### **Supplemental Materials**



#### SUPPLEMENTAL FIGURES AND LEGENDS

**Supplemental Figure 1. Disorder prediction for Hrq1 and RecQ4.** A) DISOPRED3 analysis from the UCL Department of Computer Science web server (http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1) was performed on Hrq1 (left) and RecQ4 (right) to predict intrinsically disordered regions. A confidence score above the dashed line represents likely unstructured regions. Both helicases are predicted to contain disordered regions in the N-terminus, with RecQ4 likely having very few structured regions within the first ~500 residues. B) Predictor of Naturally Disordered Regions (PONDR) plots for Hrq1 (left) and RecQ4 (right). Protein sequences were analysed using the VL-XT algorithm with default settings (http://www.pondr.com/). PONDR scores > 0.5 represent potentially disordered regions. Analysis again demonstrates that Hrq1 and RecQ4 likely have disordered N-termini, with the amount of predicted disorder greater for RecQ4.



Supplemental Figure 2. Analysis of catalytically inactive Hrq1-K318A and RecQ4-K508A mutant proteins demonstrates that the observed ATPase activities of the wild type proteins are not due to contaminating enzymes from insect cell culture. A) and B) Hrq1-K318A and RecQ4-K508A are ATPase-dead. The rate of ATP hydrolysis by Hrq1-K318A and RecQ4-K508A was not significantly above background in the presence or absence of poly(dT) ssDNA.



**Supplemental Figure 3. Representative gel images of Hrq1 binding to each substrate tested.** The first lane in each gel is a no protein control. The concentration ranges indicated do not necessarily reflect the values used for the plotted binding curves in the main text.



Supplemental Figure 4. Representative gel images of RecQ4 binding to each substrate tested. The first lane in each gel is a no protein control. The concentration ranges indicated do not necessarily reflect the values used for the plotted binding curves in the main text.

A. Random Fork



**C. Telomeric Fork** 











## A. Random Fork



**Supplemental Figure 6. Representative gel images of RecQ4 helicase assays.** The indicated boiled and unboiled lanes were used as a reference for unwound product and as a no protein control, respectively. For substrates containing >2 oligonucleotides (HJ and D-Loop), lane 1 instead contains full-length, intermediate, and fully unwound products for reference. The no protein control is in lane 2 of these gels.



Supplemental Figure 7. Hrq1 (black) and RecQ4 (red) helicase activity as a function of time for the fork (A) and D-loop (B) substrates. At a concentration of 100 nM, both helicases display similar unwinding kinetics on the individual substrates, with the fastest unwinding for the D-loop.

# RecQ1



# Hrq1





**Supplemental Figure 8. Projections of RecQ1 and structural comparisons.** (Upper panel) A gallery of model projection images of RecQ1 low-pass filtered to 30 Å (PDB 2V1X). (Lower panel) Enlarged views of selected projection images of RecQ1, selected 2D class averages of Hrq1, and selected 2D class averages of RecQ4. Scale bar, 5 nm. The crystal structure of RecQ1 used here has 591 residues, which is approximately half the size of Hrq1 and RecQ4 (13,69).



**Supplemental Figure 9. Hrq1 does not anneal DNA under a variety of conditions.** A) Annealing assays were performed with 100 nM Hrq1 or RecQ4 for up to 30 min at 37°C. Hrq1 was unable to anneal DNA above background levels. B) Partial purification of 10xHis-Sld2-Hrq1 by Ni-affinity chromatography. The fusion protein is marked with an arrow.

# SUPPLEMENTAL TABLES

Supplemental Table 1. Names and sequences of the oligonucleotides used to generate all of the substrates used in the biochemical assays.

