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Supplementary Figure 1. Expanded double dot stability diagram. Double dot stability dia-

gram at the bias of -200 µV and at zero magnetic field in a large gate voltage range. Measurements

in the main text focus on the window enclosed by the yellow square. We note that the left dot

has a charge instability, meaning that the features shift along the vertical axis spontaneously. The

instability, however, is tractable and we are able to tune VL to compensate the voltage change when

it occurs. This results in mismatch in VL ranges in conductance maps taken at different times.
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Supplementary Figure 2. Spin Blockade. a, At positive bias of 200 µV the (1, 1)↔(2,0) degen-

eracy point has smaller current. b, At the reverse bias the (1, 1)↔(0,2) degeneracy point has the

smaller current. c, d, Spin blockade is lifted by a magnetic field of 50 mT, with all four degeneracy

points showing similar current levels. In e, f, gates are swept through the spin blockade region

(arrows in a and in b) as magnetic field is stepped. The current has a zero-field dip, consistent

with spin blockade reported previously for InSb double quantum dots1.
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Supplementary Figure 3. Magnetic field evolution of the charge stability diagram. a-b,

The evolution of current along the line cuts a and b shown in panel c, Vbias = -200 µV. For B ≤

100 mT, the high current lines that define the (1,1) region move apart. At higher fields, the lines

exhibit kinks. They are are consistent with previously reported ground state spin transitions in

InSb nanowire quantum dots2. Spins of the electrons added to the dot are depicted by arrows along

the high current lines. c-g, The double dot stability diagrams at 0, 140, 300, 500, 800 mT, Vbias =

-200 µV. We notice that the higher current lines connected the spin blockade points (lower branch

of a and higher branch of b) also undergo lower current at zero field. It is specially demonstrated

with a zoomed-in scan of the lower branch from 0 to 50 mT (h). The color bar of b is on its right

side. The other plots share the color bar on the right side of a.
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Supplementary Figure 4. Complimentary data on Andreev Molecular States. Spectroscopy

measurements of Andreev molecular resonances complimentary to Fig.2 and Fig.3 of the main text.

a-c, Gate vs. gate differential conductance diagrams at the bias of (a) 200 µV, (b) -200 µV and (c)

-100 µV. d-g, Source-drain bias spectroscopy scans along various cuts depicted by the arrows in

b. d, With the left dot fixed at its degeneracy point. f, With the right dot fixed at its degeneracy

point. Here we extend the plot to display adjacent Andreev loops. e, Along the symmetric cut

through the (1,0)↔(2,1) degeneracy point. g, Along the detuning cut through the (1,0)↔(0,1)

degeneracy point.
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Supplementary Figure 5. Spin map. The magnetic field dependence of the subgap resonances

in the 3x3 double dot configurations around (1,1). Within each configuration, the magnetic field

dependence of the resonances is measured at a few fixed gate voltages. Scans in each configuration

demonstrate consistent magnetic field behavior and one typical scan is presented here. Note that

the positive (negative) bias branch in (2,0) ((0,2)) is missing, which is a consequence of spin

blockade and asymmetric couplings.
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Supplementary Figure 6. Detailed magnetic field data in the (2,1) configuration. The

magnetic field dependence in (2,1) at various spots away from the degeneracy point. a, The

spectroscopy along the detuning cut through the (2,1)↔(1,2) degeneracy point. b-e, A series of

bias vs. field scans in (2,1) at spots farther and farther away from the degeneracy point, depicted by

the yellow diamond, green triangle, blue square and black dot marked in panel a. This shows that

qualitatively the same features are observed within the same quadrant of the double dot stability

diagram in Supplementary Figure 5.
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Supplementary Figure 7. The source-drain bias spectroscopy at zero and finite fields. a-d,

The spectroscopy measurements at 0 mT (left) and 35 mT (right) along different cuts depicted

by the yellow arrows in e which is the same as Supplementary Figure 4b. a-b, For both bias

directions, resonances are doubled at finite field in the (even, even) configurations; while in (1,1) a

resonance does not split. c, Along the energy shift cut through the (2,0)↔(1,1) degeneracy point.

d, Along the detuning cuts through (2,1)↔(1,2) degeneracy point.
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Supplementary Figure 8. Strong interdot coupling regime. Data in this plot and Supple-

mentary Figure 9 are obtained after the device has been re-tuned to lower the interdot barrier by

adjusting gate Vt from −685 mV to −635 mV, and all other gates to keep the same dot occupations.

