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Supplementary notes 1 

Proteins with homorepeats in eukaryotic proteomes 

Distribution of proteins with homorepeats (HRPs) in eukaryotic proteomes. The solid black vertical 
line represents the average number of HRPs found in eukaryotic proteomes. Proteome sequences 
were obtained from OMA browser (Altenhoff, A.M., et al., Nucleic Acids Res 39, D289–94, 2011). 
The color of the bars corresponds to the classes given in the phylogenetic tree. The phylogeny 
was reconstructed based on taxonomic classifications and the branch lengths are just illustrative. 
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Supplementary notes 2 

Snf5 polyQ-mediated interactions with diverse protein complexes 

Network showing polyQ mediated Snf5 interactions with multiple protein complexes across diverse 
molecular functions, obtained by integrating Snf5 interactions with yeast protein complex network 
(Benschop, J.J. et al., Molecular cell 38, 916-28, 2010). Edge colors depict the carbon source in 
which the interaction was identified. This result suggests that polyQ in Snf5 influences inter-
complex interactions, and our observation that all the Swi/Snf complex members could be detected 
in all conditions implies that polyQ in Snf5 does not affect its binding to the Swi/Snf members. This 
is consistent with the identification of the Swi-Snf assembly residue E582 within the SNF5 domain 
(Geng, F., et al., Mol Cell Biol 21, 4311-20, 2001). 
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Supplementary notes 3 

Taxonomic and phylogenetic details of fungal species investigated in this study 

The abbreviation provided in the parenthesis for each organism corresponds to the codes used in 
Fig. 7d, Supplementary Figs. 9h and 10j. The phylogeny was reconstructed based on taxonomic 
classifications and the branch lengths are simply illustrative and do not represent any evolutionary 
attribute such as divergence times.  
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Supplementary notes 4 

Original blots related to Fig. 4 and Supplementary Fig. 5 
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Supplementary Table 1: Compendium of datasets used in this study 

Type of information (Source) Description of the data 

Genome-scale datasets of Saccharomyces cerevisiae (Budding yeast) 

Features related to physiological relevance of proteins (phenotypes) 

Essential genes1 Each of the 5916 yeast genes was systematically deleted by 

mitotic recombination and its effect on growth was examined. 

About 1105 genes were found be essential for growth on rich 

glucose medium.   

Over-expression toxic genes2 In this study, an ordered array of 5280 yeast strains was 

constructed, with each conditionally overexpressing a unique 

yeast gene. Each strain carried different yeast ORF and 

expressed from the inducible GAL1/10 promoter on a 

multicopy plasmid. Effect of each one of the genes on cellular 

fitness when overexpressed, was tested in a medium containing 

galactose, by examining corresponding strains for defects in 

colony formation. This study identified 769 over-expression 

toxic genes, as their over-expression resulted in significantly 

slower growth. 

Cell size genes (large and 

small)3 

Using a set of yeast ORF deletion strains, 4812 viable haploid 

deletion strains were surveyed for alterations in the cell size 

distributions of exponentially growing cultures using Coulter 

principle. About 200 genes when deleted resulted in large cell 

size and 190 gene deletions resulted in small cell size.   

Slow growth genes4 Homozygous gene deletion strains were profiled for fitness 

defects in rich medium. This study identified 891 non-essential 

genes whose gene deletion resulted in slow growth.  

Haploinsufficient genes4 Fitness profiling of heterozygous gene deletion mimicking loss-

of-function allele of ~5900 yeast genes in rich medium (YPD) 

identified 184 haploinsufficient genes, with significant growth 

defect.  
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Type of information (Source) Description of the data 

Modulators of aggregation5 About 4850 yeast haploid gene deletion mutants of non-

essential genes were transformed with constructs that express 

mutant huntingtin fragment (HD53Q) or a-synuclein under the 

control of inducible promoters. From these, 137 genes were 

identified as modulators of aggregation based on the sensitivity 

(synthetic lethality or sickness) to HD53Q or α-synuclein.    

Filamentous growth: Hypo- 

and hyper-invasive growth 

genes, hypo- and hyper-biofilm 

development genes, hypo-and 

hyper-pseudohyphal growth 

genes6  

Genome-wide screening of targeted gene deletion alleles 

introduced into a filamentous yeast strain S1278b identified 

577, 700 and 688 genes involved in hypo- or hyper- (a) haploid 

invasive growth, (b) pseudohyphal growth and (c) biofilm 

development, respectively.   

 

Morphological phenotypes7 Fluorescence-based imaging of yeast gene-deletion mutants 

(4786 strains) was undertaken to obtain high-dimensional, 

quantitative data spanning several morphological features such 

as cell size, bud size and nucleus location (Saccharomyces 

cerevisiae morphological database). This study identified genes 

that affect 247 morphological parameters of yeast.  

