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Supplementary	information	
	

Supplementary	Note	1	
	
In	the	supplementary	note,	we	highlighted	the	novel	genomic	regions	of	recurrent	focal	events	and	

candidate	genes	discovered	in	this	study.	Beside	the	commonly	observed	MNA,	11q	deletion	and	

1q	deletion	variations	in	neuroblastoma	(Supplementary Fig. 1),	focal	amplifications	of	ALK,	

CCND1,	LIN28B,	MDM2	and	19q13.42	observed	in	our	study	have	been	implicated	in	

neuroblastoma	previously	1‐5.	However,	to	our	knowledge,	recurrent	focal	amplifications	of	MYC,	

ZFHX3,	KRAS,	RRAS2	and	CYTH1	have	not	been	reported	in	neuroblastoma	primary	tumors	before.	

We	further	confirmed	that	the	amplified	genes	were	significantly	overexpressed	in	neuroblastoma	

tumors	and	cell	lines	by	examining	gene	expression	data	from	100	primary	tumors	and	29	cell	

lines	(Supplementary	Table	1). 

	

1.	Focal	amplifications	on	chromosome	2p	

A	total	of	237	cases	with	MNAs	(237/628,	37.7%)	were	detected.	Among	them,	218	exhibited	

high‐level	amplification	of	MYCN	(CNMYCN	>	4*CNBG),	and	19	had	low‐level	amplification	(CNMYCN	<	

4*CNBG).	In	addition	to	MNA	on	chromosome	2p,	25	cases	of	high‐level	ALK	amplification	

(Supplementary Fig. 2)	and	seven	cases	of	low‐level	ALK	amplification	were	detected	1,6,7.	All	of	

those	also	presented	MNA.	Focal	amplifications	of	2p25.1	and	2p24.1	were	also	recurrently	

detected	in	conjunction	with	MNA	in	this	study	(Supplementary Fig. 2).	A	few	previous	studies	

have	also	provided	evidence	that	these	regions	were	co‐amplified	with	MNA	7‐10.	In	our	study,	

2p25.1	amplification	was	observed	in	23	MNA	samples	(20/237;	9.7%),	which	generally	covered	a	

genomic	region	from	gene	HPCAL1	to	GREB1.	However,	in	most	of	the	cases	(15/20),	only	part	of	

this	region	were	amplified.		Amplification	of	the	consecutive	genes	HPCAL1‐ODC1‐NOL10	and	

ROCK2‐E2F6‐GREB1	was	observed	in	most	cases	(Supplementary	Table	2).	Overexpressed	ODC1	

was	associated	with	reduced	survival	in	neuroblastoma	patients,	and	has	been	reported	as	a	

critical	determinant	of	MYCN	oncogenesis	11.	ROCK2,	E2F6	and	GREB1	may	also	play	an	important	

role	in	tumor	genesis	12‐16.	The	amplification	of	2p24.1	(4/237,	1.7%)	was	also	described	

previously	7,8.	One	of	the	four	samples	with	2p24.1	amplification	has	mRNA	expression	data,	and	

only	HS1BP3	was	highly	overexpressed	in	the	amplified	region.		



	

2.	Focal	amplifications	on	other	genomic	regions	

MYC amplification: two cases of MYC high-level amplification were detected including one case 

showing both MYC and ZFHX3 high-level amplification (Supplementary Fig. 3). Two cases of low-

level MYC amplification were detected including one case showing both MYC and ZFHX3 amplification 

found another case showing both MYC and ZFHX3 low-level amplification. None of the four cases was 

observed with MNA. Amplification of MYC and ZFHX3 (ATBF1) has been reported in the SJNB12 cell 

line, but MYC amplification has not been observed in neuroblastoma primary tumors before 7,17. A 

previous study also reported that chromothripsis resulted in the amplification (low-level) of MYC in one 

case 18. In addition, MYC was highly expressed rather than MYCN in Neuroblastoma-derived cell lines 

lacking amplified MYCN 19,20. Here, our results showed MYC amplification existed not only in cell lines 

but also in neuroblastoma primary tumors, and suggest that MYC amplification may be a rare alternative 

mechanism instead of MNA in neuroblastoma carcinogenesis. 