| Name  | Sequence                                                     | Substrate                     | Ref. |
|-------|--------------------------------------------------------------|-------------------------------|------|
| MB547 | GACGTCATAGACGATTACATTGCTAGGACATGCTGTCTAGAGACTATCGC           | Random (ATPase)               | (1)  |
| MB548 | ААААААААААААААААААААААААААААААААААААААА                      | Poly(dA) (ATPase)             | -    |
| MB549 | сссссссссссссссссссссссссссссссссссссс                       | Poly(dC) (ATPase)             | -    |
| MB550 | GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                      |                               | -    |
| MB551 | ттттттттттттттттттттттттттттттттттттттт                      | Poly(dT) (ATPase)             | -    |
| MB583 | GACGCTGCCGAATTCTGGCTTGCTAGGACATCTTTGCCCACGTTGACCC            | ні                            | -    |
| MB584 | TGGGTCAACGTGGGCAAAGATGTCCTAGCAATGTAATCGTCTATGACGTT           | HJ                            | -    |
| MB585 | CAACGTCATAGACGATTACATTGCTAGGACATGCTGTCTAGAGACTATCGA          | НJ                            | -    |
| MB586 | ATCGATAGTCTCTAGACAGCATGTCCTAGCAAGCCAGAATTCGGCAGCGT           | HJ                            | -    |
| MB733 | ACCGTTGTGCAACTGAGTGGACAACGTGTCACTCACATAGCGTTC                | 25-nt Random Fork,<br>5'-tail | -    |
| MB734 | GAACGCTATGTGAGTGACACCAACAGGTGAGTCAACGTGTTGCCA                | 25-nt Random Fork,<br>3'tail  | -    |
| MB808 | GGTGAACCTGCAGGTGGGCGGCTGCTCATCGTAGGTTAGTTGGTAGAATTCGGCAGCGTC | Bubble                        | (2)  |
| MB811 | GACGCTGCCGAATTCTAGGTTGATTGGATGCTACTCGTCGGCGCCACCTGCAGGTTCACC | Bubble                        | (2)  |
| MB819 | AAAGGGGGAGCTGGGGTAGATGGGAATGTGAGGGCAACAGGTGAGTCAACGTGTTGCCA  | G4                            | (3)  |
| MB820 | GAACGCTATGTGAGTGACAC                                         | 5'-tail, Blunt                | -    |
| MB821 | GTGTCACTCACATAGCGTTC                                         | 3'-tail, Blunt                | -    |

| MB1057 | CTA CTC TAA CTC CGA CCG CTT GCA TGC CTG CAG G                                                                   | Strand<br>Annealing/Exchange<br>Fork           | (4) |
|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----|
| MB1058 | CCT GCA GGC ATG CAA GCG GTC GGA GTT AGA GTA G                                                                   | Strand Exchange<br>Blunt                       | (4) |
| MB1059 | ATC CTC TCT AGA GTC AAG GTC GGA GTT AGA GTA G                                                                   | Strand<br>Annealing/Exchange<br>Fork           | (4) |
| MB1113 | ACCGTTGTGCAACTGAGTGGACAACACCGTTGTGCAACTGAGTGGACAACGTGTCACTCAC                                                   | 50-nt Random Fork                              | -   |
| MB1114 | GAACGCTATGTGAGTGACACCAACAGGTGAGTCAACGTGTTGCCACAACAGGTGAGTCAACGTGTTGCCA                                          | 50-nt Random Fork                              | -   |
| MB1115 | ACCGTTGTGCAACTGAGTGGACAACACCGTTGTGCAACTGAGTGGACAACACCGTTGTGCAACTGAGTGGACAAC<br>GTGTCACTCACATAGCGTTC             | 75-nt Random Fork                              | -   |
| MB1116 | GAACGCTATGTGAGTGACACCAACAGGTGAGTCAACGTGTTGCCACAACAGGTGAGTCAACGTGTTGCCACAACA<br>GGTGAGTCAACGTGTTGCCA             | 75-nt Random Fork                              | -   |
| MB1117 | GTG TGG GTG TGG TGT GGG TGT GGT GTG GGG TGG | Yeast telomeric<br>repeat G-strand<br>(ATPase) | -   |
| MB1118 | CAC CCA CAC CAC ACC ACA CCC ACA CCA CAC CAC CAC ACC CAC AC                                                      | Yeast telomeric<br>repeat C-strand<br>(ATPase) | -   |
| MB1119 | TTT AGG GTT TAG GGT TTA GGG TTT AGG GTT TAG GGT TTA GGG TTT AGG GTT TAG GG                                      | Human telomeric<br>repeat G-strand<br>(ATPase) | -   |
| MB1120 | CCC TAA ACC CTA AAC CCT AAA CCC TAA ACC CTA AAC CCT AAA CCC TAA ACC CTA AA                                      | Human telomeric<br>repeat C-strand<br>(ATPase) | -   |

