
Supplementary Materials 

Supplementary Texts 

Text S1: Alignment and SNP calling of the high-depth WGS data 

The raw paired end 100bp (PE100) sequences in FASTQ files were aligned using BWA aln (v0.6.1)[1] with parameters 
‘-n 3 -o 1 -e 50’. The reference genome was HG19 downloaded from UCSC genome browser. After conversion into BAM 
files, same sample files were merged using Samtools merge (v0.1.18)[2]. Whereafter, we marked duplicates using 
Picard MarkDuplicates.jar with default parameters. Then the BAM files were ordered using Picard (v1.61) 
ReorderSam.jar with default parameters. GenomeAnalysisTK version 2.0-36 [3] was used for local realignement under 
consideration of the known indels specified in the files 1000G_phase1.indels.HG19.sites.vcf and 
Mills_and_1000G_gold_standard.indels.HG19.sites.vcf (downloaded from Broad Institute website) with default 
configurations. We used GATK (version 2.0-36) to perform target realigning with parameters ‘-T RealignerTargetCreator’ 
and -T IndelRealigner -model USE_SW -LOD 0.4. At last, we used GATK to perform base sore recalibration with 
parameters ‘-T CountCovariates -rf BadCigar’ and ‘-T TableRecalibration’. All the BAM files were indexed using 
Samtools index (v0.1.18) with default parameter. Gene-based annotation for INDELs and SNPs were also performed 
using ANNOVAR (VersionDate 2014-11-12) [4] HG19 assembly. The resulting VCF files were used for subsequent 
analysis. The annotation for genes was Ensembl GRCh37.75 (HG19, downloaded from http://www.ensembl.org). 
 

Text S2: RIP candidate determination 

In general, detecting breakpoints of TE insertions is implemented after reads clustering, which is extremely 

time-consuming. To improve the efficiency of the algorithm, asynchronous scanning changes the order of this process. 

In a nutshell, unlike traditional algorithm that initiates detection of TE insertions after reads clustering is completed, 

asynchronous scanning algorithm begins the scanning for the breakpoints as soon as a putative TE insertion is identified. 

Hence, the detection of breakpoint will start earlier. Meanwhile, reads clustering is ongoing uninterruptedly. Therefore, 

the process of scanning potential breakpoints of for different TE insertions is asynchronous. As a consequence, 

asynchronous scanning algorithm considerably reduces the time for accurate detection of TE insertions. 

The reliability of RIP candidate depends on several factors. We weighted these factors and implemented a score 

criterion to evaluate the confidence of detection result. The final score is composed of two parts, the score of the 

clustering and the score of the breakpoint detecting. The clustering has less weight than the breakpoint detecting due to 

mapping error. The total score of each candidate can be calculated as following: 

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝐶𝐶 + 𝑆𝑆𝐵𝐵 

in which, 

𝑆𝑆𝐶𝐶 =
∑𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑊𝑊
+ 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

𝑆𝑆𝐵𝐵 = �
[𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − (𝐷𝐷 − 𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜)/10]𝑀𝑀, 𝐷𝐷 > 𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

(𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑀𝑀, 𝐷𝐷 ≤ 𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
 

in which, 

http://www.ensembl.org/


𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
∑𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
10𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

where SC indicates the score of clustering and SB indicates the score of breakpoints detecting. 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the 

reads number supporting the main type of retrotransposon supported by more than half of all reads. To reduce the 

impact of reads mapping depth on the 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, especially for some regions with abnormal depth such as repeat regions, 

we set a theoretic adjusting value 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒 (in this study, 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 20), and a weight value 𝑊𝑊 (in this study, 𝑊𝑊 = 5 for 

double-side clusters and 𝑊𝑊 = 10 for single-side clusters) to weigh the reads number polarized 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. 𝑁𝑁𝑏𝑏𝑏𝑏 represents 

the number of reads which support the breakpoints and 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 stands for a weighted value measuring the clipped bases. 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 stands for the length of each clipped read. In order to reduce the impact of ultra-depth impact on the 𝑆𝑆𝐵𝐵, we set 

a spanning breakpoint reads threshold 𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (if the reads supporting the breakpoints depth 𝐷𝐷 is more than 

𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, the exceeding part would be corrected). 𝑀𝑀 is also a weight value. For double-sites cluster, 𝑀𝑀 = 2.4 when the 

reads number spanning the whole TSD sequence is less than 10 and the reads number that supports the insertion is 

more than 8 and 𝑀𝑀 = 1.2 when the reads number spanning the whole TSD sequence is equal to or more than 10, or the 

reads number supporting the insertion is equal to or less than 8. For single-site clusters, 𝑀𝑀 = 2 when the reads number 

spanning the whole TSD sequence is less than 10 and the reads number supporting the insertion is more than 5 and 

𝑀𝑀 = 1 when the reads number spanning the whole TSD sequence is equal to or more than 10, or the reads number 

supporting the insertion is equal to or less than 5. 

When all these calculations are completed, we can get a score for each insertion and we filter out TE insertions with 

a score less than 15 to get the high confident insertions. 

 

Text S3: Annotation for the TE insertions 

If the orientation of the paired-end reads was different in one TE insertion, the TE insertion was judged to inversion and 
the orientation of insertion was judged by the orientation which more reads’ orientation were the same with it. Insertions 
were annotated as having a poly-A tail if supporting reads had five or more consecutive ‘A’ bases among the six bases 
at the tail, and a poly-T annotation was assigned if supporting reads had five or more consecutive ‘T’ bases among the 
six bases at the head. In such conditions, the TE insertion was annotated as neither poly-A nor poly-T: 1) the insertion 
had reads supporting poly-A and reads supporting poly-T simultaneously, and 2) the insertion’s orientation was different 
from that of the poly-A or poly-T, for example, the orientation of insertion was positive but the poly information was 
poly-T. The insert size was estimated by mapping all the supporting reads to a TE consensus sequence. 
To ensure the complete diagnostic nucleotides in each subfamily sequence, we used Ns to fill the gaps of each 
subfamily sequence that did not harbor the diagnostic nucleotides sites. We determined the maximum similarity score 
(𝑆𝑆𝑀𝑀𝑀𝑀) for each subfamily based on a simple penalty algorithm as following: 

𝑆𝑆𝑀𝑀𝑀𝑀 = �𝑆𝑆𝑖𝑖 

where 𝑆𝑆𝑖𝑖 indicates the score of the specific diagnostic nucleotide 𝑖𝑖. 𝑆𝑆𝑖𝑖 = 1 when the query genotype was same as the 
diagnostic nucleotide 𝑖𝑖 of this subfamily; 𝑆𝑆𝑖𝑖 = −0.5 when the position of query contigs contained a gap while the 
diagnostic nucleotide 𝑖𝑖 was not ‘N’, or the query contigs were mismatched against the diagnostic nucleotide 𝑖𝑖.  

We also determined divergence value (𝑉𝑉𝐷𝐷) for each subfamily as following: 



𝑉𝑉𝐷𝐷 =
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
 

where 𝑁𝑁mis and 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 indicated the number of mismatched base and the number of gaps of query contigs, 
respectively. The 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 stood for the mapped length of the certain subfamily. Subfamily with the maximum similarity 
based on the genotype of diagnostic nucleotide would be reported. If two or more subfamilies harbored the same 
maximum similarity, the subfamily with the smallest divergence value would be reported. 

We treated the retrotransposon subfamily classification in dbRIP as ‘golden control’, and compared the 
classification result of 909 overlapped RIPs from our result with the golden control, to evaluate the accuracy of the 
subfamily classification. The assembled contigs of both 5’ and 3’ ends of insertions had the same orientation with HG19 
sequence, which we defined as ‘positive orientation’. If the mapping orientations of the contigs were different, the 
orientation of TE insertion was judged from the mapping orientation supported by most contigs. Also, the poly-A tail of 
retrotransposon would be annotated if the TE insertion was ‘positive’ and there were more than four ‘A’ bases in the first 
6 bases at 3’ end of the contigs. And the poly-T tail of the retransposon would be annotaed if the insertion orientation 
was ‘negative’ and there were more than four ‘T’ bases in the first 6 bases at 5’ end of the contigs.  
 