VΓL and VΓR remain almost the same. a-b, The gate vs. gate differential conductance diagrams

at biases of 200 µV and -200 µV. c and d, The spectroscopy scans along the detuning and energy

shift cuts. e, scan the left dot when the right dot is fixed at the degeneracy point. The spectra

are qualitatively similar to those in the weaker interdot coupling regime. However, owing to the

stronger interdot coupling, a few features which are less clearly resolved in the weaker interdot

coupling regime are more pronounced here. First, the resonances away from the degeneracy points

are clearly visible. Second, the close-to-zero-bias resonances, that appear within the loop-like res-

onances are resolved. These resonances appear due to proximity to charge degeneracy in the right

dot, they are further discussed in Supplementary Figure 12.
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Supplementary Figure 9. The spin map in the stronger interdot coupling regime. Spin

map in the stronger interdot coupling regime (Vt = −635 mV). Magnetrospectroscopy is performed

in the 3x3 double dot configurations around (1,1) in the stronger interdot coupling regime. In

each configuration a typical example is presented. Although the resonances are more broadened,

qualitatively similar magnetic field dependencies are observed here as in Supplementary Figure 5.

That is, resonances don’t split and moves away from zero bias in (1,1), resonances split in the

(even, even) configurations, and resonances exhibit kinks at positive (negative) bias and broadened

structures at negative (positive) bias in (1,0) and (2,1) ((0,1) and (1,2)).
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Supplementary Figure 10. Strong superconductor-quantum dot coupling regime. The

spectroscopy of the double dot system in strong superconductor-quantum dot coupling regime. a,

dI/dV as a function of VL and an VR with a fixed bias at -120 µV . In this strong coupling regime

the four degeneracy points are broadened due to increased tunnel coupling to the leads. b(c), the

resonances as a function of VL (VR) when VR (VL) is set to 687 mV (717 mV) respectively. In

this regime, the single dot ground states are singlets and the resonances loops have anti-crossings.

The resonances are less sharp because the quantum dots outgoing and incoming barriers are very

open. The data are from another. d, the simulated plot in the strong coupling regime, when left

dot chemical potential is fixed to 0 and right dot chemical potential is swept. The simulation also

reproduces the anticrossing observed in experiment.
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Supplementary Figure 11. High bias scans revealing multiple loops of single dots. In a we

show the spectroscopy of the left single dot when the right dot is removed. The system is therefore

a single quantum dot coupled to a superconducting lead and probed by the other superconducting

lead that is weakly coupled to the dot. Besides the lowest bias loop-like resonances, we observe

copies of these resonances at higher biases. They demonstrate non-linear gate dependence of the

same pace of the lowest bias loops. Both lowest bias loops and higher bias resonances are followed

by negative differential conductance peaks. These features are observed in the right single dot as

well (b). We note that the copies are present only in systems with both leads superconducting.

When an Andreev bound state is probed by a normal lead, only one loop is observed within the

gap. The copies of the Andreev states may originate from quasiparticle peaks in the tunneling

probes and multiple Andreev reflections. They are being addressed in a future publication. In this

paper we focus on the resonances closest to zero bias.
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Supplementary Figure 12. Simulated spectra of the S-QD-QD-S system. Simulated spectra

of the system at zero bias. Throughout the paper, the simulated spectra and transport plots use

the same parameters, i.e., Andreev reflection matrix element τL/R/U = 0.4, inter-dot tunneling

matrix element t/U = 0.01 in terms of the on-site interaction strength U . a, The simulated

diagram showing the ground state parities as a function of left and right dot chemical potential

(µL and µR). Blue regimes have total parities of even and yellow regimes have total parities of odd.

