
The draft genome sequence of a desert tree Populus pruinosa 1 

Wenlu Yang1, Kun Wang1, Jian Zhang2, Jianchao Ma2, Jianquan Liu1,2, Tao Ma1* 2 

 3 

1MOE Key Laboratory for Bio-resources and Eco-environment, College of Life 4 

Science, Sichuan University, Chengdu, China 5 

2State Key Laboratory of Grassland Agro-Ecosystem, College of Life Science, Lanzhou 6 

University, Lanzhou, China 7 

*Correspondence should be addressed to T. M. (matao.yz@gmail.com) 8 

  9 

Manuscript Click here to download Manuscript PprGenome-V11-
mauscript.pdf

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/giga/download.aspx?id=13703&guid=0858e1f3-7817-444c-8427-42c518fa1c9e&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=13703&guid=0858e1f3-7817-444c-8427-42c518fa1c9e&scheme=1


Abstract 10 

Background 11 

Populus pruinosa is a large tree that grows in deserts and shows distinct differences in 12 

both morphology and adaptation from those of its sister species, P. euphratica. Here we 13 

present a draft genome sequence for P. pruinosa and examine genomic variations 14 

between the two species. 15 

Findings 16 

A total of 60 Gb of clean reads from whole-genome sequencing of a P. pruinosa 17 

individual were generated using the Illumina HiSeq2000 platform. The assembled 18 

genome is 479.3 Mb in length, with an N50 contig size of 14.0 kb and a scaffold size 19 

of 698.5 kb. 45.47% of the genome is composed of repetitive elements. We predicted 20 

35,131 protein-coding genes, of which 88.06% were functionally annotated. Gene 21 

family clustering revealed 224 unique and 640 expanded gene families in the P. 22 

pruinosa genome. Further evolutionary analysis identified numerous genes with 23 

elevated values for pairwise genetic differentiation between P. pruinosa and P. 24 

euphratica.  25 

Conclusions 26 

We provide the genome sequence and gene annotation for P. pruinosa. A large number 27 

of genetic variations were recovered by comparison of the genomes between P. 28 

pruinosa and P. euphratica. These variations will provide a valuable resource for 29 

studying the genetic bases for the phenotypic and adaptive divergence of the two sister 30 

species.  31 
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Background 35 

Poplars (Populus spp.) are widely distributed and cultivated, and they have both 36 

economic and ecological importance. Many resequencing based studies have been 37 

conducted to identify genetic variations responsible for their phenotypic and adaptive 38 

diversity observed in nature [1-4]. However, comparative studies based on de novo 39 

genome assemblies are still in their infancy, since presently only two reference genomes 40 

are available for poplar species, namely P. trichocarpa (Torr. & Gray) [5] and P. 41 

euphratica Oliv. [6]. Further development of genome resources will offer a unique 42 

opportunity for comparative genomics and evolutionary studies within this tree genus. 43 

P. pruinosa Schrenk, the sister species of P. euphratica [7], is a large tree distributed 44 

in the deserts of western China and adjacent regions [8]. These two species are 45 

morphologically well differentiated. The leaves of P. pruinosa are ovate or kidney-46 

shaped with thick hairs, whereas P. euphratica has glabrous leaves with heteroblastic 47 

development. Although both species are well adapted to extreme desert environments, 48 

they grow in the distinct desert habitats: P. pruinosa is distributed in deserts where there 49 

is highly saline underground water close to the surface, while P. euphratica occurs in 50 

dry deserts in which the water is deep underground and less saline [8-10]. Previous 51 

comparisons of the transcriptomes of these two sister species suggest that they may 52 

have developed enough genetic divergence to make it possible for them to adapt to 53 

these distinct desert habitats [9, 10]. Genomic resources and comparative genomic 54 

analysis of these two species would accelerate our understanding of the processes of 55 

genomic evolution underlying their phenotypic and adaptive divergence. Here we 56 

report a draft genome assembly for P. pruinosa and present an initial comparative 57 

genomics analysis of P. pruinosa and P. euphratica. We recovered a large number of 58 

genetic variations including high level of heterozygosity, several genes undergone rapid 59 

evolution and numerous gene families unique and expanded in P. pruinosa genome. 60 
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Data description 62 