| MB1162 | GGGTGAACCTGCAGGTGGGCGGCTGCTCATCGTAGGTTAGTGGTAGAATTCGGCAGCGTC | D-Loop                        | (5) |
|--------|--------------------------------------------------------------|-------------------------------|-----|
| MB1163 | GACGCTGCCGAATTCTACCATGCCTTGCTAGGACATCTTTGCCCACCTGCAGGTTCACCC | D-Loop                        | (5) |
| MB1165 | TAAGAGCAAGATGTTCTATAAAAGATGTCCTAGCAAGGCA                     | D-Loop                        | (5) |
| MB1167 | TTTTTTTTTTTTTTTTTTTTTTTTTGTGTCACTCACATAGCGTTC                | Poly(dT) Fork                 | -   |
| MB1168 | GAACGCTATGTGAGTGACACTTTTTTTTTTTTTTTTTTT                      | Poly(dT) Fork                 | -   |
| MB1169 | GGTGTGGGTGTGGGTGTGGGGTGTGTCACTCACATAGCGTTC                   | Poly(TG <sub>1-3</sub> ) Fork | -   |
| MB1170 | GAACGCTATGTGAGTGACACTGGGTGTGGTGTGGGTGTGGGG                   | Poly(TG <sub>1-3</sub> ) Fork | -   |
| MB1171 | TTAGGGTTAGGGTTAGGGTGTGTGTCACTCACATAGCGTTC                    | Poly(TTAGGG) Fork             | -   |
| MB1172 | GAACGCTATGTGAGTGACACTTAGGGTTAGGGTTAGGGT                      | Poly(TTAGGG) Fork             | -   |
| MB1185 | GGT GAA CCT GCA GGT GG                                       | Bubble Trap                   | -   |
| MB1186 | TAG AAT TCG GCA GCG TC                                       | Bubble Trap                   | -   |

Hrq1 RecQ4 Protein Peptide E value Protein Peptide E value 1.90E-09 IEECPCSDGCPDCVAASFCK RecQ4 YPPQEAEQLSHQAAPGPR 2.60E-10 Hrq1 Hrg1 DMFGINEVTLIHEDGSPTGAK 1.70E-08 RecQ4 SPGDLTAEEKDQICDFLYGR 6.90E-09 RecQ4 7.00E-08 Hrq1 VETVIPVSEHVNFSDDFK 2.60E-08 VVVATVAFGMGLDRPDVR TSFTLYDGGIFIHQGYPYLVK Hrq1 3.50E-08 RecQ4 RPSQDDVEAAPEETR 7.80E-08 Hrq1 IIDAIETHNPPVIINSK 5.60E-08 RecQ4 AVLHLGLPPSFESYVQAVGR 7.90E-08 Hrq1 QLNVAGAIHGAQHAIMGMLPR 6.50E-08 RecQ4 AGKAEGTAPLHIFPR 1.80E-07 Hrq1 8.00E-08 RecQ4 YFEEEEGQEPGGMEDAQGPEPGQAR 1.90E-07 RIEECPCSDGCPDCVAASFCK Hrq1 NIFIETGREDLVTEVMSYR 1.30E-07 RecQ4 LNCPGGPAQLQALAHR 2.50E-07 Hrq1 STQLLIFEFIDGTMQR 1.70E-07 RecQ4 ANLKGTLQAGPALGR 5.40E-07 Hrq1 NAVVDTYDGDTEPEER 1.90E-07 RecQ4 IFHGIGSPCYPAQVYGQDR 6.70E-07 Hrq1 VDVDWVTNQRDFTDVDPQEIELIR 2.30E-07 RecQ4 DGQPAHCHLFLQPQGEDLR 8.10E-07 Hrq1 QLNVAGAIHGAQHAIMGMLPR 2.50E-07 RecQ4 TFQAFHSVAFPSCGPCLEQQDEER 1.10E-06 Hrq1 GGEEDQFAVVDITNGR 3.40E-07 RecQ4 APKTTAEAYHAGMCSR 1.10E-06 Hrq1 FIVAGVDEIQTECKAPEK 3.50E-07 RecQ4 FONLDSIIIYCNR 1.30E-06 Hrq1 DMFGINEVTLIHEDGSPTGAK 4.70E-07 RecQ4 RGTGVLVEFSELAFHLR 1.30E-06 Hrq1 AFEHIDDIIESSLR 5.10E-07 RecQ4 ILSGISTLLVLPTGAGK 1.30E-06 Hrq1 ERDYEDPIEAMMK 5.20E-07 RecQ4 SLCYQLPALLYSR 2.80E-06 RTFQAFHSVAFPSCGPCLEQQDEER 3.40E-06 Hrq1 ANLDPFSELTNLAQK 5.70E-07 RecQ4 Hrq1 HLVVWNPPILPQHER 6.00E-07 RecQ4 GTGVLVEFSELAFHLR 4.80E-06 Hrq1 FIVAGVDEIQTECK 1.00E-06 RecQ4 SSESLPAAAEEAPEPR 5.10E-06 1.50E-06 6.50E-06 Hrg1 TVTKEDLAMVMALMPR RecQ4 TTAEAYHAGMCSR Hrq1 TVTKEDLAMVMALMPR 2.40E-06 RecQ4 VSDEPPQLPEPQPRPGR 8.10E-06 Hrq1 QLNVAGAIHGAQHAIMGMLPR 3.90E-06 RecQ4 VGSPQPSSSGGEKR 1.70E-05 Hrq1 QLNVAGAIHGAQHAIMGMLPR 4.50E-06 RecQ4 YFEEEEGQEPGGMEDAQGPEPGQAR 2.10E-05 RecQ4 2.60E-05 Hrq1 YIDENQIYTETK 8.50E-06 LQHLQASLSQR Hrq1 ENDIFELKDVDDQNQTQK 9.40E-06 RecQ4 CHSEVPDFLGAPK 2.80E-05 Hrq1 VQRVDVDWVTNQR 9.40E-06 RecQ4 ALCQLQWDHEPR 3.30E-05