b-d, Bias scans along the cuts depicted in a. These spectra explain the corresponding bias vs.

gate subgap conductance measurements. We notice that, interestingly, in the measurements where

one dot is fixed at the degeneracy point (Fig.3a-b in the main text and Supplementary Figure

4d,f), additional close-to-zero-bias resonances are observed inside the loop-like structure. They

can be explained by d where besides the transition from the ground state to the higher doublet

state (tall arrow), there exist the transition to the lower doublet state which requires little energy

(short arrow). They are associated with adding or removing an electron in the degenerate dot and

therefore they cost little energy.
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Supplementary Figure 13. Simulated transport plots. The diagram (a) used to illustrate the line

cuts for b-e is the same as Supplementary Figure 12a. b-e are bias vs. gate plots along cuts

depicted in a. The green dashed lines indicate the bias voltage at which the levels on the quantum

dots come into resonance and the blue dashed lines indicate when the bias voltage exceeds the

Andreev level spacing. Notice that additional resonances near zero bias are shown inside the

loop-like resonances (d, e), which is consistent with the experimental observations.
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Supplementary Figure 14. The simulated spin map. Simulated magnetic field dependence of the

3x3 configurations around (1,1). Besides the good fitting between measurements and simulations

in each individual configuration, the experimental (Supplementary Figure 5) and the simulated

maps exhibit impressively similar patterns. First, (0,0) and (2,2) show resonances symmetrically

at both biases, while only the negative (positive) branch has high conductance in (2,0) ((0,2)).

Second, in (1,0) and (2,1) the kinks occur at the positive bias while in (0,1) and (1,2) the kinks

occur at the negative bias. We notice that even with stronger interdot coupling (Supplementary

Figure 9), such consistency is still valid.
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SUPPLEMENTARY NOTE 1 ANDREEV MOLECULES AT ZERO BIAS

In this section we explicitly write down the model Hamiltonians for Andreev atoms and

molecules that were used to produce Fig. 1b,c of the main text.

The minimal model for Andreev bound states (Andreev atomic states) in a superconductor-

quantum-dot (S-QD) system at zero bias consists of a single level quantum dot coupled to

the superconducting reservoir. The model is described by the Hamiltonian

HS-QD =
∑

σ={↑,↓}

εσnσ + Un↑n↓ −
(
τd†↑d

†
↓ + H.c.

)
, (1)

where εσ is the energy of an electron with spin σ to be on the quantum dot which is set by

the gate voltage and the magnetic field, nσ = d†σdσ is the number operator for electrons with

spin σ on the dot, U is the charging energy for double occupancy of the dot, τ describes

the strength of Andreev reflection of electrons from the superconductor and d†σ and dσ are

the electron creation and annihilation operators. The spectrum of this Hamiltonian consists

of two spin-singlets (sin(θ)|0〉 + cos(θ)| ↑↓〉 and cos(θ)|0〉 − sin(θ)| ↑↓〉) and a spin-doublet

(| ↑〉 and | ↓〉). The parity of the ground state, as well as the angle θ, is determined by the

coupling constants and can be tuned from even to odd to even by varying ε↑ and ε↓. The

lower of the spin singlet states and the spin doublet states are plotted in Fig. 1b.

To describe Andreev molecular states at zero bias we need to couple two Andreev atoms.

The corresponding Hamiltonian becomes

HS-QD-QD-S =
∑

i={L,R}

 ∑
σ={↑,↓}

εi,σni,σ + Uini,↑ni,↓ −
(
τid
†
i,↑d
†
i,↓ + H.c.

) (2)

− t
∑

σ={↑,↓}

(
d†L,σdR,σ + H.c.

)
, (3)

where the subscripts L and R stand for the left and the right quantum dots and t is the

inter-dot tunneling matrix element. The eigenstates of HS-QD-QD-S are the Andreev molecular

states plotted in Fig. 1c.

