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1. Far-field energy of 1-bit frequency coding metamaterials 

We use the reflected electric field on the metamaterial E(x) to calculate the far-field energy, as 

illustrated in Supporting Figure S1. Then the reflected energy by the metamaterial sample in the 

far distance is obtained as 
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Supporting Figure S1. Schematic to calculate far-field energy of 1-bit frequency coding 

metamaterial. 

 

The distance r between points Q and S can be rewritten as 

0 sinr r x                                                                (17) 

since r is much larger than x. Here, r0 is the distance of observation point Q to the origin point, 

and θ is the angle between the observation point to the z axis, as shown in Supporting Figure S1. 

Hence E(r) is expressed as 
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The phase distribution of 1-bit frequency coding metamaterial is 0, φ, 0, φ, 0, φ … with N 

periods. Thus E(x) is expressed as: 
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where E0 is the magnitude of E(x), D is half length of a period, N is the number of periods, and 
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Then we denote 
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Therefore, E(r) can be obtained as 
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When θ =0, we have P=-2π × sin θ/λ=0, and the corresponding far filed energy at angle θ=0 is 

proportional to  
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where N2D2A2E2 is unchanged for a given sample. Hence the expression shows that the far-field 

energy at the angle θ=0 is proportional to E2|1+ejφ|2 and φ is calculated from Equations (3), (5) 

and (6) in the main text as: 
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which increases from 0 to π as the frequency increases from 6 to 10.5GHz. As a consequence, 

the far-field energy at angle θ=0 should approach zero when the frequency is close to 

f1=10.5GHz because E2|1+ejφ|2 is approaching zero when the frequency is close to f1=10.5GHz.  

 

2. Non-periodic frequency sweeping metamaterials 

The phase responses for 2-bit frequency coding units are 
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Once the phase expressions are obtained, the phase differences of adjacent unit cells are 

calculated as 
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Note that phase differences between adjacent unit cells are the same and linearly proportional to 

the change of frequency f - f0 in the operational band. From the generalized Snell’s law, the 

deflected angle θ of the anomalous reflection beam is given by 
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Since 
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  for approximation, in which L is the length of the super unit cell, 

and λ=10
-9

c/f (c=3×10
8
m/s is the light speed in free space and the unit of f is GHz), the deflected 

angel θr is obtained as 
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Hence the reflection angle |θr| monotonically increases in the operational frequency band. 

 

 