Samples and Sequencing 63 

High-quality genomic DNA was extracted from the leaf tissues of a single P. pruinosa 64 

tree (NCBI Taxonomy ID: 492479) collected in Xinjiang, China, using the cetyl 65 

trimethylammonium bromide (CTAB) method. Sequencing libraries with different 66 

insert sizes were constructed according to the Illumina protocol. Briefly, for paired-end 67 

libraries with insert sizes ranging from 158 to 780 bp, DNA was fragmented, end 68 

repaired, A-tailed and ligated to Illumina paired-end adapters (Illumina). The ligated 69 

fragments were size selected on agarose gel and amplified by ligation-mediated PCR 70 

to produce the corresponding libraries. For mate pair libraries (2 to 20 kb), about 20-50 71 

μg genomic DNA was fragmented using nebulization for 2 kb or HydroShear (Covaris) 72 

for 5, 10 and 20 kb. Next, the DNA fragments were end-repaired using biotinylated 73 

nucleotide analogues and purified using QIAquick PCR Purification Kit (Qiagen). Then 74 

the target fragments were selected on agarose gel and circularized by intramolecular 75 

ligation. Circular DNA was fragmented (Covaris) and biotinylated fragments were 76 

purified with magnetic beads (Invitrogen), end-repaired, A-tailed and ligated to 77 

Illumina paired-end adapters, size-selected again and purified with QIAquick Gel 78 

Extraction kit (QIAGEN). All of the above libraries were sequenced on an Illumina 79 

HiSeq 2000 platform. For the data filtering process, we discarded reads that met either 80 

of the following criteria: (1) reads with ≥ 10% unidentified nucleotides; (2) reads 81 

from paired-end libraries having more than 40% bases with Phred quality < 8, and reads 82 

from mate pair libraries that contained more than 60% bases with the quality < 8; (3) 83 

reads with more than 10 bp aligned to the adapter sequence, allowing < 4 bp mismatch; 84 

(4) reads from paired-end libraries that overlapped ≥ 10 bp with the corresponding 85 

paired end. We also corrected the reads containing sequencing errors and removed the 86 

duplicates introduced by PCR amplification in paired reads using Lighter v1.0.7 [11] 87 

and FastUniq v1.1 [12], respectively. Finally, ~60 Gb of clean data (Additional file 1: 88 

Table S1) were obtained for the de novo assembly of the P. pruinosa genome. 89 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Clean reads obtained from paired-end libraries were subjected to 17-mer frequency 90 

distribution analysis with KmerFreq_AR [13]. Analysis parameters were set at -k 17 -t 91 

10 -q 33, and the final result was plotted as a frequency graph (Additional file 1: Figure 92 

S1). Two distinctive peaks observed from the distribution curve demonstrated the high 93 

heterozygosity of the P. pruinosa genome. To prevent the deviation of k-mer based 94 

methods on the estimation of genome size, we determined the genome size of P. 95 

pruinosa with flow cytometry, using Vigna radiata as reference standard and propidium 96 

iodide as the stain. Our flow cytometry analysis showed that the genome size of P. 97 

pruinosa was approximately 590 Mb (Additional file 1: Figure S2).  98 

In addition, three tissues (leaf, phloem and xylem) of a 2-year-old P. pruinosa plant 99 

collected from Tarim Basin desert in Xinjiang were harvested and flash frozen in liquid 100 

nitrogen, and then the RNA were extracted using CTAB method [14]. RNA-seq libraries 101 

were constructed using NEB Next Ultra Directional RNA Library Prep Kit for Illumina 102 

(NEB, Ispawich, USA) according to the manufacturer’s instructions, and libraries were 103 

sequenced using an Illumina HiSeq 2500 platform with a read length of 2×125 bp. Over 104 

38 million paired-end reads were generated for each sample (Additional file 1: Table 105 

S2). We next assembled these RNA-seq reads using Trinity v2.1.1 [15] with the default 106 

parameters and reduced the redundancy of transcript sequences (>95% similarity) using 107 

CD-Hit v4.6.1 [16]. The software TransDecoder v2.1.0 [17] was used to identify 108 

candidate coding regions within these transcript sequences. Finally, a total of 111,538 109 

unigenes were obtained for subsequent evaluation of gene space completeness of our 110 

genome assembly and transcriptome-based gene prediction.  111 

Genome assembly 112 

The P. pruinosa genome was de novo assembled by Platanus v1.2.1 [18] with default 113 

parameter (-k 32), which is optimized for highly heterozygous diploid genomes. Briefly, 114 

the clean reads derived from paired-end libraries were firstly split into k-mers to 115 

construct de Bruijn graphs and merged into distinct contigs based on overlap 116 
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information. All reads from paired-end and mate pair libraries were then aligned against 117 

the contigs and the paired relationships were used to link contigs into scaffolds. Finally, 118 

the intra-scaffold gaps were closed by local assembly implemented in GapCloser v1.12 119 

