SUPPLEMENTARY MATERIAL

Biologically active new metabolites from a Florida collection of Moorea producens

Omar M. M. Sabry^{1,2*}, Douglas E. Goeger¹ and William H. Gerwick^{1,3}

¹College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA

*²Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.

³Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography,

University of California, San Diego, La Jolla, CA 92093, USA

Abstract: A bioassay guided investigation (cancer cell cytotoxicity) of a Moorea producens collection from Key West, Florida, led to the discovery of two new bioactive natural products [(+)-malyngamide Y and a cyclic depsipeptide, (+)-floridamide]. Their planar structures were deduced through extensive analysis of 1D and 2D NMR spectroscopic data and supported by HRFAB mass spectrometry. The new cyclic depsipeptide contains four amino acids units, including N-methyl phenylalanine (N-MePhe), proline (Pro), valine (Val) and alanine (Ala), beside the unique unit, 2,2-dimethyl-3-hydroxy-octanoic acid (Dhoaa). In addition to the discovery of these two new compounds, two previously reported metabolites were also isolated and identified from this cyanobacterial collection; (-)-C-12 lyngbic acid and the antibacterial agent (-)-malyngolide.

S1 ¹H NMR spectrum of compound **1** in CDCl₃

S2 COSY spectrum of compound 1 in CDCl₃

S3 TOCSY spectrum of compound **1** in CDCl₃

S4 ¹³C NMR spectrum of compound 1 in CDCl₃

S5 HSQC spectrum of compound 1 in CDCl₃

S6 HMBC spectrum of compound **1** in CDCl₃

S7 COSY spectrum of compound 2 in CDCl₃

S8 TOCSY spectrum of compound **2** in CDCl₃

S9¹³C NMR spectrum of compound **2** in CDCl₃

S10 HSQC spectrum of compound 2 in CDCl₃

S11 CIMS fragmentation observed for Floridamide

S12 Partial structures of 2 connected by HMBC correlations

S13 Cytotoxic activity of malyngamide Y

S14 Table 1. ¹H and ¹³C NMR Data of Malyngamide Y (1) in CDCl₃

S15 Table 2. NMR spectroscopic data for Floridamide at 400 MHz (¹H) and 150 MHz (¹³C) in CDCl₃.

S1 ¹H NMR spectrum of compound **1** in CDCI_3

S2 COSY spectrum of compound **1** in CDCI_3

S3 TOCSY spectrum of compound **1** in CDCI_3

S4 ¹³C NMR spectrum of compound 1 in $CDCI_3$

S5 HSQC spectrum of compound 1 in CDCI_3

S6 HMBC spectrum of compound **1** in CDCI_3

S7 COSY spectrum of compound 2 in CDCI_3

 ${\bf S8}$ TOCSY spectrum of compound ${\bf 2}$ in ${\rm CDCI}_3$

S9 ¹³C NMR spectrum of compound **2** in CDCl₃

S10 HSQC spectrum of compound 2 in CDCI_3

S11 CIMS fragmentation observed for Floridamide

S12 Partial structures of **2** connected by HMBC correlations.