Text S4: The assembly of junction sequences 

After filtering the raw results of SID, the reads that supported certain TE insertions were extracted to FASTA files and 
used as the input for CAP3 (VersionDate: 02/10/15)[5]. We ran CAP3 with parameters ‘-i 21 -j 31 -o 16 -s 251 -p 70’. 
Then we merged all the contigs of the same sample to a FASTA file which was used as the query sequence of BLAST 
(v2.2.25)[6]. We ran formatdb (v2.2.25) with default parameters to build the database sequence for BLAST and then 
ran BLAST with parameters ‘-p blastn -F f -m 8’ to detect which part of the TE sequence was inserted into the genome. 
The results of CAP3 were uploaded to the website: https://github.com/Jonathanyu2014/SID. 
 

Text S5: Calculation of accuracy   

According to the results of PCR (Additional file 1: Table S8), among the 103 PCR experiments, there were 93 positive, 
3 negative and 7 unknown samples. The lowest accuracy (AL) was defined as: 

𝐴𝐴𝐿𝐿 =
𝑁𝑁𝑃𝑃
𝑁𝑁𝑇𝑇

 

Of which, NT = NP +NN +NF. NP and NN were the number of positive, negative validation results respectively. NF and NT 
were the failed and total number of PCR experiments respectively. 
And the highest accuracy (AH, also regarded as positive insertions rate RP) was 

𝐴𝐴𝐻𝐻 =
𝑁𝑁𝑃𝑃

𝑁𝑁𝑃𝑃 +𝑁𝑁𝑁𝑁
 

 

Text S6: Prediction of Heterozygosity 

To determine the genotype feature of each RIP, we considered two factors: one is the soft-clipped read that support 

insertions (𝑁𝑁𝐶𝐶), the other is the spanned read that does not support insertions (𝑁𝑁𝑆𝑆). We developed a simple Bayesian 

expression to estimate the posterior probability of the heterozygosity feature for each RIP. The posterior probability is: 

𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻|𝑁𝑁𝐶𝐶 ,𝑁𝑁𝑆𝑆) =
𝐵𝐵(𝑁𝑁𝑆𝑆,𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑆𝑆,𝑃𝑃𝐻𝐻𝐻𝐻) 

𝐵𝐵(𝑁𝑁𝑆𝑆,𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑆𝑆,𝑃𝑃𝐻𝐻𝐸𝐸)  + 𝐵𝐵(𝑁𝑁𝑆𝑆 ,𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑆𝑆,𝑃𝑃𝐻𝐻𝐻𝐻) 
 

Where 𝐵𝐵(𝑘𝑘,𝑁𝑁,𝑃𝑃) represent the probability density function of binomial distribution. 𝑃𝑃𝐻𝐻𝐻𝐻 and 𝑃𝑃𝐻𝐻𝐻𝐻 represent the 

expected probability for heterozygosity and homozygosity respectively (𝑃𝑃𝐻𝐻𝐻𝐻 = 0.6 and 𝑃𝑃𝐻𝐻𝐻𝐻 = 0.1).   



𝑀𝑀𝑀𝑀𝑀𝑀(Mean Structure Length) for each RIP was calculated as following: 

𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝑙𝑙𝑙𝑙𝑙𝑙2�1 − 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻|𝑁𝑁𝐶𝐶 ,𝑁𝑁𝑆𝑆)� 

And we determined the boundary line for heterozygosity and homozygosity as 𝑀𝑀𝑀𝑀𝑀𝑀 = 1. 