[19] using the paired-end reads for which one end uniquely mapped to a contig but the 120 

other end was located within a gap. After discarding the scaffolds smaller than 200 bp, 121 

we yielded a draft assembly with a total length of 479.3 Mb (Table 1), which covers 122 

85% of the predicted genome size of P. pruinosa. The contig and scaffold N50 sizes 123 

were 14.0 kb and 698.5 kb respectively, while the unclosed gap regions represent 6.08% 124 

of the assembly (Additional file 1: Table S3). The distribution of the average GC 125 

content of the P. pruinosa genome (mean: 31.8%) is similar to that for the P. euphratica 126 

genome [6] (32.1%) and the P. trichocarpa genome [5] (33.6%) (Additional file 1: 127 

Figure S3). 128 

To evaluate the completeness of this assembly, we first examined the coverage of 129 

highly conserved genes using BUSCO [20]. The result showed that 922 out of the 956 130 

conserved genes (96.44%) could be found in our assembly, of which 699 were single 131 

and 223 were duplicated, and only 10 (1.05%) genes had fragmented matches 132 

(Additional file 1: Table S4). These coverage values were comparable to estimates for 133 

the P. euphratica and P. trichocarpa genomes. Furthermore, the 111,538 P. pruinosa 134 

unigenes obtained in this study and the protein-coding genes predicted in the P. 135 

euphratica and P. trichocarpa genomes [5, 6] were aligned to our genome assembly 136 

using the BLAT algorithm with default parameters. Statistics analysis were done at 137 

different levels of percentage of sequence homology and percentage of coverage. The 138 

results showed that our assembly covered approximately 90% of the P. pruinosa 139 

unigenes, 99% and 98% of the protein-coding genes in P. euphratica and P. trichocarpa 140 

respectively (Additional file 1: Table S5). Finally, we applied the FRC v1.3.0 (Feature-141 

Response Curves) method [21] to evaluate the trade-off between the contiguity and 142 

correctness of our assembly. This method is based on a prediction of assembly 143 

correctness by identifying on each de novo assembled scaffold, ‘features’ representing 144 

potential errors or complications during the assembly process. Evaluation using FRC 145 
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method and our genome sequencing reads indicated that the P. pruinosa genome 146 

assembly certainly generated a better FRCurve than the other three Salicaceae species 147 

assemblies (Additional file 1: Figure S4), suggesting that the continuity of our assembly 148 

is acceptable. In summary, all of these statistics revealed that our draft genome sequence 149 

has high contiguity, accuracy, and more important, high degree of gene space 150 

completeness for effective gene detection. 151 

We mapped the clean reads from the paired-end libraries to the P. pruinosa genome 152 

using the Burrows-Wheeler Aligner (BWA v0.7.12-r1044) [22] and found that the 153 

sequencing depth for 95.3% of the assembly was more than 20-fold (Additional file 1: 154 

Figure S5), ensuring a high level of accuracy at the nucleotide level. We also performed 155 

variant calling using the Genome Analysis Toolkit (GATK v3.5) [23]. A total of 3.11 156 

million heterozygous single nucleotide variants (SNVs) were obtained after strict 157 

quality control and filtering, which revealed that the heterozygosity level of the P. 158 

pruinosa genome was approximately 0.80%. 159 

Repeat annotation 160 

Repetitive sequences and transposable elements (TEs) in the P. pruinosa genome were 161 

identified using a combination of de novo and homology-based approaches at both the 162 

DNA and the protein level. Initially, we built a de novo repeat library for P. pruinosa 163 

using RepeatModeler v1.0.8 [24] with default parameters. For identification and 164 

classification of transposable elements at the DNA level, RepeatMasker [24] was 165 

applied to map our assembly against both the databases that we had built and the known 166 

Repbase [25] transposable element (TE) library. Next we executed RepeatProteinMask 167 

[24] using a WU-BLASTX search against the TE protein database to further identify 168 

repeats at the protein level. In addition, we annotated tandem repeats using the software 169 

Tandem Repeat Finder (TRF v4.07b) [26]. In total, the combined non-redundant results 170 

showed that approximately 45% of the P. pruinosa genome assembly is composed of 171 

repetitive elements (Additional file 1: Table S6), a value similar to that for the P. 172 
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euphratica genome (44%). Long terminal repeats (LTRs) were the most abundant 173 

repeat class, accounting for 67.03% of repetitive sequences representing 29.82% of the 174 

genome (Additional file 1: Table S7). 175 

Gene annotation 176 

We conducted the gene annotation in the P. pruinosa genome by combining homology-177 

based, de novo and transcriptome-based methods. For homology-based prediction, 178 

protein sequences from six sequenced plants (P. euphratica [6], P. trichocarpa [5], 179 

