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Table S1. Electronic transition energies of dihydronicotinamide related compounds obtained by 
computations at td-B3LYP/6-31g(d) level and from experimental. Numbers in parentheses are 
oscillator strength and extinction coefficients (M-1cm-1) respectively. 	
Compound	 Electronic	State	 Energy	(eV)	 Energy	(nm)	 Experimental	UV-vis	Maximum	

1-methyl-1,4-
dihydronicotinamide

S1	(π-π*)	 3.747	 331	(0.113)	 356,	Acetone(1)	

S2	(n-π*)	 4.514	 275	(0.001)	

Twisted	
1-methyl-1,4-
dihydronicotinamide

S1	(π-π*)	 3.652	 340	(0.07)	
S2	(n-π*)	 4.489	 276	(0.002)	

1-methyl-1,4-
dihydropyridine

S1	(π-π*)	 4.417	 281	(0.034)	 a. 270	(3000),	MeOH(2)
b. 278	(2500),	c-hexane(3)

1-methyl-3-acetyl-1,4-
dihydropyridine

S1	(π-π*)	 3.671	 338	(0.138)	 c. 371	(10400),	EtOH(2,	4)
374,	Acetonitrile(1)

1-methyl-1,4,5,6-
tetrahydronicotinamide

S1	(n-π*)	 4.701	 264	(0)	 d. 287	(19500),	95%	EtOH(5)

S2	(π-π*)	 4.883	 253	(0.365)	 295,	EtOH(6)	

S1	(n-π*)	 4.277	 290	(0.067)†	

S2	(π-π*)	 4.475	 277	(0.179)†	

Compounds measured in experimental:	
a. 1-methyl-4,4-dimethyl-1,4-dihydropyridine(2)
b. 1,4-dihydropyridine(3)
c. 1-benzyl-3-acetyl-1,4-dihydropyridine(2,	4)
d. 1,4,5,6-tetrahydronicotinamide(5)
†	At	6-311++g(d,p)	level.
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Table	S2.	Energies	(eV)	of	locally	excited	sates	(LE)	and	charge	transfer	(CT)	states	in	vacuum	
and	in	water	with	polarizable	continuum	model	(PCM)	at	selected	dielectric	constant	(ε).		
State	 ε	 case	1	 case	2	 case	3	 case	4	 case	5	 case	6	 	case	7	 case	8	

LE	 vacuum	 3.087	 3.209	 3.271	 3.261	 3.186	 3.18	 3.276	 3.265	

4	 3.103	 3.149	 3.21	 3.203	 3.177	 3.178	 3.246	 3.265	

78	 3.122	 3.156	 3.196	 3.191	 3.186	 3.189	 3.245	

CT	 vacuum	 5.658	 3.094	 5.297	 4.827	 4.333	 4.008	 3.74	 3.167	

4	 4.989	 3.284	 4.814	 4.5	 4.27	 4.032	 3.851	 3.167	

78	 4.737	 3.336	 4.611	 4.339	 4.238	 4.034	 3.889	
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Figure S1. Structures of dihydronicotinamide and related compounds.  
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1-methyl-1,4-dihydronicotinamide
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1-methyl-3-acetyl-1,4-dihydropyridine
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Figure S2. Energetic comparison of LE and CT states in selected cases in water (PCM, ε=4).
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Figure S3. Comparison of Energies of CT states in selected cases in vacuum and water (PCM, ε=4).
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Figure S4. Correlation between LUMO energies and the reduction potentials (b) and 
the quenching constants (a) of selected quenchers. LUMO energies were calculated at 
B3LYP/6-31g(d) level. The reduction potentials and the quenching constants were from the 
reference (7).  Quenchers in the figure are given in order of increasing 
LUMO energy: 1. Trifluoroacetophanone, 2. Diethylfumarate, 3. Dimethylterephthalate, 4. 1-
Cyanonaphthalene, 5. Benzophenone, 6. Acetophenone, 7. Cyanobenzene, 8. E-stilbene, 9. 
Methylbenzoate, 10. Styrene, and 11. 1-methylnaphthalene.  
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