 $\mathbf{S13}$ Cytotoxic activity of malyngamide Y

Position	¹ H mult <i>J</i> (Hz)	¹³ C	COSY	HMBC ^b
1 _a	4.2 (dd, 4.9, 6.0)	39.4 CH ₂	H-3, N-H	C-2, C-3, C-4, C-1`
1 _b	4.0 (dd, 4.9, 6.0)		H-3, N-H	
2		138.7 C		
3	6.1 (s)	120.1 CH	H-1	C-1, C-2, C-4
4		138.4 C		
5		32.4 C		
6	2.4 (m)	42.5 CH	H-7	C-7, C-5
7a	2.0	31.0 CH ₂	H-6, H-8	C-6, C-8
7 _b	1.7		H-6, H-8	
8 a	2.4 (m)	26.1 CH ₂	H-7, H-9	C-6, C-7, C-9, C-10
8 _b	1.8 (m)		H-7, H-9	
9	6.8 (m)	130.9 CH	H-8	C-5, C-8, C-4
10	1.12	14.6 CH ₃		C-5, C-6, C-7, C-8
N-H	6.02 (brt, 6.0)			
1'		172.4 C		
2'	1.6 (m)	25.4 CH ₂		C-1`
3'	2.2 (m)	29.1 CH ₂	H-4`	
4'	5.4 (m)	127.0 CH	H-3`, H-5`	C-5', C-3'
5'	5.4 (m)	12.0 CH	H-4`, H-6`	C-6`, C-4`
6'	2.15 (m)	36.9 CH ₂	H-5`, H-7`	C-5`, C-7`
7'	3.12 (m)	81.1 CH	H-6`, H-8`	C-6`, C-8`, C-12`
8'	1.60 (m)	36.8 CH ₂	H-7`	C-9`, C-10
9'	1.35 (m)	33.7 CH ₂		C-8, C-10
10'	1.23 (m)	32.4 CH ₂		C-9
11'	1.22 (m)	23.9 CH ₂	H-12`	C-9, C12
12'	0.88 (t, 6.8)	14.5 CH₃	H-11`	C-11
13'	3.4 (s)	56.9 CH ₃		C-7`

Table 1. ¹H and ¹³C NMR Data of Malyngamide **Y** (**1**) in CDCl₃^a

^a Spectral data reported in ppm. ^b Optimized for 6 Hz.

Position	¹ H	mul	t <i>J</i> (Hz)	¹³ C	HMBC ^b					
2,2-dimethyl-3-hydroxy-octanoic acid (Dhoaa)										
1 2				109.3 C						
2	5 12	dd	7055	44.7 C	1 / 11					
J ∕	2.13	m	7.0, 5.5	4 0 CH	1, 4, 11					
+ 5	2.13	m			3, 5					
5	1.77	m		27.0 CH 23.4 CH	4,0					
7	1.00	m		23.4 CH ₂	3, <i>1</i>					
7 8	0.00	+	7.0		8 7					
0	0.00	ι ο	7.0		7					
9	1.26	5		10.4 CH ₃	2, 3, 11					
10	1.20	5		20.0 CH ₃	2, 3, 11					
Val										
11				173.3 C						
12	4.14	d	11.0	52.5 CH	11, 13, 16					
13	2.7	m		35.1 CH	12, 14, 15					
14	1.26	d	6.7	14.5 CH₃	13					
15	1.44	d	6.4	12.3 CH ₃	13					
(<i>N-</i> H)	8.60	S			12, 16					
				A1-						
40										
16				172.0 C						
17	4.76	m		51.8 CH	16, 18, 19					
18	1.36	d	7.2	23.4 CH3	17					
ΝH	6.7 d	brd	5.0		17, 19					
				<i>N-</i> MePhe						
19				172.9 C						
3	5.7	dd	12.1, 4.8	57.5 CH	19, 21, 4					
21	3.45	dd	15.0, 5.0	33.8 CH ₂	20, 22					
	2.95	m	,	-						
22				137.0 CH						
23/27	7.15	m		128.6 CH						
24/26	7.21	m		129.0 CH						
25	7.16	m		126.7 CH						
28 (N-CH ₃)	2.95	S		31.7 CH ₃	20, 29					
				Bro						
٨				FIU 160.0.C						
4	4 40	-		169.0 C	20.24.4					
1	4.40	m			29, 31, 1					
2	∠.1U 1 07	m		30.1 CH ₂	JU, J∠					
30	1.0/ 1.0	111 m		22.0.00	21 22					
32	1.3	m		22.9 CH2	31, 33					
33	3 60	m			32 1					
00	3.50	m		47.0 CH ₂	JZ, I					
^a Spectral	data r	repor	ted in ppm.		^b Optimized for 6 Hz.					

Table 2.	2. NMR spectroscopic data for Floridamide (2) at 400 MH	Iz (¹ H) and 150 MHz
(¹³ C) in C	CDCl ₃ . ^a	. ,