	

ZFHX3	(ATBF1)	amplification:	two cases of ZFHX3 high-level amplification were detected including 

one case showing both MYC and ZFHX3 high-level amplification.	Seven	cases	were	found	with	low‐

level	ZFHX3	amplifications	and	only	one	of	them	exhibited	low‐level	MNA.	ZFHX3	has	been	

reported	to	function	as	a	tumor	suppressor	in	several	cancers	21,22.	ZFHX3	also	plays	a	role	in	

multiple	other	biological	processes	that	are	regulated	by	progesterone‐PR,	including	cell	

proliferation,	cell	differentiation	and	tumorigenesis	in	the	mammary	gland	23.	

	

KRAS	amplification:	two	cases	were	found	(Supplementary Fig. 3).	One	case	exhibited	MNA	and	

another	case	displayed	MDM2	amplification.	As	a	member	of	RAS	oncogene	family,	KRAS	

amplification	has	been	reported	in	a	variety	of	different	cancers	24‐26.	Moreover,	a	recent	study	

implicated	recurrent	new	mutations	of	KRAS	in	relapse	neuroblastomas	27.		

	

RRAS2	amplification:	one	case	was	found	(Supplementary Fig. 3).	RRAS2	amplification	was	also	

detected	in	the	cell	line,	CHLA‐136.	

	

CYTH1	amplification:	two	cases	were	found	and	both	displayed	MNA.	Members	of	this	family	

appear	to	mediate	the	regulation	of	protein	sorting	and	membrane	trafficking.	This	gene	is	highly	



expressed	in	natural	killer	and	peripheral	T	cells,	and	regulates	the	adhesiveness	of	integrins	at	

the	plasma	membrane	of	lymphocytes.	The	encoded	protein	is	83%	homologous	to	that	of	CYTH2	

(provided	by	RefSeq,	Aug	2008).	

	

MDM2	amplification:	five	cases	were	detected.	Only	one	case	displayed	MNA	(Supplementary	

Fig.	3).		MDM2	amplification	was	also	detected	in	cell	lines,	including	NGP	and	SMS‐KAN	(both	cell	

lines	exhibited	MNA	and	11q	deletion).	MDM2	(MDM2	oncogene,	E3	ubiquitin	protein	ligase)	can	

promote	tumor	formation	by	targeting	tumor	suppressors,	such	as	p53,	for	proteasomal	

degradation.	This	gene	is	itself	transcriptionally‐regulated	by	p53.	MDM2	amplification	has	been	

reported	previously	in	neuroblastoma	as	a	rare	event	4,28‐31.	

	

CCND1	amplification:	two	cases	of	high‐level	amplification	were	detected.	Both	cases	showed	

MNA	(Supplementary	Fig.	3).	CCND1	amplification	has	been	reported	in	diverse	tumor	types	32,33,	

and	has	been	reported	as	a	rare	event	in	neuroblastoma2,7,34.	However,	besides	the	two	high‐level	

amplification	of	CCND1,	we	found	56	cases	with	low‐level	CCND1	amplification	(56/628,	8.9%)	in	

our	study.	Moreover,	we	found	low‐level	CCND1	amplification	co‐occurred	with	11q	deletion	in	

most	cases	(53/56,	94.6%,	Supplementary	Data	1	and	Fig.	3).	 
	