Supplemental Table 2. Full peptide sequence list observed by mass spectrometry analysis of the recombinant Hrq1 and RecQ4 preparations.

| Hrq1 | EKANLDPFSELTNLAQK          | 9.40E-06 | RecQ4 | MGVHCFLGLTATATR            | 4.80E-05 |
|------|----------------------------|----------|-------|----------------------------|----------|
| Hrq1 | ILVQLILNNVR                | 1.10E-05 | RecQ4 | GRRPSQDDVEAAPEETR          | 5.40E-05 |
| Hrq1 | TTIIVFGFFK                 | 1.60E-05 | RecQ4 | TCLHAAWVPGSGGR             | 6.20E-05 |
| Hrq1 | ERDYEDPIEAMMK              | 1.90E-05 | RecQ4 | ASTPKPPGTGPVPSFAEK         | 6.60E-05 |
| Hrq1 | TLCGPIETALKR               | 2.00E-05 | RecQ4 | GECFGGGGATVTTK             | 7.00E-05 |
| Hrq1 | DFTDVDPQEIELIR             | 2.00E-05 | RecQ4 | HVHADSTDFLAVKR             | 7.60E-05 |
| Hrq1 | LHHNQDGYHASNR              | 2.50E-05 | RecQ4 | HVHADSTDFLAVK              | 7.60E-05 |
| Hrq1 | DPESTFMYIFPTK              | 3.10E-05 | RecQ4 | SRQGSVPDYGQR               | 8.40E-05 |
| Hrq1 | NSDVPVYFGK                 | 4.80E-05 | RecQ4 | KGECFGGGGATVTTK            | 9.00E-05 |
| Hrq1 | IPELKNAVVDTYDGDTEPEER      | 5.60E-05 | RecQ4 | AEGTAPLHIFPR               | 1.30E-04 |
| Hrq1 | TVTKEDLAMVMALMPR           | 5.70E-05 | RecQ4 | TTGQAGGGLRSSESLPAAAEEAPEPR | 1.40E-04 |
| Hrq1 | LNTLYTFLICR                | 6.00E-05 | RecQ4 | QGSVPDYGQR                 | 1.40E-04 |
| Hrq1 | SWSASDRFSQIK               | 6.90E-05 | RecQ4 | RPSQDDVEAAPEETR            | 1.70E-04 |
| Hrq1 | NIIIEEIEASR                | 7.20E-05 | RecQ4 | LGSLDPGWLQR                | 1.90E-04 |
| Hrq1 | QYFTESHLR                  | 7.90E-05 | RecQ4 | DGQPAHCHLFLQPQGEDLRELR     | 2.10E-04 |
| Hrq1 | IPTYTTEEMKK                | 9.00E-05 | RecQ4 | TTAEAYHAGMCSR              | 2.30E-04 |
| Hrq1 | STEFYASQIK                 | 9.10E-05 | RecQ4 | AATKSPQPTPGR               | 2.40E-04 |
| Hrq1 | QESNEMSIPNYSNNSVITTIPQMIEK | 1.10E-04 | RecQ4 | GRRPSQDDVEAAPEETR          | 2.40E-04 |
| Hrq1 | IFDFNNGGFQQK               | 1.10E-04 | RecQ4 | AACIHSGMTR                 | 2.50E-04 |
| Hrq1 | YGSGLCVK                   | 1.10E-04 | RecQ4 | LVDSMGWELASVR              | 2.60E-04 |
| Hrq1 | DKQYFTESHLR                | 1.10E-04 | RecQ4 | TTGQAGGGLRSSESLPAAAEEAPEPR | 2.60E-04 |
| Hrq1 | QYFTESHLR                  | 1.90E-04 | RecQ4 | AVMRILSGISTLLVLPTGAGK      | 2.90E-04 |
| Hrq1 | KQLNVAGAIHGAQHAIMGMLPR     | 2.10E-04 | RecQ4 | QFLSLRPEEKFSSR             | 3.30E-04 |
| Hrq1 | LKSTEFYASQIK               | 2.20E-04 | RecQ4 | AGRDGQPAHCHLFLQPQGEDLR     | 3.60E-04 |
| Hrq1 | IPTYTTEEMKK                | 2.90E-04 | RecQ4 | SPGDLTAEEK                 | 3.80E-04 |
| Hrq1 | APEKEFAER                  | 2.90E-04 | RecQ4 | YPPQEAEQLSHQAAPGPRR        | 4.30E-04 |
| Hrq1 | IFDFNNGGFQQKENDIFELK       | 3.30E-04 | RecQ4 | AATKSPQPTPGR               | 6.20E-04 |
| Hrq1 | VETVIPVSEHVNFSDDFKIIDVR    | 3.60E-04 | RecQ4 | IFHGIGSPCYPAQVYGQDRR       | 7.80E-04 |
| Hrq1 | STQLLIFEFIDGTMQR           | 3.90E-04 | RecQ4 | VVVATVAFGMGLDRPDVR         | 0.0022   |
| Hrq1 | AFEHIDDIIESSLRR            | 5.60E-04 | RecQ4 | GTLQAGPALGR                | 0.0024   |

