression toxicty genes implies that they are stringently regulated by
coarse-tuning, i.e., by regulating their abundance. (e) Box plot showing distribution of density of PTMs among NonHRPs and HRPs.
Density of PTMs for each protein was estimated by obtaining a ratio of the total number of PTMs identified in a protein to the total
number of amino acids in that protein. The P-value was estimated using Wilcoxon rank sum test and effect size displayed as CLES.
More PTMs in HRPs suggest a stringent fine-tuning of their activity. (f) Distribution of the density of PTMs within (shown as 0 in the X-
axis) and 500 amino acids on either side of the HR.
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Supplementary Figure 7

Pleiotropic effects, adaptability, functional versatility and proteostasis collectively differentiate HRPs from NonHRPs and
highly disordered NonHRPs.

(a) The left panel depicts the work flow of a random forest (RF) model that was trained on eight features to distinguish (i) proteins with
(HRPs) and without HRs (NonHRPs) and (ii) HRPs from highly disordered NonHRPs (HDP; intrinsic disorder >30%). The eight features
considered for this machine learning approach pertained to pleiotropy, adaptability, functional versatility and proteostasis (right panel).
The number of features for each class is provided in the parenthesis. (b) The RF model trained on the eight features is able to
distinguish between HRPs and Non HRPs with an overall accuracy of 0.75. Test set precision, recall, f1 scores, and sample sizes
(support) are provided for each class. Genes with three or more missing values among the eight features were disregarded. This
resulted in 3819 genes with values for at least five features. For some of these genes, the missing values were imputed using multiple
imputation by chained equations, using the ‘mice’ R package (arguments to mice method: method=“pmm", m=5, maxit=5; van Buuren,
S. et al. J Stat Softw 45, doi:10.18637/jss.v045.i03, 2011). The outcome class was balanced (data before balancing: 16% HRP,
n=3819; data after balancing: 48%, n=1261) by down-sampling the majority class size to approximately the size of the minority class
(down sampled majority n=700). The cleaned and balanced feature set was split into 70% training and 30% testing data. The training
data was used as the input to a random forest model composed of 50 classification trees, with hyperparameters (purity criterion,
maximum features nodes consider for splitting, and max tree depth) optimized using 10-fold cross-validation and grid search (yielding
optima: criterion="entropy”, max_features="“log2”, max_depth=None). (c¢) Importance of different features for distinguishing HRPs from
NonHRPs relative to the most important feature, disorder fraction. The most predictive features are related to disorder and proteostasis,
with the remaining features being of approximately equal importance, with relatively low contribution from essentiality. Since disorder
fraction was an important feature for distinguishing HRPs from NonHRPs, we investigated if HRPs could be distinguished from highly
disordered NonHRPs (HDPs; with disorder fraction >30%). (d) The RF model is able to distinguish HRPs from HDPs with an overall



accuracy of 0.67. (e) Importance of different features for distinguishing HRPs from HDPs, relative to disorder fraction. Similar to our
observations for NonHRPs, the most important features are related to proteostasis, with other features being of approximately equal
importance and low contribution from essentiality.
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Supplementary Figure 8
Evolutionary benefits associated with HRs.

(a) Box plot showing the distribution of sequence identities among similar NonHRP:NonHRP) and divergent (HRP:NonHRP) pairs of
yeast paralogs. Statistical signficance was estimated using Wilcoxon rank-sum test, with effect size displayed as CLES. To test if our
observations related to HR-associated amino acid substitutions (Fig. 8) are confounded by high number of protein- protein interactions
or higher density of linear motifs or PTM sites associated with HRPs, we classified yeast proteins into three bins of low, medium and
high using tertile cut-offs for each of the features (panel b). Linear motif residue density was estimated by obtaining the ratio of residues
predicted to form putative linear motifs over the entire length of the protein. In each bin, we tested for differences in the proportion of
NonHRPs and HRPs with and without amino acid substitutions in the functionally relevant sites. Barplots showing proportion of
NonHRPs and HRPs with amino acid substitutions affecting (c) functionally relevant sites (putative linear motifs and/or PTM sites)
among low, medium and high bins of proteins classified based on the number of protein-protein interactions, (d) putative linear motifs
among different bins of proteins classified based on the density of linear motif residues and (e) PTM sites among different bins of
proteins classified based on the density of PTM sites. Statistical significance within each bin for each attribute was tested using Fisher’s
exact test and corrected for multiple testing (FDR). If a feature is a confounder, then there will not be any difference in the proportion of
NonHRPs and HRPs with amino acid substitutions across different bins of that feature. Higher proportion of HRPs tend to harbor
substitutions affecting functionally relevant sites compared to NonHRPs across all bins, with matched number of protein-protein
interactions (panel ¢). Similarly, across all bins of linear motif residue density, higher proportion of HRPs harbor substitutions within
putative linear motifs compared to the matched NonHRPs (panel d). HRPs show a significant difference for the proportion of genes with
amino acid subsitutions affecting PTM sites especially in the ‘high’ bin of PTM site density (panel e). These findings suggest that the
amino acid substitutions affecting functionally relevant sites in HRPs are independent of the number of protein interactions that a HRP
participates in, or the density of linear motif residues or PTM sites. (f) Estimation of conditional probability for observing more amino
acid substitutions than expected by chance in segments containing HRs and conditional probability for observing HRs in segments with
more observed amino acid substitutions than expected by chance (denoted by P(O>E | HRs) and P(HRs | O>E), respectively). Each
protein was divided into four equal segments and the expected number of amino acid substitutions per segment was calculated as
shown. Subsequently, segments with more amino acid substitutions than expected and those that contained HRs were identified. Using
a similar approach, segments with more amino acid substitutions in putative linear motifs were defined. Due to very few data points,
substitutions at the PTM sites were not considered for estimating conditional probabilities. (g) Conditional probability values of finding
more amino acid substitutions than expected by chance in HR segments and that of finding a HR given a segment contains more amino
acid substitutions (first row). The second row provides the conditional probability values of finding more amino acid substitutions
affecting putative linear motifs than expected by chance in HR segments and that of finding a HR given a segment contains more linear
motif affecting amino acid substitutions.
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Supplementary Figure 9