19q13.42	amplification:	seven	cases	were	found.	The	19q13.42	region	contains	a	cluster	of	

microRNA	coding	genes	(C19MC)	5,35,36,	and	its	amplification	appears	to	be	present	in	pediatric	

embryonal	tumors	with	multilayered	rosettes	including	Embryonal	tumors	with	abundant	

neuropil	and	true	rosettes	(ependymoblastoma	and	ETANTR)	35,37‐39.	Histologically,	ETANTR	

combines	the	features	of	a	neuroblastoma	and	an	ependymoblastoma,	by	showing	fine	fibrillary	

neuropil‐like	areas	admixed	with	cellular	regions	and	ependymoblastoma‐like	rosettes	40.	

Accordingly,	in	our	study,	the	seven	cases	with	19q13.42	amplification	also	show	the	genetic	

feathers	of	neuroblastoma	such	as	MNA,	MDM2	amplification,	17p	gain	and	1p	deletion.	None	of	

them	was	observed	with	11q	deletion.	Interesting,	three	of	the	seven	cases	displayed	evidence	of	

chromothripsis	in	chromosome	19,	suggesting	chromothripsis	may	be	an	important	cause	of	

19q13.42	amplification.	

	



LIN28B	amplification:	one	case	was	found	that	displayed	MNA.	Three	cases	were	identified	with	

low‐level	HACE1‐LIN28B	amplification.	Among	them,	one	exhibited	MNA.	Common	variants	within	

HACE1‐LIN28B	locus	have	been	shown	to	contribute	to	neuroblastoma	susceptibility.	Significant	

growth	inhibition	was	observed	upon	depletion	of	LIN28B	in	neuroblastoma	cell	lines,	and	low	

HACE1	and	high	LIN28B	expression	were	associated	with	worse	overall	survival	in	

neuroblastomas	41.	The	LIN28B	amplification	has	been	reported	previously	as	a	rare	event	3.		

	

3.	Focal	amplifications	detected	in	cell	lines	

MYCM+ALK+MEIS1+ANTXR1	amplification:	MYCN	and	ALK	were	co‐amplified	in	three	cell	lines,	

CHLA‐100,	IMR5	and	IMR32.	Interestingly,	all	of	them	also	exhibited	focal	amplifications	of	MEIS1	

and	ANTXR1,	which	were	not	detected	in	tumors.	MEIS1	is	a	homeobox	gene	and	has	been	

associated	with	many	cancers.	MEIS1	amplification	was	also	detected	in	IMR32	previously	42‐44.	

ANTXR1	also	involves	in	cell	attachment	and	migration,	and	has	been	associated	with	many	

cancers	45‐47.	

	

Other	focal	amplifications:	other	focal	amplifications	include	MDM2	and	CDK4	co‐amplification	

in	NGP,	SMS‐KAN	and	RRAS	amplification	in	CHLA‐136,	MET	amplification	in	CHP‐134,	and	focal	

amplification	of	GBP2,	GBP4,	GBP5	and	GBP7	in	CHP‐134	and	SMS‐KCNR.		

	

4.	Focal	amplifications	confirmed	by	gene	expression	data	

Amplifications	of	chromosome	2p:	three	tumor	samples	and	two	cell	lines	with	ALK	

amplification	have	mRNA	expression	data.	The	expression	levels	of	ALK	in	the	three	tumor	

samples	with	ALK	amplification	were	much	higher	than	the	tumor	samples	without	ALK	

amplification.		Though	much	lower	than	in	tumor	samples	with	ALK	amplification,	the	expression	

levels	of	ALK	in	two	cell	lines	with	ALK	amplification	were	also	higher	(Supplementary	Fig.	4).	

Among	the	three	tumor	samples	with	ALK	amplification,	X1581425224_A	displayed	amplifications	

of	2p25.1	(ROCK2‐E2F6‐GREB1)	and	2p24.1	(HS1BP3).		X1800835432_A	displayed	amplification	of	

2p25.1	(ODC1).	For	the	amplified	region	of	sample	X1581425224_A	on	2p25.1,	ROCK2	and	GREB1	

showed	an	elevated	expression	level	of	mRNAs,	whereas	E2F6	did	not.	For	the	amplified	region	of	

sample	X1581425224_A	on	2p24.1	(chr2:20,551,993‐21,505,938),	only	HS1BP3	was	



overexpressed.	For	the	amplified	region	of	X1800835432_A	on	2p25.1,	only	ODC1	was	

overexpressed	(Supplementary	Fig.	4).		