| Hrq1              | DDTHTNEIIKK            | 6.10E-04 | RecQ4             | SPCLTLVVSPLLSLMDDQVSGLPPCLK | 0.003  |
|-------------------|------------------------|----------|-------------------|-----------------------------|--------|
| Hrq1              | LCHCFYENSGLQFISCSATLK  | 7.40E-04 | RecQ4             | MGVHCFLGLTATATRR            | 0.0031 |
| Hrq1              | YALEICQKK              | 7.90E-04 | RecQ4             | VGSPQPSSSGGEK               | 0.0032 |
| Hrq1              | DYEDPIEAMMK            | 0.0011   | RecQ4             | YHGLSPSSQAR                 | 0.0032 |
| Hrq1              | IPTYTTEEMK             | 0.0011   | RecQ4             | AACIHSGMTR                  | 0.0034 |
| Hrq1              | TLCGPIETALK            | 0.0013   | RecQ4             | YHGLSPSSQAR                 | 0.0045 |
| Hrq1              | VIFTNPDMIHTSILPNHANWR  | 0.0016   | RecQ4             | QFLSLRPEEK                  | 0.0053 |
| Hrq1              | GGKYGSGLCVK            | 0.002    | RecQ4             | SLCYQLPALLYSRR              | 0.0056 |
| Hrq1              | VDVDWVTNQR             | 0.0025   | RecQ4             | LQDWEDQVR                   | 0.0057 |
| Hrq1              | DYEDPIEAMMK            | 0.0028   | RecQ4             | AFMQGQLR                    | 0.0063 |
| Hrq1              | ERDYEDPIEAMMK          | 0.003    | RecQ4             | MGVHCFLGLTATATRR            | 0.0063 |
| Hrq1              | YALEICQK               | 0.0033   | RecQ4             | LQDWEDQVRCDIR               | 0.0068 |
| Hrq1              | ATKDDTHTNEIIK          | 0.0034   | RecQ4             | LVDSMGWELASVRR              | 0.0071 |
| Hrq1              | HCFTIPSR               | 0.0041   | RecQ4             | ASSKASTPKPPGTGPVPSFAEK      | 0.0078 |
| Hrq1              | HVVPTFK                | 0.0059   | RecQ4             | RALCQLQWDHEPR               | 0.01   |
| Hrq1              | EMFHGNLK               | 0.0067   | RecQ4             | AFMQGQLR                    | 0.013  |
| Hrq1              | DGPEPNMPEIK            | 0.0067   | RecQ4             | ESVLQKIR                    | 0.013  |
| Hrq1              | SWSASDRFSQIK           | 0.0078   | RecQ4             | DTDQALLTLLQGK               | 0.023  |
| Hrq1              | KQLNVAGAIHGAQHAIMGMLPR | 0.0081   | RecQ4             | AACIHSGMTRK                 | 0.024  |
| Hrq1              | DPESTFMYIFPTK          | 0.013    | RecQ4             | QFLSLRPEEK                  | 0.038  |
| Hrq1              | RIIDAIETHNPPVIINSK     | 0.013    | RecQ4             | EDTERIAALLR                 | 0.039  |
| Hrq1              | NFEQFFR                | 0.016    | CG6833, isoform A | LQASMER                     | 0.0081 |
| Hrq1              | KHVVPTFK               | 0.02     |                   |                             |        |
| Hrq1              | DDTHTNEIIK             | 0.02     |                   |                             |        |
| Hrq1              | LREFILEK               | 0.021    |                   |                             |        |
| Hrq1              | SAGQGSGKTDAFR          | 0.022    |                   |                             |        |
| Hrq1              | LIFYDSK                | 0.028    |                   |                             |        |
| Hrq1              | DYEDPIEAMMK            | 0.03     |                   |                             |        |
| Hrq1              | ENDIFELK               | 0.047    |                   |                             |        |
| Heat shock 70 kDa |                        | 1 405 06 |                   |                             |        |
| protein cognate 4 | IINEPTAAAIATGLUK       | 1.40E-06 |                   |                             |        |