For each sample, we can estimate the hybrid rate: 

𝑅𝑅 =  
𝑁𝑁(𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 1)
𝑁𝑁(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 

The accuracy of this genotyping method was assessed according to the PCR validation genotypes of YH cell (Figure 

2B and Additional file 1: Table S8) based on the number of bands. FDR was defined as the difference of heterozygosity 

(or/and homozygosity) estimated by MSL arithmetic and PCR validation divided by the total number of PCR 

experiments. The following table shows the FDR of this method in 2 samples. 

 Sample Heteo(PCR) Homo(PCR) Heteo(MSL) Homo(MSL) FDR 
YH_CL 13 36 11 38 4.08% 

NA18571 24 14 23 15 2.63% 
Heteo: heterozygous insertion. Homo: homozygous insertion. FDR: false discovery rate. 
 

Text S7: Comparing with TEA and RetroSeq 

We ran Retroseq (v1.41)[7] with parameters ‘-discover -refTEs ref_types.tab -eref probes.tab -align’ and ‘-call filter 
ref_types.tab -reads 10 -depth 400’ using the same BAM files with SID as input. The resulting VCF file was split into 2 
files according to the type of TEs (Alu/L1). Then we filtered out the known hits using a BED file downloaded from the 
UCSC Genome Browser website. Hence, the result was used to compare to SID’s 

TEA [8] was downloaded from https://github.com/hastj7373/TEA. It used the “repeat anchored mate” (RAM) reads, 
which were uniquely mapped on the reference genome with paired mates mapped to TE sequences. To get the higher 
confident transposon insertions, we ran TEA’s first two steps with default parameters to get the raw clusters and 
breakpoints, and then performed a rigorous filtering: a) the distance between two clipping sites was within [-15,30]bp 
and the ratio of clipped reads having the same clipping sites to the number of all clipped reads observed at an insertion 
site was above 0.5 and b) if the area between two clipping sites of one transposon insertion had overlaps with another 
insertion’s, we considered them to be the same transposon insertion and combined them into one. The softwares that 
used in TEA were Samtools v0.1.18, BWA v0.6.1, BLAST v2.2.25 and CAP3 (VersionDate: 02/10/15). We removed the 
known hits and those in allosomes, then compared to the results of SID.  
 

Text S8: Filtering and combination of the results of SID 

For higher accuracy, we filtered out the records of SID which we thought were unauthentic if it met one of the following 
conditions:  
(A) There was no specific TE block.  
(B) The TSD was single-ended and the heterozygosity score estimated by SID was greater than 10.  
(C) The confidence score was less than 15.  
(D) The sequence that spanned TSD has poly-A/T at both 5’ and 3’ends.  
(E) There were no supporting clipped reads at 5’ or 3’ end of the inserted TE sequence or the TSD was single-side, but 
the total supporting reads at 5’ or 3’ end was greater than 100.  
(F) There were supporting clipped reads at 5’ or 3’ end of the inserted TE sequence or the TSD was not single-ended, 
but the total supporting reads at 5’ or 3’ end was greater than 150.  



(G) The length of poly-A/T sequence in TSD was longer than 15bp and the percentage of poly-A/T sequence accounted 
for 70% or more of the TSD sequence.  
(H) The length of TSD sequence was longer than 20bp and the percentage of poly-A and poly-T sequence accounted 
for 70% and 80% or more of the TSD sequence respectively.  
(I) The heterozygosity score was more than 10 and the number of total supporting reads was more than 80. Besides, 
the supporting clipped reads at 3’ end accounted for less than 25% of total supporting reads but no supporting clipped 
reads at 5’ end or the supporting clipped reads at 5’ end accounted for less than 25% of total supporting reads but no 
supporting clipped reads at 3’ end.  
(J) All the reads that spanning certain TSD had more than 100 mismatches in total while there was no poly-A/T 
sequence in TSD. 

We treated the TE insertions among different samples as the same one if it met the following two conditions 
simultaneously. (a) The inserted sequences were annotated as the same type of TE and (b) the regions of TSD were 
overlap at least 1 bp. Of note, we also listed the TE insertions that only meet condition (b) in Additional file 1: Table S11. 
These samples began with ‘|’ for distinguishment. Then, we assembled the TSD sequences among YH90 samples that 
supported the same TE insertion and calculated the length of the combined TSD. The annotation of subfamily, the 
information of poly-A/T and the estimated insertion size were listed separately corresponding to the order of sample 
(Additional file 1: Table S11). 