	

CCND1	amplification	(low	level):	six	tumor	samples	with	low	CCND1	amplification	have	mRNA	

expression	data.	The	expression	level	of	CCND	in	the	six	tumor	samples	was	much	higher	than	

other	tumor	samples	and	the	cell	line	samples	(Supplementary	Fig.	4).			

	

MYC	amplification:	one	tumor	sample	with	MYC	amplification	has	mRNA	expression	data.	The	

expression	of	MYC	in	this	tumor	sample	was	much	higher	than	other	tumor	samples	and	the	cell	

line	samples	(Supplementary	Fig.	4).		

	

LIN28B	amplification:	one	tumor	sample	with	LIN28B	amplification	has	mRNA	expression	data.	

The	expression	of	LIN28B	in	this	tumor	sample	was	significantly	higher	compare	to	other	tumor	

samples	and	the	cell	line	samples	(Supplementary	Fig.	4).		

	

CYTH1	amplification:	one	tumor	sample	with	CYTH1	amplification	has	mRNA	expression	data.	

The	amplified	region	is	chr17,	76,509,989‐76,758,251	including	DNAH17	and	CYTH1,	however,	

only	the	expression	of	CYTH1	in	this	tumor	sample	was	significantly	higher	than	other	tumor	

samples	and	the	cell	line	samples	(Supplementary	Fig.	4).		

	

Focal	amplifications	in	Cell	lines:	the	amplifications	of	ALK,	MEIS1,	ANTXR1,	MDM2,	CDK4	and	

FOXN4	in	cell	lines,	were	also	confirmed	by	expression	data	(Supplementary	Fig.	4).	

	

5.	Focal	deletions	

3p21.3	deletion:	3p21.3	deletion	has	been	reported	in	many	cancers	including	neuroblastoma	48‐

50.	Here,	we	found	four	tumors	and	three	cell	lines	(NGP,	NMB,	SMS‐KAN)	with	3p21.3	deletion	

(Supplementary	Fig.	5).	All	of	them	exhibited	11q	deletion.	It	has	been	reported	that	3p	loss	is	

associated	with	11q	loss,	suggesting	that	the	tumor	suppressors	gene	located	in	3p21.3	and	11q	

may	interact	with	each	other	in	neuroblastoma	51,52.	

	



9p21.3	deletion:	9p21.3	deletion,	which	occurs	in	many	cancers,	has	been	reported	as	an	

uncommon	event	in	neuroblastoma	53‐61	(Supplementary	Fig.	5).	Genes	located	in	this	region	are	

MTAP,	CDKN2A	and	CDKN2B.	In	this	study,	26	cases	of	9p21.3	deletion	have	been	detected.		

	

PTPRD	microdeletion:	Stallings	et	al	first	reported	the	PTPRD	microdeletion	of	neuroblastoma	in	

three	tumors	and	three	cell	lines	by	array	CGH,	and	Molenaar	et	al	further	confirmed	this	PTPRD	

defect	by	whole	genome	sequencing	18,30.	Furthermore,	Meehan	et	al	suggested	that	PTPRD	plays	a	

tumor	suppressor	role	through	AURKA	dephosphorylation	and	destabilization	and	a	downstream	

destabilization	of	N‐MYC	in	neuroblastoma	62.	In	this	study,	we	found	17	tumors	with	PTPRD	

microdeletion	(Supplementary	Fig.	6).	14	of	them	exhibited	11q	deletion,	and	only	one	of	them	

displayed	MNA.	Besides	the	previously	reported	cell	lines	(KELLY,	NGP,	SK‐N‐AS)	30,	we	also	found	

PTPRD	microdeletion	in	cell	lines	CHP‐134,	CHP‐212,	NMB,	SMS‐KCNR.	

