Supporting Information

Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes

Huo-Lei Peng and Robert Callender

Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA

Table S1. Electronic transition energies of dihydronicotinamide related compounds obtained by computations at td-B3LYP/6-31g(d) level and from experimental. Numbers in parentheses are oscillator strength and extinction coefficients ($M^{-1}cm^{-1}$) respectively.

Compound	Electronic State	Energy (eV)	Energy (nm)	Experimental UV-vis Maximum		
1-methyl-1,4- dihydronicotinamide	S ₁ (π-π*)	3.747	331 (0.113)	356, Acetone(1)		
	S ₂ (n-π*)	4.514	275 (0.001)			
Twisted 1-methyl-1,4- dihydronicotinamide	S ₁ (π-π*)	3.652	340 (0.07)			
	S ₂ (n-π*)	4.489	276 (0.002)			
1-methyl-1,4- dihydropyridine	S ₁ (π-π*)	4.417	281 (0.034)	a. 270 (3000), MeOH(2) b. 278 (2500), c-hexane(3)		
1-methyl-3-acetyl-1,4- dihydropyridine	S ₁ (π-π*)	3.671	338 (0.138)	c. 371 (10400), EtOH(2, 4) 374, Acetonitrile(1)		
1-methyl-1,4,5,6-	S ₁ (n-π*)	4.701	264 (0)	d. 287 (19500), 95% EtOH(5)		
tetrahydronicotinamide	S ₂ (π-π*)	4.883	253 (0.365)	295, EtOH(6)		
	S ₁ (n-π*)	4.277	290 (0.067)†			
	S ₂ (π-π*)	4.475	277 (0.179)†			

Compounds measured in experimental:

- a. 1-methyl-4,4-dimethyl-1,4-dihydropyridine(2)
- b. 1,4-dihydropyridine(3)
- c. 1-benzyl-3-acetyl-1,4-dihydropyridine(2, 4)
- d. 1,4,5,6-tetrahydronicotinamide(5)
- + At 6-311++g(d,p) level.

State	ε	case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8
LE	vacuum	3.087	3.209	3.271	3.261	3.186	3.18	3.276	3.265
	4	3.103	3.149	3.21	3.203	3.177	3.178	3.246	3.265
	78	3.122	3.156	3.196	3.191	3.186	3.189	3.245	
СТ	vacuum	5.658	3.094	5.297	4.827	4.333	4.008	3.74	3.167
	4	4.989	3.284	4.814	4.5	4.27	4.032	3.851	3.167
	78	4.737	3.336	4.611	4.339	4.238	4.034	3.889	

Table S2. Energies (eV) of locally excited sates (LE) and charge transfer (CT) states in vacuum and in water with polarizable continuum model (PCM) at selected dielectric constant (ϵ).

REFERENCES:

- Brewster, M. E., A. Simay, K. Czako, D. Winwood, H. Farag and N. Bodor (1989) Reactivity of biologically important reduced pyridines. IV. Effect of substitution on ferricyanide-mediated oxidation rates of various 1,4-dihydropyridines. *J. Org. Chem.* 54, 3721-3726.
- 2. Kosower, E. M. and T. S. Sorensen (1962) The Synthesis and Properties of Some Simple 1,4-Dihydropyridines. *J. Org. Chem.* **27**, 3764-3771.
- 3. Cook, N. C. and J. E. Lyons (1965) 1,4-Dihydropyridine. J. Am. Chem. Soc. 87, 3283-3284.
- Anderson, A. G. and G. Berkelhammer (1958) A Study of the Primary Acid Reaction on Model Compounds of Reduced Diphosphopyridine Nucleotide1,2. *J. Am. Chem. Soc.* 80, 992-999.
- 5. Quan, P. M. and L. D. Quin (1966) 1,4,5,6-Tetrahydropyridines from Catalytic Reduction of Nicotinoyl Derivatives and Their Ring Opening with Hydrazine. *J. Org. Chem.* **31**, 2487-2490.
- 6. Marti, M., M. Viscontini and P. Karrer (1956) Dihydro-N-methyl-cyan-nicotinsäureamid und N-Methyl-1,4,5,6-tetrahydro-nicotinsäureamid. *Helv. Chim. Acta* **39**, 1451-1454.
- 7. Martens, F. M., J. W. Verhoeven, R. A. Gase, U. K. Pandit and T. J. de Boer (1978) On the question of one-electron transfer in the mechanism of reduction by nadh-models. *Tetrahedron* **34**, 443-446.

1-methyl-1,4-dihydronicotinamide

1-methyl-1,4,5,6-tetrahydronicotinamide

1-methyl-1,4-dihydropyridine

1-methyl-3-acetyl-1,4-dihydropyridine

Figure S1. Structures of dihydronicotinamide and related compounds.

Figure S2. Energetic comparison of LE and CT states in selected cases in water (PCM, ε=4).

Figure S3. Comparison of Energies of CT states in selected cases in vacuum and water (PCM, ε=4).

Figure S4. Correlation between LUMO energies and the reduction potentials (b) and the quenching constants (a) of selected quenchers. LUMO energies were calculated at B3LYP/6-31g(d) level. The reduction potentials and the quenching constants were from the reference (7). given Quenchers in the order figure are in of increasing 1. Trifluoroacetophanone, 2. Diethylfumarate, 3. Dimethylterephthalate, 4. 1-LUMO energy: Cyanonaphthalene, 5. Benzophenone, 6. Acetophenone, 7. Cyanobenzene, 8. E-stilbene, 9. Methylbenzoate, 10. Styrene, and 11. 1-methylnaphthalene.