Response to small molecules8 About 5000 homozygous non-essential gene deletion strains 

were tested for growth response in 174 unique conditions, 

representing various small molecules and environmental 

stresses. A gene deletion strain was defined as sensitive to a 

treatment if it showed a statistically significant growth defect in 

the treatment compared to its growth in control (without 

treatment) conditions. Sensitivity of a gene deletion to a 

condition implies that its presence is required for resistance 

towards that particular environmental perturbation. Of the 174 

conditions investigated, we chose 136 small molecule 

conditions, representing a spectrum of chemical insults.  
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Type of information (Source) Description of the data 

Features related to functional relevance of proteins 

Genetic interactions9 Using a synthetic genetic array and fitness profiling, a genome-

scale genetic interaction map for ~75% of all genes in the 

budding yeast was constructed by examining 5.4 million gene-

gene pairs for synthetic genetic interactions. A genetic 

interaction between a pair of genes was assigned if the double 

mutant shows significant deviation in fitness compared to the 

expected multiplicative effect of combining the two single 

mutants. Based on this, the interactions between two genes 

were classified as (i) negative genetic interactions: if a more 

severe fitness defect was observed than expected, with the 

extreme case being synthetic lethality or (ii) positive genetic 

interactions: if double mutants showed a less severe fitness 

defect than expected. This network consisted of 73825 

interactions among 4273 genes.  

Protein-protein interactions10 Protein-protein interactions were obtained from BioGRID 

database. Interactions that were identified using biochemical 

approaches such as affinity capture, protein-fragment 

complementation assay were considered. The network 

consisted of 73429 interactions among 5398 proteins.  

Protein complex network11 Using the physical interactome map of yeast, consensus protein 

complexes (PC) integrating predictions from three different 

protein complex prediction algorithms were obtained. Briefly, 

PCs from these different PC prediction sets were mapped 

against each other using hypergeometric testing. Based on the 

reciprocal matches between the different PCs, PCs from the 

different sets are grouped together as a PC cluster, if they have 

significant overlap of members. The PCs are then aligned 

within each cluster, and only those PC members that are present 

in at least two originating PCs are retained in the consensus PC. 
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Type of information (Source) Description of the data 

The protein-complex network consisted of 494 complexes with 

1890 members.  

Transcriptional regulatory 

network 

(Protein-DNA interactions)12 

Yeast transcriptional regulatory network (TRN) was 

reconstructed by combining a previously published TRN13 with 

the recent genome-wide in vivo binding map of yeast regulatory 

proteins14. For the latter, promoter occupancy cutoff of at least 

3-fold higher than background was considered. This network 

consisted of 29426 interactions between 169 transcription 

factors and 5621 targets.  

RNA binding protein network 

(Protein-RNA interactions)15 

In this study, RNAs bound to RNA binding proteins (RBPs) 

were identified using a two-step approach. Each RBP was TAP-

tagged, expressed under control of their native promoters. Two 

sets of RNAs were extracted (i) RBP-bound mRNA by 

immunoprecipitation of messenger-ribonucleoproteins using 

affinity purification, and (ii) cellular RNA representing the 

whole set of transcripts in the cell. Subsequently, hybridization 

of the two isolated RNA samples using dual-color microarrays 

was done and analyzed for enriched transcripts to detect the 

bound targets of a RBP. This network consisted of 13514 

interactions between 41 RBPs and 4416 transcripts. 

Gene perturbation network16 

 

 

Expression profiling of strains with single gene deletion of each 

of 1481 putative regulators was undertaken using DNA 

microarrays. A common reference experiment design was 

adopted in which cRNA from replicate mutant cultures was 

cohybridized in dye-swap with cRNA from a batch of common 

reference WT RNA, against which comparisons were drawn to 

measure alterations of gene expression. By considering only 

robust expression changes, the gene perturbation network 

(GPN) was reconstructed and consists of 50294 edges between 

700 regulators and 3014 targets.  
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Type of information (Source) Description of the data 

Protein solubility17 Lysates from unstressed yeast cells in SILAC light or heavy 

medium were subjected to high-speed centrifugation. Solubility 

of proteins was determined by mass spectrometry based 

comparison of the light labeled supernatant and the heavy 

labeled pellet. Linear regression of heavy/light ratio on a log 

scale was done and the proteins with values along the flattest 

portion of the curve were classified as those with normal 

solubility. The intercept of the linear regression at x = 0 and 

x=1 were used to delimit the low solubility and high solubility 

proteins respectively.   

Stress granule proteins and P-

body proteins18 

Yeast stress granule cores expressing Pab1-GFP1 were affinity 

purified using a TAP-tagged eIF4G1. A minimum of 2-fold 

enrichment of peptides over unstressed control and complete 

absence from untagged control was used to identify members of 

stress granule proteome. Through literature mining, Jain et al., 

further collated members of P-body proteome.   