	

6.	Chromothripsis		

Chromothripsis	is	a	shredding	of	chromosomal	regions	and	subsequent	random	reassembly	of	the	

fragments,	which	leads	to	multiple	segmental	Gains	and/or	Losses	including	loss	of	tumor	

suppressors	and	oncogene	amplifications	63,64.	A	previous	study	suggested	that	the	neuroblastoma	

with	chromothripsis	were	associated	with	poor	prognosis	18.	While	chromothripsis	was	typically	

identified	by	whole	genome	sequencing	18,	several	hallmarks	of	chromothripsis	can	be	observed	in	

our	study	such	as	alternating	copy	number	states,	loss	of	heterozygosity	and	high	level	of	

breakpoints	within	confined	chromosomal	regions	65,66.		

	

In	this	study,	we	found	46	(45/628,	7.2%)	tumors	showing	strong	evidence	of	genomic	

catastrophes	with	26	of	them	(41/46,	89.1%)	having	MNA	or	11q	deletion	(Supplementary	Fig.	

7).	13	tumors	(13/45,	28.9%)	have	undergone	chromothripsis	in	chromosome	5,	including	5p.	

The	frequency	is	very	similar	with	the	previous	study	of	Molenaar	et	al	(3/10,	30%)	18.	12	tumors	

(12/45,	26.7%)	have	undergone	chromothripsis	in	chromosome	2,	including	2p.	All	of	them	show	

MNA,	and	seven	of	them	show	ALK	amplification,	suggesting	that	chromothripsis	in	chromosome	2	

may	result	in	the	amplification	of	MYCN	and	ALK.	Other	chromosomes	undergoing	chromothripsis	



includes	chromosomal	1,	6,	7,	11,	12,	13,	17,	18,	19.	Interestingly,	chromothripsis	in	chromosome	

19	may	lead	to	the	amplification	of	19q13.42. 
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Supplementary	Figure	1.	BAF	and	LRR	plots	of	two	representative	samples	of	MYCN	

amplification	and	11q	deletion.	(a)	MYCN	amplification	with	1p	deletion	and	17q	gain.	(b)	11q	

deletion	with	17q	gain.	

	 	



a	

	

	

b	

	
	
	
Supplementary	Figure	2.	BAF	and	LRR	plots	of	representative	samples	of	ALK	amplification	

and	2p25.1	amplification.	(a)	ALK	+	MYCN	amplification	(two	focal	regions	with	significantly	

elevated	LRR	value	on	chr	2	p).	(b)	2p25.1	amplification	with	MYCN	amplification	(2p25.1	is	very	

close	to	MYCN	(2p24.1)).	
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Supplementary	Figure	3.	BAF	and	LRR	plots	of	four	representative	samples	on	genomic	

regions	other	than	2p.	(a)	MYC+ZFHX3	amplification	(MYC	amplification	on	chr	8,	ZFHX3	

amplification	on	chr	16).	(b)	Co‐occurrence	of	low‐level	CCND1	amplification	and	11q	deletion.	(c)	

KRAS	amplification	(chr	12).	(d)	RRAS2	amplification	(chr	11).	
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Supplementary	Figure	5.	BAF	and	LRR	plots	of	two	representative	samples	of	focal	deletion.	

(a)	9p21.3	deletion.	(b)	3p21.3	deletion.	
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Supplementary	Figure	9.	Quantile‐Quantile	plot	of	the	expected	and	observed	P‐values.	

SNPs	passing	quality	control	are	plotted.	(a)	11q‐deletion	GWAS.	(b)	MNA	GWAS.	(c)	1p‐deletion	

GWAS.	
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Supplementary	Table	1.	Significance	of	differential	gene	expression	between	

CN‐amplification	samples	and	no‐amplification	samples.		

