Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

for *Adv. Sci.,* DOI: 10.1002/advs.201700098

Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials

*Haotian Wu, Shuo Liu, Xiang Wan, Lei Zhang, Dan Wang, Lianlin Li, and Tie Jun Cui**

DOI: 10.1002 lcf xu04239222; : **Article type: Full Paper**

Supporting Information

Controlling energy radiations of electromagnetic waves via frequency coding metamaterials

*Haotian Wu, Shuo Liu, Xiang Wan, Lei Zhang, Dan Wang, Lianlin Li and Tie Jun Cui**

Hao Tian Wu, Shuo Liu, Xiang Wan, Lei Zhang, Dan Wang, Prof. Tie Jun Cui* State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

Prof. Lianlin Li

School of Electronic Engineering and Computer Sciences, Peking University, Beijing 100871, China

This file includes:

Supporting Text Supporting Figs. S1

1. Far-field energy of 1-bit frequency coding metamaterials

We use the reflected electric field on the metamaterial $E(x)$ to calculate the far-field energy, as illustrated in Supporting **Figure S1**. Then the reflected energy by the metamaterial sample in the far distance is obtained as

$$
E(r) = \int E(x)e^{j\omega t} \times e^{-j\frac{2\pi}{\lambda}r} dx
$$
\n(16)

Supporting Figure S1. Schematic to calculate far-field energy of 1-bit frequency coding metamaterial.

The distance *r* between points *Q* and *S* can be rewritten as

$$
r \approx r_0 - x \sin \theta \tag{17}
$$

since *r* is much larger than *x*. Here, r_0 is the distance of observation point *Q* to the origin point, and θ is the angle between the observation point to the *z* axis, as shown in Supporting Figure S1.

Hence $E(r)$ is expressed as
 $E(r) = \int E(x) \times e^{j\omega t} \times e^{-j\frac{2\pi}{\lambda}r} dx = e^{j\omega t} \times e^{-j\frac{2\pi}{\lambda}r_0} \int (E(x) \times e^{j2\pi \frac{\sin \theta}{\lambda}$ Hence $E(r)$ is expressed as

Hence
$$
E(r)
$$
 is expressed as
\n
$$
E(r) = \int E(x) \times e^{j\omega t} \times e^{-j\frac{2\pi}{\lambda}r} dx = e^{j\omega t} \times e^{-j\frac{2\pi}{\lambda}r_0} \int (E(x) \times e^{j2\pi \frac{\sin \theta}{\lambda}x}) dx
$$
\n(18)

The phase distribution of 1-bit frequency coding metamaterial is 0, φ, 0, φ, 0, φ … with *N* periods. Thus $E(x)$ is expressed as:

$$
E(x) = \sum_{n=0}^{2N-1} E_0 \times \prod_D [x - nD] \times e^{j\frac{1}{2}[1 - (-1)^n]\varphi}
$$
\n(19)

where E_0 is the magnitude of $E(x)$, D is half length of a period, N is the number of periods, and

$$
\Pi_D(x) = \begin{pmatrix} 1 & -D/2 \le x \le D/2 \\ 0 & others \end{pmatrix}
$$
 (20)

Then we denote

$$
A = e^{j\omega t} \times e^{-j\frac{2\pi}{\lambda}r_0}
$$

\n
$$
P = -2\pi \cdot \sin \theta / \lambda
$$
\n(21)

Therefore, E(r) can be obtained as
\n
$$
E(r) = A \cdot \int (E(x) \times e^{-jPx}) dx
$$
\n
$$
= A \cdot \int \left\{ \sum_{n=0}^{2N-1} E_0 \times \prod_D [x - nD] \times e^{j\frac{1}{2}[1 - (-1)^n] \varphi} \times e^{-jPx} \right\} dx
$$
\n
$$
= N \cdot D \cdot A \cdot E_0 \times \sin c \left(\frac{PD}{2} \right) \times (1 + e^{j\varphi})
$$
\n(22)