Heritable proteins19 In this study, yeast proteome was screened for the ability to 

elicit to stable biological traits by transient over-expression of 

each of ~5300 yeast ORFs. About 50 proteins showed heritable 

epigenetic states, persistent over hundreds of generations, after 

expression levels returned to normal and were inherited from 

mother to daughter cells.  

Post-translational 

modifications20 

We compiled a list of experimentally identified PTM sites from 

curated Swissprot subsection of the Uniprot database and by 

literature curation. The list included 12470 post-translational 

modification sites across 2648 yeast proteins.  

Putative linear motifs21 Putative linear motifs were identified using ANCHOR, which 

predicts protein-binding regions that are disordered in isolation 

but can undergo disorder-to-order transition upon binding using 

estimated energy calculations. 
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Type of information (Source) Description of the data 

Features related to Proteostasis 

Protein abundance22 Endogenous protein levels during log-phase of growth in rich 

medium were obtained by measuring the intensity of GFP 

tagged proteins using flow cytometry. 

Relative translational rate23 In this study, polysome fractionation using velocity 

sedimentation, followed by a quantitative microarray analysis 

of several fractions across the gradient was undertaken to 

measure the translational status of each mRNA. Translational 

status was measured as a function of (i) Ribosomal density - the 

number of ribosomes per unit ORF length and (ii) Ribosomal 

occupancy - the fraction of transcripts of each gene engaged in 

translation. Relative translational rate was estimated as the 

product of ribosomal density and ribosomal occupancy. Since 

Ingolia et al.,24 focused on genes that were relatively free of 

repetitive sequences, we did not consider this dataset for our 

analyses.    

Protein half-life25 In vivo protein half-lives were determined by inhibiting protein 

synthesis with cycloheximide and then monitoring the 

abundance of each C-terminally TAP-tagged protein in the 

yeast genome by quantitative western blotting at three time 

points. We disregarded 366 proteins with a half-life of exactly 

300 minutes, as these values were assigned to stable proteins 

for which degradation curves could not be fitted by an 

exponential decay function. Further, we disregarded seven 

proteins with extremely long half-lives of >6000 minutes.  

Factors influencing Protein synthesis 

Translation initiation 

Poly(A) tail length26 Using polyadenylation state array (PASTA) analysis, which 

combines separation of cellular mRNA on poly(U) Sepharose 

with subsequent microarray analyses, the yeast transcriptome 
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Type of information (Source) Description of the data 

was surveyed and mRNA groups with tendencies toward either 

long or short tails during steady state growth were identified. 

RNA secondary structure 

(5'UTR and coding region)27 

Using parallel analysis of RNA structure (PARS) in vitro 

profiling of the secondary structure of yeast mRNAs at single 

nucleotide resolution was carried out. This involves deep 

sequencing the transcript fragments that were treated with 

RNase V1 (preferentially cleaves at double-stranded RNA) and 

S1 nuclease (preferentially cleaves single-stranded RNA). From 

this PARS score was estimated, which is a log2 of the ratio 

between the number of times the nucleotide immediately 

downstream of the inspected nucleotide was observed as the 

first base when treated with RNase V1 and the number of times 

it was observed in the S1 nuclease treated sample. PARs score 

represents the likelihood of each nucleotide in a single- or 

double-stranded conformation. From this, we computed average 

PARS scores across 5' UTRs and coding regions.  

5'UTR sequences28 Using a combination of 5' rapid amplification of cDNA ends 

(5'RACE) and RNA-sequencing, 5'UTR sequences of yeast 

protein coding genes was mapped.   

Translational efficiency29 Optimality of codon usage was estimated using normalized 

translational efficiency (nTE). The nTE reflects codon 

optimality based on the relative tRNA abundance (supply) over 

the cognate codon usage (demand). Therefore, codons whose 

cognate tRNA availability exceeds their relative usage are 

considered optimal. We used nTE averaged over the entire 

length of the coding sequence and individual nTE estimates of 

first 400 codons.   

Factors influencing Protein degradation 

Long N-terminal disorder30 Yeast proteins with long disordered tails of length >30 residues 

at the N-terminus were identified by inferring disordered status 
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Type of information (Source) Description of the data 

of every residue using three different disorder predictors. Minor 

stretches (upto three consecutive residues) of structured 

residues were allowed within the N-terminus disordered 

segment.  This means that the disordered stretch ended when 

encountering a minimum of four consecutive structured 

residues.  

Endoproteolytic sites30 Internal disordered segments of length >40 residues were 

identified as endoproteolytic sites. Similar to the identification 

of long N-terminal disorder, upto three consecutive structured 

residues were permitted in the identification of endoproteolytic 

sites.   