	

Gene Type n1/n2 P 

ALK Tumor 3/97 9.33E-07 
ALK Celline 3/35 0.007 

CCND1 Tumor 6/94 0.014 
MYC Tumor 1/99 < 2.2E-16 

LIN28B Tumor 1/99 < 2.2E-16 
ODC1 Tumor 1/99 < 2.2E-16 

ROCK2 Tumor 1/99 < 2.2E-16 
E2F6 Tumor 1/99 2.05E-14 

GREB1 Tumor 1/99 < 2.2E-16 
HS1BP3 Tumor 1/99 < 2.2E-16 
CYTH1 Tumor 1/99 < 2.2E-16 
MEIS1 Celline 3/35 1.97E-05 

ANTXR1 Celline 3/35 0.038 
MDM2 Celline 2/36 0.079 
CDK4 Celline 2/36 4.28E-4 

	
n1/n2:	number	of	samples	with	CN	amplification/number	of	samples	without	CN	
amplification	
P:	Student's	t‐test	(one	sample	t‐test	was	used	for	n1=1;		Welch	Two	Sample	t‐test	
was	used	for	n1>1)	
	 	



Supplementary	Table	2.	Recurrently	amplified	focal	regions	on	chr	2p	in	

samples	with	MNA.	Star	sign	denotes	the	gene	is	partially	amplified.	

Sample ID p25.1 p24.1 
X1581425402_A HPCAL1 ODC1 NOL10 ROCK2 E2F6 GREB1 

X1552034382_A HPCAL1 ODC1 

X1552034339_A HS1BP3 

X1581417155_A HS1BP3 

X1552034137_A HPCAL1 ODC1 NOL10 

X1581994342_A NOL10 ROCK2 E2F6 

X1581994579_A HPCAL1 ODC1 NOL10 HS1BP3 

X1581425084_A HPCAL1 ODC1 ROCK2* E2F6 GREB1* 

X1581425224_A NOL10* ROCK2 E2F6 GREB1 HS1BP3 

X1800835432_A HPCAL1 ODC1 NOL10 

X1800835470_A NOL10 ROCK2 E2F6 GREB1* 

X1544641163_A HPCAL1 ODC1 NOL10 ROCK2 E2F6 GREB1 

X1565901521_A HPCAL1 ODC1 NOL10 ROCK2 E2F6 GREB1 

X1562865280_A HPCAL1 ODC1 NOL10 ROCK2 E2F6 

X4157398460_A HPCAL1 ODC1 

X4157398166_A HPCAL1* ODC1 NOL10 ROCK2 E2F6 GREB1 

X4157398355_B NOL10 ROCK2 E2F6 GREB1 

X1581417389_A HPCAL1 ODC1 NOL10 ROCK2 E2F6 GREB1 

X1565919582_A HPCAL1 ODC1 E2F6 

X1581425371_A E2F6 GREB1 

X1565919524_A ROCK2* E2F6 

X1656298592_A HPCAL1 ODC1 NOL10 ROCK2 E2F6 GREB1  

X3999080149_R10C02 HPCAL1* ODC1 NOL10 ROCK2 E2F6 GREB1  

X3999081045_R10C02 HPCAL1 ODC1 NOL10*     

X3999081076_R03C01 HPCAL1* ODC1 NOL10*     

	
	 	



Supplementary	Table	3.	Association	results	of	neuroblastoma	risk	loci.		