Hence, the start and end positions of a certain TSD were a result of assembly if it was a combination of more than 
one TE insertions. Low coverage around TSD region probably resulted in the different length of TSD sequences. 
Consequently, the TSD of a specific sample might not be the same with that in Additional file 1: Table S11. 
 

Text S9: Allele frequency between YH90 and 1000GP SV dataset 

The SV dataset of 1000GP phase 3 was downloaded from the website (http://www.internationalgenome.org/). We 
extracted the allele frequency of RIPs from all the samples and the five populations (EAS, EUR, AMR, AFR and 
SAS)[9]. The 3246 TE insertions shared by YH90 and 1000GP had exactly the same insertion sites and the TE types 
(Alu/SVA/L1). We calculated the Pearson correlation coefficient and significance of these 3246 TE insertions between 
YH90 and 1000GP using R command ‘cor’ and ‘cor.test’ with default parameters. The p-value between YH90 and each 
of the other population (EAS, EUR, AMR, AFR, SAS and the total 26 populations) was less than 2.2 × 10-16. 
 

Text S10: Population-based RIPs type correction  

Because one site randomly inserted by retrotransposons twice is an extremely small probability event, we treated the 
same retrotransposons insertion of different samples as an inherent event. Hence, we re-corrected the inserted 
retrotransposons types based on the population scale result for each site in which several different retrotransposon 
types were annotated among positive samples. When the type with the most samples supporting was considered as 
correct type, the average match rate (the proportion of sites of which the type in accordance with the correct type of 
total sites) for all samples can reach up to 98.92% (the range from 97.52% to 99.49%). In fact, the primary type was 
supported by more than 80% of all positive samples for 71.05% of sites of divergence. Only 6.89% of the sites had the 
same percentage between two types and low insertion frequency ranging from 2.22% to 8.89%. Therefore, we adapted 
a strategy regarding the proportion of types in positive samples as weight to correct the inserted retrotransposons types. 
As mentioned above, the score criterion was the credibility of detection. Thus, we judged by the type with the maximum 
value, which was equal to multiply the sum of score by the proportion of supporters for each type. 
 

Text S11: Inference of Fitness Effects of Recent RIPs 

We estimated RIPs allele frequency spectra (AFS) based on the genotyping of each RIP (Fig 4c). Because the AFS 
was both influenced by the natural selection and the demographic history, we first inferred the demographic history to 

http://www.internationalgenome.org/


eliminate the impact before the fitness test. Treating the selection on intergenic SNPs as neutral, we constructed the 
AFS of these SNPs of YH90. Using the AFS we inferred the best-fit history of instantaneous population size changes 
following the method of Williamson et al[10, 11], which determined the best-fit demographic model based on maximum 
likelihood evaluation. Then the distribution of fitness effects among non-reference RIPs was inferred under this best-fit 
demographic model as following: 

𝛾𝛾 = 2𝑁𝑁𝑒𝑒𝑆𝑆′ 
where 𝛾𝛾 indicates the fitness on the query RIPs, and 𝑁𝑁𝑒𝑒 is the effective population size. 𝑠𝑠 is the value of selective 
disadvantage (𝑆𝑆′ and 2𝑆𝑆′ are the selective disadvantage of heterozygotes and homozygous insertions). Then we can 
obtain the proportion of mutations that are strongly deleterious (|𝑆𝑆′| > 1%), moderately deleterious (0.1% <  |𝑆𝑆′|  < 1%), 
weakly deleterious (0.01% <  |𝑆𝑆′|  < 0.1%), and nearly neutral (|𝑆𝑆′| < 0.01%)[11]. We set several optional distributions 
(neutral selection + positive selection + negative selection, neutral selection + negative selection, and negative 
selection), and the fitness effect with the greatest likelihood value of each candidate selective model was calculated 
and was compared to the neutral model (ΔLL, the log-likelihood difference, Additional file 2：Figure S9 and Table S12).  
 