Essential HRPs constitute a part of the rapidly adaptable part of the proteome, facilitated by stringent proteostasis.



(a) Enrichment of Gene Ontology (GO) biological processes among essential HRPs and NonHRPs in yeast. Both essential HRPs and
NonHRPs are over-represented in similar biological processes. Boxplot of distributions of the number of (b) protein-protein interactions,
(c) link communities in protein-protein interaction network, (d) different GO terms a gene is associated with, reflecting its functional
dviersity, (e) protein abundance, (f) translational rate and (g) protein half-life among essential HRPs and NonHRPs. Statistical
significance was assessed using Wilcoxon rank sum test and P-values were corrected for multiple testing (FDR). (h) Sequence
divergence among yeast essential HRPs and NonHRPs with their one-to-one orthologs in 73 fungal species belonging to 16 distinct
fungal classes. Species names are abbreviated. Taxonomic and phylogenetic details of the fungal species are provided in
Supplementary Notes. Median divergences of essential HRPs (red circle) and NonHRPs (grey circle) with their orthologs in each
species are shown in the middle panel. The upper panel provides the statistical significance estimated by comparing the distribution of
divergence of yeast essential HRPs and NonHRPs with their respective orthologs in each species. The black line shows a P-value cut-
off of 0.01, corrected for multiple testing. The bottom panel shows the number of orthologs of yeast essential HRP (red) and NonHRP
(grey) in each species. The average median difference between essential NonHRPs and HRPs is 6.3%, which corresponds to ~19
missense variant positions for a 300 amino acid long protein. Though both HRP and NonHRP essential genes show enrichment for
similar processes, essential proteins that contain a HR are more functionally versatile, stringently regulated and undergo accelerated
sequence divergence and thereby may constitute the rapidly adaptable part of the genome.
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Supplementary Figure 10
Highly pleiotropic HRPs constitute a part of the rapidly adaptable part of the proteome, facilitated by stringent proteostasis.

We selected the top 33% of pleiotropic genes (defined by tertiles) in the G2P network and classified them into highly pleiotropic HRPs
and NonHRPs. (a) Enrichment of Gene Ontology (GO) biological processes among yeast highly pleiotropic HRPs and NonHRPs.
Boxplots of distributions of the number of (b) genetic interactions, (c) protein-protein interactions, (d) link communities in genetic and
protein-protein interaction network, (e) different GO terms a gene is associated with, reflecting its functionality, (f) genes whose
expression is altered upon deletion of regulators (from the gene-perturbation network), (g) protein abundance, (h) translational rate and
(i) protein half-life among highly pleiotropic HRPs and NonHRPs. Statistical significance was assessed using Wilcoxon rank sum test,
corrected for multiple testing. (j) Sequence divergence among yeast highly pleiotropic HRPs and NonHRPs with their one-to-one
orthologs in 73 fungal species belonging to 16 distinct fungal classes. Species names are abbreviated. Taxonomic and phylogenetic
details of the fungal species are provided in Supplementary Notes. Median divergences of highly pleiotropic HRPs (red circle) and
NonHRPs (grey circle) with their orthologs in each species are shown in the middle panel. The upper panel provides the statistical
significance estimated by comparing the distribution of divergence of yeast highly pleiotropic HRPs and NonHRPs with their respective
orthologs in each species. The black line shows a P-value cut-off of 0.01, corrected for multiple testing. The bottom panel shows the
number of orthologs of yeast highly pleiotropic HRP (red) and NonHRP (grey) in each species. The average median difference between
highly pleiotropic NonHRPs and HRPs is 5.2% which corresponds to ~15 missense variant positions for a 300 amino acid long protein.
These findings suggest that highly pleiotropic proteins that contain a HR affect diverse functions through multiple interactions, are
stringently regulated, and undergo accelerated divergence and hence may constitute the rapidly adaptable part of the proteome. In
contrast, hNonHRPs with housekeeping functions seem to constitute the relatively slowly evolving core of the proteome.