	

SNP A1/A2 
11q-del GWAS MNA GWAS 1p-del GWAS 
OR P OR P OR P 

11q22.2 MMP20     
rs10895322 G/A 2.858 2.62E-09 1.058 0.755 1.264 0.458 
rs3781788 T/C 2.505 2.46E-08 1.117 0.463 1.328 0.288 
rs2280211 C/T 2.604 3.11E-09 1.102 0.522 1.417 0.181 
2q35 BARD1     
rs3768716 G/A 1.471 8.67E-03 2.004 7.03E-14 2.035 6.64E-05 
rs17487792 T/C 1.450 1.18E-02 2.007 5.99E-14 1.956 1.51E-04 
rs7587476 T/C 1.452 9.61E-03 1.969 1.52E-13 1.944 1.53E-04 

6p22.3 CASC15     
rs4712653 C/T 1.645 2.92E-04 1.858 1.47E-11 2.674 5.87E-08 
rs9295536 A/C 1.690 9.08E-05 1.757 3.78E-10 2.471 2.04E-07 
rs6939340 G/A 1.708 1.05E-04 1.783 2.50E-10 2.505 3.31E-07 

11p15.4 LMO1     
rs110419 A/G 1.572 8.96E-04 1.160 0.101 1.16 0.911 
	
A1/A2:	risk	allele/protective	allele.	

P: P-value calculated by logistic regression test. 

Association	results	are	reported	from	the	newly	discovered	MMP20	locus,	and	three	

previously	reported	loci	including	BARD1,	CASC15,	LMO1.	(Previously	identified	

gene	loci	HACE1‐LIN28B	and	HSD17B12	were	excluded,	as	no	significant	SNP	was	

observed	at	these	loci.)	

	 	



Supplementary	Table	4.	Pairwise	interaction	between	most	significant	SNPs	at	

four	risk	loci	(case/control).	

	
CHR1 SNP1 Gene1 CHR2 SNP2 Gene2 OR P P-adj 

2 rs3768716 BARD1 6 rs4712653 CASC15 1.262 0.286 1 
2 rs3768716 BARD1 11 rs110419 LMO1 1.093 0.675 1 
2 rs3768716 BARD1 11 rs10895322 MMP20 0.634 0.122 0.732 
6 rs4712653 CASC15 11 rs110419 LMO1 0.869 0.485 1 
6 rs4712653 CASC15 11 rs10895322 MMP20 0.872 0.620 1 

11 rs110419 LMO1 11 rs10895322 MMP20 0.792 0.362 1 
	
P:	P‐value	from	–‐epistasis	option	in	PLINK.	

P‐adj:	P‐value	adjusted	by	Bonferroni	correction.	

	
	
	
	
	
Supplementary	Table	5.	Pairwise	interaction	between	most	significant	SNPs	at	

four	risk	loci	(case‐only).	

	
CHR1 SNP1 Gene1 CHR2 SNP2 Gene2 P P-adj 

2 rs3768716 BARD1 6 rs4712653 CASC15 0.193 1 
2 rs3768716 BARD1 11 rs110419 LMO1 0.234 1 
2 rs3768716 BARD1 11 rs10895322 MMP20 0.163 0.978 
6 rs4712653 CASC15 11 rs110419 LMO1 0.471 1 
6 rs4712653 CASC15 11 rs10895322 MMP20 0.611 1 

11 rs110419 LMO1 11 rs10895322 MMP20 0.240 1 
	
P:	P‐value	from	–‐fast‐epistasis	and	‐‐case‐only	options	in	PLINK.	

P‐adj:	P‐value	adjusted	by	Bonferroni	correction.	

	 	



Supplementary	Table	6.	Association	results	of	11q11.2	(MMP20)	locus	in	the	
GWAS	of	113	11q‐deletions	neuroblastomas	and	282	controls	(78	11q	normal	
and	204	MNA	neuroblastomas).		
	
CHR SNP POS A1 A2 P OR 

11 rs10895322 102470256 G A 5.50E-5 2.811 
11 rs3781788 102477556 T C 3.92E-4 2.257 
11 rs2280211 102488131 C T 7.33E-5 2.474 

	
P: P-value calculated by logistic regression test. 
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