In the following section, we discuss a more detailed model of Andreev molecular states

at nonzero bias voltages, which describes both Andreev reflections and inter-dot coupling

while keeping track of the charging energy of the two superconducting leads.
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SUPPLEMENTARY NOTE 2 DETAILED DESCRIPTION OF OUR TRANSPORT

MODEL

Model Hamiltonian

We use two main ingredients to setup our detailed model of the transport properties of

the superconductor-double-dot-superconductor (S-QD-QD-S) device. The first ingredient is

a ladder of Andreev molecular states of the S-QD-QD-S system. These states are a result of

the interplay of Andreev reflections and hybridization between the quantum dots. The sec-

ond ingredient is a low, but finite, density of sub-gap quasi-particle states in the leads. The

resonant tunneling of these sub-gap quasi-particles into the double dot subsystem is respon-

sible, within our model, for driving transitions between the eigenstates of the S-QD-QD-S

system and hence for the experimentally observed sub-gap transport features. To account

Supplementary Figure 15. Hybrid superconductor-double-dot-superconductor system, consisting

of an array of two quantum dots tunnel-coupled to superconducting leads. Each lead is modeled as

having a standard BCS superconducting (S) component and a normal metal (N) component. The

coupling to the BCS components give rise to Andreev reflection processes, whereas the coupling to

the normal components provide low-energy electronic excitations which are responsible for sub-gap

transport. The strength of the inter-dot tunneling is set by t, while τL and τR (tL and tR) control

the coupling of the left and right dots to the superconducting (normal) components of the left and

right leads. The leads are biased by the source (drain) voltages VS(D) and the chemical potential

on the left (right) dot is controlled by the side-gate voltage VL(R).

for the presence of sub-gap quasi-particles, we model each lead as having a superconducting

component and a normal metal component [see Fig. 15]. The superconducting component
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is a conventional BCS superconductor with a hard gap ∆, which provides a condensate of

Cooper pairs and drives Andreev reflection processes. The normal component, which we

model as a non-interacting Fermi gas with a low density of states at the Fermi surface,

provides the low energy electronic excitations that are necessary for sub-gap transport. Fi-

nally, to model the application of bias, Vbias, we tie the electro-chemical potentials of the

two components together and fix them to the applied bias voltage [see Fig. 15].

One of the key features observed in the experimental data are discrete and narrow Andreev

bound state-like features. As the strong resonant tunneling of electrons from the normal

component of the leads to the quantum dot sub-system tends to broaden the discrete levels

of the quantum dot sub-system, we restrict our modeling to the regime where single-electron

tunneling (between the quantum dot system and the normal metal component of the leads)

is the weakest coupling in the system.

Our transport model is encoded by the Hamiltonian

H = HQD +HS +HT,S +HN +HT,N , (4)

where HQD describes the double-dot subsystem, HS describes the electro-chemical potential

energy of the Cooper pairs in the superconducting leads, HT,S describes Andreev reflection,

HN is the Hamiltonian of the normal component of the leads, and HT,N describes the

tunneling between the QDs and the normal components of the leads. HQD is given by

HQD =
∑
jσ

εjσnjσ + U
∑
j

nj↑nj↓ − t
∑
σ

(
d†R,σdLσ + d†LσdR,σ

)
, (5)

where njσ = d†jσdjσ is the number operator of the electrons on QD j = {L,R} with spin σ,

energy εjσ (controlled by the electro-chemical potential in quantum dot j). The strength of

the Coulomb repulsion and of the inter-dot coupling is set by U and t, respectively. The

model Hamiltonian for the leads is a combination of the superconducting component

HS =
∑

j∈{S,D}

eVjNj, (6)

and the normal component

HN =
∑

j∈{S,D}

∑
kσ

(ξk + eVj) c
†
jkσcjkσ, (7)

where j = {S,D} indicates the source and drain leads, Nj represents the electron number

operator for the superconducting component, c†jkσ (cjkσ) creates (annihilates) an electron
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with momentum k and spin σ with energy ξk in the normal component of lead j, and both

components are biased by the same voltages Vj. The Andreev reflection (i.e. pair tunneling)

is described by the Hamiltonian

HT,S = −τLS+
S dL↓dL↑ − τRS

+
DdR↓dR↑ + H.c., (8)

where the operator S+
j increases the number of electrons in the superconducting condensate

of the j-th superconducting lead by two: Nj → Nj + 2. Keeping track of the number of

electrons in the superconducting condensates in the two leads is an essential feature of the

model that allows us to describe Andreev reflection between the QDs and both leads when

there is a voltage difference between the leads3. The coupling between the QDs and the

normal leads is given by the conventional tunneling Hamiltonian

HT,N = −tL
∑
kσ

c†SkσdLσ − tR
∑
kσ

c†DkσdRσ + H.c.. (9)

Here τj and tj (taken to be real) set the strength of the pair (Andreev reflection) and

single-electron tunneling between QD and lead j.