Text S12: PCA analysis 

After SNP calling, we used vcftools (v0.1.14)[12] to transform the genotype data to PLINK PED format with parameters 
‘--vcf --plink’. Then we created a new PLINK 1 binary fileset using plink (v1.07)[13] with parameters ‘--noweb 
--make-bed’ and calculated the genetic relationship matrix (GRM) from all the autosomal SNPs using GCTA (v1.25.2) 
[14] with parameters ‘--bfile --make-grm --autosome’. At last, we ran ‘gcta64 --grm --pca 3’ to obtain the top 3 principal 
components and drew the plot using R (v3.0.0). Of note, HG00418 and HG00427 were significantly deviated from the 
major population, so that the PCA plot did not show these two samples. 

After the results of SID were filtered, we calculated the correlation coefficient of 9342 TEs between 90 samples. 
Then we used ‘eigen’ command in R program to compute eigenvalues and eigenvectors using these correlation 
coefficients. The first two vectors were used to perform PCA. 
 

Text S13: phylogenetic analysis 

We merged the SNPs of YH90 using vcftools (v0.1.14). The resulting VCF file was converted into FASTA file. Then we 
ran MEGA (v7.0.21) [15] on Microsoft Windows 10 OS. ‘Compute Pairwise Distance’ was used to obtain genetic 
distance. After that, we constructed phylogenetic tree using ‘Construct/Test Neighbor-joining tree’. The phylogenetic 
analysis of RIPs was done using the similar method. At last, we ran ‘Flip subtree’ and ‘Swab subtree’ to display the tree 
more legibly. 
 

  



Supplementary Figures 

 

Figure S1. The polymorphism of retrotransposon insertions in HG19 and YH90. The blue lines stand for different 
alleles of samples. The red blocks stand for retrotransposon insertion elements. A and B are non-reference RIPs 
detected by SID. We named C and D as “reference RIPs”. We defined the YH90 polymorphism sites as A and C for 
the fitness analysis. 

  



 
Figure S2. Comparison of our non-reference RIPs detection results (SID) with the 1000 Genomes Project 
Consortium’s data. We used the 1000GP phase 3 release data[16].  
  



  

   



  

 

  



    

      



        

 
Figure S3. PCR validation of L1, Alu, LTR and SVA for YH_CL. The yellow words in the pictures are corresponding to 
Additional file 1: Table S8. 
 
  



 

Figure S4. Comparison of non-reference RIPs detection results (SID) with two detection programs (TEA and 
Retroseq). We performed PCR validation for each unique TE insertion for YH_CL (Additional file 1: Table S10). 

   
  



 

Figure S5. The correlation of numbers of non-reference RIPs between south and north subpopulations within 10M 
non-N windows.   
 



 
Figure S6. The correlation of number of RIPs sites within 10M non-N bins. (a) The 
correlation between HG19 RIPs that is not present in YH90 and non-reference RIPs we 
detected (P = 0.01). (b) The correlation between SNPs and non-reference RIPs (P = 0.001). (c) 
The correlation between GC content and non-reference RIPs (P = 0.11). 
 

 



 

 
Figure S7. The length distribution of non-reference RIPs. (a) Length distribution of Alu insertions. (b) Length 
distribution of L1 insertions. (c) Length distribution of SVA insertions. (d) Length distribution of LTR insertions. PFL: 
percentage of full length of each retrotransposons subfamily. FL: full length of each retrotransposons subfamily. 

 
  



 

 
Figure S8. Observed and expected RIPs frequency spectra after demographic correction in each subpopulation. The 
expected RIPs frequency spectra under best-fit selection model after demographic correction. Note the logarithmic 
scale of the y-axis. (a) Southern subpopulation RIPs versus expectation under neutrality, fixed negative selective 
effects, weighted neutral and negative fitness effects and weighted neutral and negative and positive fitness effects. (b) 
Northern subpopulation RIPs versus expectation under neutrality, fixed negative selective effects, weighted neutral 
and negative fitness effects and weighted neutral and negative and positive fitness effects. 