Ricinus communis [27], Arabidopsis thaliana [28], Carica papaya [29] and Eucalyptus 180 

grandis [30]) were aligned to the P. pruinosa genome using TBLASTN v2.2.26 [31]. 181 

The homologous genome sequences were then aligned against the matching proteins 182 

using GeneWise v2.4.1 [32] to obtain accurate spliced alignments. For de novo 183 

prediction, we performed Augustus v3.2.1 [33] and GenScan [34] analysis on the 184 

repeat-masked genome with parameters trained from P. pruinosa and A. thaliana. The 185 

resultant data sets were filtered with the removal of partial sequences and genes with 186 

coding length less than 100 bp. For transcriptome-based approach, the 111,538 P. 187 

pruinosa transcripts obtained above were aligned to the P. pruinosa genome and further 188 

assembled using the Program to Assemble Spliced Alignments (PASA v2.0.2) [35] to 189 

detect likely protein coding regions. Finally, we combined the gene annotation results 190 

from all homology-based, de novo and transcriptome-based predictions using EVM 191 

v1.1.1 [36] to produce a consensus protein-coding gene set.  192 

In sum, the P. pruinosa genome contains 35,131 protein-coding genes with an average 193 

CDS length of 1,224 bp (Additional file 1: Table S8). The length distributions of 194 

transcripts, coding sequences, exons and introns were similar in P. euphratica and in P. 195 

trichocarpa (Additional file 1: Figure S6). Functional annotation was performed based 196 

on comparisons with the SwissProt, TrEMBL [37], InterPro [38] and KEGG [39] 197 

protein databases. Gene Ontology (GO) [40] IDs for each gene were assigned by the 198 

Blast2GO pipeline [41] based on NCBI databases. Overall, 75.43% of the protein-199 
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coding genes had conserved protein domains and 63.64% could be classified by GO 200 

terms (Additional file 1: Table S9). 201 

Evolutionary analysis 202 

Blocks syntenic between P. pruinosa and P. euphratica were determined by the software 203 

MCScanX [42], at least five genes were required to call synteny. The blocks identified 204 

occupy the majority of the genome assemblies of P. pruinosa (290 Mb, 66% of the 205 

assembly; 29,015 genes, 83% of the predicted gene models) and P. euphratica (293 Mb, 206 

59%; 27,804 genes, 81%) (Additional file 1: Table S10), suggesting that there is 207 

extensive macrosynteny between these two species. This overall high level of synteny 208 

was also confirmed by whole-genome alignment using the program ‘LAST’ [43] (Fig. 209 

1). A total of 15,695 high-confidence 1:1 orthologous genes were identified in these 210 

syntenic blocks. We estimated and plotted the nucleotide synonymous substitution (Ks) 211 

rates for these orthologous pairs, and a peak at around 0.016 was observed (Additional 212 

file 1: Figure S7), while the divergence between duplicated genes in P. pruinosa and P. 213 

euphratica peaked around 0.272 and 0.257, respectively, indicating that the two species 214 

had shared common whole genome duplication (WGD) events before they diverged 215 

from a common ancestor. Adaptive divergence at the molecular level may be reflected 216 

in an increased rate of nonsynonymous changes within genes involved in adaptation 217 

[44]. We found that the mean similarity between P. euphratica and P. pruinosa 218 

orthologous genes at the protein level is close to 97.22% (Additional file 1: Figure S8). 219 

Average synonymous (Ks) and nonsynonymous (Ka) gene divergence values were 0.04 220 

and 0.017 respectively. The genes that showed elevated pairwise genetic differentiation 221 

were enriched mainly in ‘metal ion transport’, ‘regulation of gene expression’, 222 

‘response to stimulus’, ‘antiporter activity’, ‘heat shock protein binding’ and 223 