When $\theta = 0$, we have $P = -2\pi \times \sin \theta / \lambda = 0$, and the corresponding far filed energy at angle $\theta = 0$ is proportional to

$$
|E(r)|^2 = N^2 D^2 A^2 E_0^2 \times (1 + e^{j\varphi})^2
$$
\n(23)

where $N^2D^2A^2E^2$ is unchanged for a given sample. Hence the expression shows that the far-field energy at the angle $\theta = 0$ is proportional to $E^2 |1 + e^{j\varphi}/2$ and φ is calculated from Equations (3), (5) and (6) in the main text as: and (6) in the main text as:
 $\varphi = 7\pi/9 - [7\pi/9 + (-\pi/4.5) \times (f - f_0)] = 2\pi/9 \times (f - f_0)$ (22)

$$
\varphi = 7\pi/9 - [7\pi/9 + (-\pi/4.5) \times (f - f_0)] = 2\pi/9 \times (f - f_0)
$$
\n(22)

which increases from 0 to π as the frequency increases from 6 to 10.5GHz. As a consequence, the far-field energy at angle *θ*=0 should approach zero when the frequency is close to $f_1 = 10.5$ GHz because $E^2 |1 + e^{j\varphi}|^2$ is approaching zero when the frequency is close to $f_1 = 10.5$ GHz. |

2. Non-periodic frequency sweeping metamaterials

The phase responses for 2-bit frequency coding units are

$$
\varphi(f)^{(00-0)} \approx \frac{7\pi}{9}
$$

\n
$$
\varphi(f)^{(00-0)} \approx \frac{7\pi}{9} - \frac{\pi}{9} (f - f_0)
$$

\n
$$
\varphi(f)^{(00-10)} \approx \frac{7\pi}{9} - \frac{2\pi}{9} (f - f_0)
$$

\n
$$
\varphi(f)^{(00-11)} \approx \frac{7\pi}{9} - \frac{3\pi}{9} (f - f_0)
$$
\n(23)

Once the phase expressions are obtained, the phase differences of adjacent unit cells are calculated as

calculated as
\n
$$
\varphi(f)^{00-01} - \varphi(f)^{00-00} \approx \left[\frac{7\pi}{9} - \frac{\pi}{9}(f - f_0)\right] - \frac{7\pi}{9} = -\frac{\pi}{9}(f - f_0)
$$
\n
$$
\varphi(f)^{00-10} - \varphi(f)^{00-01} \approx \left[\frac{7\pi}{9} - \frac{2\pi}{7}(f - f_0)\right] - \left[\frac{7\pi}{9} - \frac{\pi}{9}(f - f_0)\right] = -\frac{\pi}{9}(f - f_0)
$$
\n
$$
\varphi(f)^{00-11} - \varphi(f)^{00-10} \approx \left[\frac{7\pi}{9} - \frac{3\pi}{7}(f - f_0)\right] - \left[\frac{7\pi}{9} - \frac{2\pi}{9}(f - f_0)\right] = -\frac{\pi}{9}(f - f_0) \tag{24}
$$

Note that phase differences between adjacent unit cells are the same and linearly proportional to the change of frequency $f - f_0$ in the operational band. From the generalized Snell's law, the deflected angle *θ* of the anomalous reflection beam is given by

$$
\theta_r = \sin^{-1} \left[\frac{\lambda}{2\pi} \cdot \frac{d\varphi}{dx} \right] \tag{25}
$$

Since $\frac{d\varphi}{d\varphi} \approx \frac{\varphi^{(00-01)} - \varphi^{(00-00)}}{2}$ $\frac{d}{dx} \approx \frac{L}{L}$ $f' \varphi \approx \frac{\varphi^{00-01} - \varphi^{00-00}}{\sqrt{1-\frac{1}{\$ and $\lambda = 10^{-9} c/f (c = 3 \times 10^8 \text{ m/s}$ is the light speed in free space and the unit of *f* is GHz), the deflected angel θ_r is obtained as

$$
\theta_r = \sin^{-1}\left[\frac{\lambda}{2\pi} \cdot \frac{d\varphi}{dx}\right]
$$

\n
$$
\approx \sin^{-1}\left{\frac{10^{-9} \times c}{2\pi f} \cdot \left[\frac{-\frac{\pi}{9} (f - f_0)}{0.006 \times 3}\right]\right}
$$

\n
$$
= -\sin^{-1}\left[\frac{25}{27} (1 - \frac{f_0}{f})\right]
$$
 (26)

Hence the reflection angle $|\theta_r|$ monotonically increases in the operational frequency band.