As tL and tR are the weakest couplings in the system, we call HAMH = HQD +HS +HT,S

the Andreev molecular Hamiltonian and treat HT,N as a perturbation to HAMH. That is,

the Andreev molecular Hamiltonian gives rise to the Andreev molecular states, and HT,N

drives transitions between these states.

Eigenstates of the Andreev molecular Hamiltonian at finite bias

The Andreev molecular Hamiltonian preserves the total electron number NT , total parity,

total spin ST , and spin projection Sz. Therefore, the Andreev molecular states of the S-QD-

QD-S system can be split into subspaces of even and odd parity; the even subspace consists

of singlet (S) and triplet (T0,±) Andreev molecular states, whereas the odd parity subspace

consists of doublet (D±) Andreev molecular states.

In terms of the number of Cooper pairs in the source and drain leads, NL and NR,

what do eigenstates of the Andreev molecular Hamiltonian look like at finite bias? A good

analogy are the spatially localized eigenstates of a quantum particle in a tilted washboard

potential. Although the ground state corresponds to the particle at the “bottom” of the

washboard, there is a whole ladder of eigenstates ψi, one eigenstate for each lattice site, that
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lead to Bloch oscillations. Given the eigenstate ψi we can find the state ψi+1 by shifting the

wavefunction one lattice site down. Hence the eigenstates can be thought of as forming a

ladder, with the rungs labeled by the expectation value for position 〈x〉i. Similarly, Andreev

molecular states “live” on ladders, with rungs corresponding to the “shift” s ≈ NL − NR

[which will be precisely defined in the next paragraph]. Given an eigenstate on a particular

rung, we can obtain the eigenstate on the next rung by shifting a Cooper pair from the left

lead to the right lead. For the case of the double quantum dot system there are 16 ladders

(4 spin up doublets, 4 spin down doublets, 3 triplets and 5 singlets), which we label by the

spin state and “color”.

Consider, for example, the singlet Andreev molecular subspace with NT = 2N elec-

trons. Due to Pauli blockade, there are only five possible ways of electrons occupying the

double-dot orbitals, namely |0, 0〉 , |0, ↑↓〉 , |↑↓, 0〉 , |↑↓, ↑↓〉 and (|↑, ↓〉 − |↓, ↑〉) /
√

2. When

coupled to the superconducting leads via Andreev reflection, those five double-dot, sin-

glet states hybridize with the bare states of the superconductors |NS, ND〉, which rep-

resent a given distribution of Cooper pairs between the leads. Thus, we can generate

any state in this subspace from five reference states of the S-QD-QD-S system, such as

|N, 0, 0, N〉 , |N, 0, ↑↓, N − 2〉 , |N − 2, ↑↓, 0, N〉 , |N − 2, ↑↓, ↑↓, N − 2〉 and (|N, ↑, ↓, N − 2〉−

|N, ↓, ↑, N − 2〉)/
√

2, by transferring Cooper pairs from one lead to the other using the

transfer operators T± |NS,QDL,QDR, ND〉 = |N1 ± 2,QDL,QDR, N2 ∓ 2〉. This is pos-

sible since all remaining states of the span correspond to one of the reference states,

but with a different Cooper pair configuration. By linearity, the same considerations

apply to the eigenstates. Hence, the whole ladder of singlet Andreev molecular states∣∣S(c,s)
〉
≡ |NT = 2N,ST = 0, Sz = 0, c, s〉 can be constructed from the five reference eigen-

states, which we refer to by the “color” quantum number (c = 1, 2, . . . , 5). The number

of unique color eigenstates corresponds to the number of unique Andreev molecular states.