PEST motif We predicted PEST regions using epestfind with default 

parameters, as included in EMBOSS 6.5.731.  

Destruction box and KEN 

box30 

KEN box and destruction box motifs in yeast proteins were 

predicted using GPS-ARM 1.0 with default parameters32. 

Features related to evolution of protein sequences 

Protogenes33 Annotated yeast ORFs found only in yeast or only in the four 

closely related Saccharomyces sensu stricto species but not in 

the rest of the tested Ascomycota class were classified as 

protogenes. 

Paralogs 

 

Paralog proteins pairs were obtained by performing an all-

against-all pairwise alignments and subsequently clustering 

them using BLASTClust34. Sequences with at least 30% 

identity, covering 60% of length were classified as paralog 

pairs. Paralog pairs identified to have arisen from the yeast 

whole-genome duplication event were also added35.  

Orthologs36,37 One-to-one orthologs of budding yeast proteins from 74 

species, spanning 16 fungal classes (Fig. 7c; Supplementary 

Notes 3), were obtained from OMA browser (July 2013 
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Type of information (Source) Description of the data 

release). Orthologs were defined by OMA’s inference 

algorithm, which first infers homologous sequences by 

performing an all-against-all Smith-Waterman alignments 

between all sequences and retain significant matches. 

Subsequently, orthologous pairs (the subset of homologs related 

by speciation events) were inferred using mutually closest 

homologs based on evolutionary distances, taking into account 

distance inference uncertainty and the possibility of hidden 

paralogy due to differential gene losses.  

Yeast natural variation38 Missense variations identified by whole genome-sequences of 

39 diverse yeast strains (Sanger sequencing) were compiled to 

catalog amino acid substitutions. The yeast strains included the 

reference strain S288c and other lab strains, pathogenic strains 

and those involved in baking, wine, food spoilage, natural 

fermentation, sake and strains obtained from probiotic and plant 

isolates.    

Genome-scale datasets for Schizosaccharomyces pombe (Fission yeast) 

Protein abundance39 Protein abundance was estimated in S.pombe quiescent cells, 

24h after nitrogen removal using mass spectrometry (MS) 

analysis. By using absolute abundance of 39 proteins, which 

was determined by spiked-in heavy reference peptides, the 

summed MS-intensities of all peptides were translated to 

copies/cells for all proteins analysed. 

Ribosomal density40 Genome-wide translational profiling of vegetatively growing S. 

pombe cells was obtained using polysome fractionation, 

followed by a quantitative microarray analysis with RNA 

fractions representing different numbers of associated 

ribosomes. Ribosomal density was measured as the number of 

ribosomes per unit of transcript length.  

Protein half-life41 Using a label switch approach, yeast cells labelled with heavy 
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Type of information (Source) Description of the data 

isotopes were diluted in media with an excess of normal lysine. 

The decay of the heavy lysine signal in the proteome over time 

measured using high-resolution mass spectrometry-based 

proteomics was used to estimate protein half-lives.   
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Supplementary Table 2: List of primers used in this study 

Primer name Primer sequence Amplicon 

Primers for SNF5 repeat sequencing  

2324-TRsz-SNF5-F2 AGAGGCAATTGCTGGTTCAG PolyQ deletion check 

2325-TRsz-SNF5-R2 AGTTGAGGAAGTTGGCCAATAGT PolyQ deletion check 

Primers for SNF5 repeat deletion construction 

2355-dTR-SNF5-HYG-F AAAAAGAGATATATAACTTTTTT
AAGTGATCGGCTGGTAAATAGAC
TTATAACGAGTAGATGCCATCTTT
GTACAGCTTGCCT 

Hygromycin resistance 
 cassette 

2356-dTR-SNF5-HYG-R AAGGTCTTAGTTATGCTAGCCTGA
AATGTATTATTGTGTACAATATAT
CATCTAATGTTTCGCAGAGCCGTG
GCAGG 

Hygromycin resistance 
cassette 

2357-dTR-SNF5-F CAACTTAGAAACCAAATACAGCG
ACAACAGCAACAACAGTTTAGGC
ATCATGTGCAAATAGGACAAATA
CCGCAATCTCAGCAAGTTCCT 

Snf5 poly Q deletion  

Primers for tagged SNF5 construction 

4860-RG-SNF5-6xHA-F 

GAAGCGACATTGTTGACTAATAG
CAATAATGGTAGCAGTAACAATA
ACACACAGAATACATCCGGTTCT
GCTGCTAGATACC 

6X HA –KanR Tag  

4861-RG-SNF5-6xHA-R 

TACAAATTCTTCCACGGTTATTTA
CATCTCCGGTATATTTTATATATG
TGTATATATTTTGCATAGGCCACT
AGTGGATCTG 

6X HA –KanR Tag 

 

 