‘oxidoreductase activity’ terms (Additional file 1: Table S11), indicating that these 224 

functions had undergone rapid evolution (caused by adaptive divergence and/or relaxed 225 

selection) between P. pruinosa and P. euphratica.  226 
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Gene family clustering analysis were performed using OrthoMCL v3.1 [45] on all the 227 

protein-coding genes of P. pruinosa and 10 additional species (P. euphratica, P. 228 

trichocarpa, Salix suchowensis, Ricinus communis, Arabidopsis thaliana, Carica 229 

papaya, Fragaria vesca, Cucumis sativus, Eucalyptus Grandis and Vitis vinifera). Of 230 

the 35,131 protein-coding genes in P. pruinosa, 28,773 (81.9%) could be classified into 231 

a total of 17,592 families, with 224 clusters comprising 662 genes being specific to P. 232 

pruinosa (Additional file 1: Table S12). We identified a total of 7,020 P. pruinosa-233 

specific genes, of which 3,639 (51.8%) were supported by gene expression data 234 

(RPKM > 0.5) and/or functional annotation (Additional file 1: Table S13), indicating 235 

that there are a large number of species-specific genes even though the genomes of P. 236 

pruinosa and P. euphratica are closely related to each other. Further analysis revealed 237 

that these P. pruinosa-specific genes were primarily enriched in ‘transcription factor 238 

activity’, ‘transporter activity’, ‘response to salt stress’ and ‘oxidoreductase activity’ 239 

(Additional file 1: Table S14).  240 

In addition, we identified a total of 1,354 single-copy gene families across the 11 plant 241 

genomes. Alignments were generated for each family with MUSCLE v3.8.31 [46] and 242 

low quality regions of the alignments were identified and trimmed with Gblocks v0.91b 243 

[47, 48] using default parameters. The individual trimmed protein-coding alignments 244 

were concatenated into one ‘super gene’ for each species in order to construct a 245 

phylogenetic tree using RAxML v8.2.8 [49] (Additional file 1: Figure S9). Then 246 

MCMCTree v4.9 [50] was applied to estimate the divergence time based on the 247 

phylogenetic relationships, using fossil calibration times for divergence between A. 248 

thaliana and C. papaya (54-90 million years ago, Mya), A. thaliana and R. communis 249 

(95-109 Mya), V. vinifera and A. thaliana (106-119 Mya), which were obtained from 250 

the TimeTree database (http://www.timetree.org/). The divergence time between P. 251 

pruinosa and P. euphratica was estimated to be 3.0 (1.6-5.0) Mya (Additional file 1: 252 

Figure S10). Lastly we applied the CAFÉ (Computational Analysis of gene Family 253 

Evolution, v3.1) [51] program to examine gene family evolution across entire genomes. 254 

The results showed that 640 gene families related to ‘Glucosyltransferase activity’, 255 
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‘ADP binding’, ‘Cation channel activity’, ‘Cell differentiation’ and ‘Oxidoreductase 256 

activity’ were substantially expanded in P. pruinosa compared to other plant species 257 

(Additional file 1: Table S15 and Figure S11).  258 

In summary, we present here the sequencing, assembly and annotation of the genome 259 

of P. pruinosa, and compare it with that of its sister species P. euphratica. Although a 260 

high level of overall similarity was observed between the two genomes, our 261 

evolutionary analyses identified a large number of genes showing signs of rapid 262 

divergence and numerous species-specific genes, which may have resulted from rapid 263 

habitat adaptation and natural selection during speciation of the two species. However, 264 

population genomic analyses will be needed in order to examine whether these 265 

variations are widely fixed across all populations of each species. In addition, functional 266 

tests should be performed to explore the roles that variations play in both morphological 267 

and ecological divergence.  268 
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Table 1. Summary of genome assembly and annotation of P. pruinosa. 

 

Genome assembly  

Estimate of genome size 590 Mb 

GC content 31.80% 

Contigs  

N50 size 14,011 bp 

Longest 197,623 bp 

Total number 170,219 

Total size 450,157,195 bp 

Scaffolds  

N50 size 698,525 bp 

Longest 10,688,665 bp 

Total number 78,960 

Total length 479,307,600 bp 

Genome annotation  

Transposable elements  

LTR 142,923,156 bp (29.82%) 

LINE 4,956,260 bp (1.03%) 

DNA 20,990,612 bp (4.38%) 

Total 213,236,753 bp (45.47%) 

Protein coding genes  

Total number 35,131 

Mean transcript length 3703.4 bp 

Mean coding sequence length 1224.38 bp 

Mean exon length 226.27 bp 

Mean intron length 561.98 bp 

Functional annotation  

GO 22,361 (63.64%) 

KEGG 11,746 (33.43%) 

Total 30,938 (88.06%) 
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Figure 1. Synteny relationship of P. pruinosa, P. euphratica and P. trichocarpa. 
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