| Heat shock 70 kDa     |                        |          |  |  |
|-----------------------|------------------------|----------|--|--|
| protein cognate 4     | STAGDTHLGGEDFDNR       | 6.30E-06 |  |  |
| Heat shock 70 kDa     |                        |          |  |  |
| protein cognate 4     | TTPSYVAFTDTER          | 1.40E-05 |  |  |
| Heat shock 70 kDa     |                        |          |  |  |
| protein cognate 4     | MKETAEAYLGK            | 5.10E-05 |  |  |
| Heat shock 70 kDa     |                        |          |  |  |
| protein cognate 4     | APAVGIDLGTTYSCVGVFQHGK | 2.00E-04 |  |  |
| Heat shock 70 kDa     |                        |          |  |  |
| protein cognate 4     | VEIIANDQGNR            | 0.0045   |  |  |
| Heat shock 70 kDa     |                        |          |  |  |
| protein cognate 4     | ITITNDKGR              | 0.05     |  |  |
| Tubulin alpha-1 chain | VGINYQPPTVVPGGDLAK     | 1.30E-04 |  |  |
| Tubulin alpha-1 chain | DVNAAIATIK             | 0.019    |  |  |

### SUPPLEMENTAL REFERENCES

1. Nimonkar, A.V., Genschel, J., Kinoshita, E., Polaczek, P., Campbell, J.L., Wyman, C., Modrich, P. and Kowalczykowski, S.C. (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev, 25, 350-362.

2. Macris, M.A., Krejci, L., Bussen, W., Shimamoto, A. and Sung, P. (2006) Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA repair, 5, 172-180.

3. Mendoza, O., Bourdoncle, A., Boule, J.B., Brosh, R.M., Jr. and Mergny, J.L. (2016) G-quadruplexes and helicases. Nucleic Acids Res, 44, 1989-2006.

4. Keller, H., Kiosze, K., Sachsenweger, J., Haumann, S., Ohlenschlager, O., Nuutinen, T., Syvaoja, J.E., Gorlach, M., Grosse, F. and Pospiech, H. (2014) The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res, 42, 12614-12627.

5. Guy, C.P. and Bolt, E.L. (2005) Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res, 33, 3678-3690.