  



 
Figure S9. Observed and expected RIPs frequency spectra after demographic correction in each subfamily. The expected 
RIPs frequency spectra under the best-fit selection model after demographic correction. (a) Alu insertions versus 
expectation under neutrality and fixed negative selective effects. (b) L1 insertions versus expectation under neutrality and 
fixed negative selective effects. (c) SVA insertions versus expectation under neutrality and fixed negative selective effects. 
  



 

 
Figure S10. PCR validation of RIPs located in ACE for 11 individuals.  
 
  



Supplementary Tables 
 
Table S9. Run time for three different RIPs-detection programs.  

Sample 
Data size 

(GB) 
Run time (h) 

SID TEA RetroSeq 
YH_CL 85 16.4 36.9 31.2 

NA18571 127 19.9 90.6 110.3 
NA18537 124 21.9 95.2 94.8 
NA18572 117 31.9 82 99.8 

 
  



 
Table S12. Maximum likelihood estimates of selection models. 

Population Model ΔLL df Distribution MLE 

YH90 Neu -- 0 𝑃𝑃(𝛾𝛾 = 0) = 1  

      

YH90 Neu + Neg + Pos 928 4 
𝑃𝑃(𝛾𝛾 = 0) = 𝑝𝑝0, 

𝑃𝑃(𝛾𝛾 = 𝑘𝑘1 < 0) = 𝑝𝑝1, 
𝑃𝑃(𝛾𝛾 = 𝑘𝑘2 > 0) = 1 − 𝑝𝑝0 − 𝑝𝑝1 

𝑝𝑝0 = 0.1, 𝑝𝑝1 = 0.75, 
𝑘𝑘1 = −13.8, 𝑘𝑘2 = 0.001 

      

YH90 Neu + Neg 903 2 
𝑃𝑃(𝛾𝛾 = 0) = 𝑝𝑝0, 

𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 − 𝑝𝑝0 
𝑝𝑝0 = 0.3, 𝑘𝑘 = −18.87 

      

YH90 Neg 973 1 𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 𝑘𝑘 = −3.8 

Southern 45 Neg 697 1 𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 𝑘𝑘 = −3.65 

Northern 45 Neg 817 1 𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 𝑘𝑘 = −3.98 

YH90 (Alu) Neg 420 1 𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 𝑘𝑘1 = −3.25 

YH90 (L1) Neg 511 1 𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 𝑘𝑘1 = −6.8 

YH90 (SVA) Neg 78 1 𝑃𝑃(𝛾𝛾 = 𝑘𝑘 < 0) = 1 𝑘𝑘1 = −8.2 

Note: MLE: maximum likelihood estimates, Neu: neutral, Neg: negative, Pos: positive. 
Maximum likelihood estimates under each model computed after applying bottleneck demographic correction. Distributions 
are in terms of the scaled selection coefficient, 𝛾𝛾 = 2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑠𝑠, where 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is 23832 in YH90 and two subpopulations. 
ΔLL is the log-likelihood difference between the neutral model and the overall best-fit model for the corresponding 
population[10, 11]. 
 
  



Table S13. Summary of best-fit demographic models. 
Model df ΔLL Population sizes Expansion timings Bottleneck duration 

Stationary 0 396259 𝑁𝑁𝑒𝑒 = 9710 -- -- 

Contraction 2 368506 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 = 11438, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 9078 -- 12110 gen 

Bottleneck 4 -- 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 = 21438,𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏 = 3001, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 23820 5764 gen ago 715 gen 

ΔLL is the likelihood difference between the model and the overall best-fit model for the YH90. 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 is the size of the 
effective ancestral population. 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏  is the size of effective population during the bottleneck. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of current 
effective population. τ is the time back to population size change, and it translates to generations with the 
formula( generations=2 ∗ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗τ). 
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