As a result, the triplet and doublet subspaces can be generated from sets of three and

eight color eigenstates, respectively. Here we also introduce the “shift” quantum number

(s = 0,±1,±2, . . .), defined as the number of times one needs to apply T± to a reference

eigenstate to generate an eigenstate with a different Cooper pair configuration.

We define the s = 0 reference shift as the eigenstates whose maximum components

show minimum Cooper pair imbalance between the leads. We remark that this definition

is arbitrary, and alternative definitions should not effect physical results. Note that the
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Supplementary Figure 16. Ladder of Andreev molecular states for the doublet subspace
∣∣∣D(c,s)

+

〉
≡

|NT = 2N + 1, S = 1/2, Sz = 1/2, c, s〉 for Vbias = VD−VS = 0.2∆/e, τL(R) = 0.8∆, t = 0.01∆. We

show the set of four color eigenstates corresponding to three shifts (a) s = −1, (b) s = 0, and (c)

s = 1. The s = 0 reference shift corresponds to the set of color states whose maximum components

have minimum Cooper pair imbalance between the leads. From those states, we generate the set

of states for the subsequent s = 1 (s = −1) shift by transferring one Cooper pair from the drain

(source) lead to the source (drain) lead. For convenience, we choose to count electrons relative to

N , which is equivalent to set N = 0.

eigenenergies for non-zero shifts (s 6= 0) can then be easily obtained from the relation

Ec,s
NT ,Sz

= Ec,0
NT ,Sz

+ 2s e(VS − VD). (10)

As an example, we show in Fig. 16 the s = 0 color states for the D+ subspace for different

bias voltages. At larger bias voltages, the eigenstates are well localized in Hilbert space,

showing a narrow distribution of Cooper pairs. As the bias voltage decreases towards zero,

the number of Cooper pairs are allowed to fluctuate and, as a result, the eigenstates spread.
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Supplementary Figure 17. Reference s = 0 color states for the doublet Andreev molecular sub-

space
∣∣∣D(c,0)

+

〉
≡ |NT = 2N + 1, S = 1/2, Sz = 1/2, c, s = 0〉 for (a)–(c) eVbias/∆ = 0.2, 0.02, 0.002,

showing the spreading of the probability amplitudes at low bias voltages.

Classical master equation

To describe the experimentally observed sub-gap transport through the S-QD-QD-S de-

vice, we now consider the effects of the coupling to the normal component of the leads.

We describe the state of the S-QD-QD-S device by the probability distribution P , which

gives the probability of finding the system in a particular eigenstate |NT , ST , Sz, c, s〉 of the

Andreev molecular Hamiltonian. The S-QD-QD-S system is pushed out of equilibrium by a

nonzero source-drain bias voltage. Energy is dissipated by single electrons tunneling from

the quantum dots to the normal components of the leads. Such incoherent processes drive

transitions between Andreev molecular subspaces of different parity, as illustrated in Fig. 18.

We write a classical master equation that accounts for the transitions between the various
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Supplementary Figure 18. Transitions between the even and odd Andreev molecular subspaces

of the S-QD-QD-S system driven by single electron tunneling between the normal leads and the

double dot subsystem. Depending on the spin of the exchanged electron, these transitions couple

doublet states to either singlet or triplet states.

Andreev molecular levels. Depending on the spin of the exchanged electron, these transitions

couple doublet states to either singlets or triplets. As we are interested in describing the

transport dynamics in the long time limit, the non-equilibrium probability distribution P is

given by the steady state solution of the rate equation

dP (n)

dt
=
∑
m

(
Γn←mP (m)− Γm←nP (n)

)
, (11)

where the first (second) term represents the probability of tunneling into (out of) state

|n〉 ≡ |NT , ST , Sz, c, s〉 and Γn←m are the transition rates between levels m and n due to the

exchange of one electron with the normal leads4. Specifically, if the transition rate Γn←m

results from the addition of an electron to the S-QD-QD-S system, it is given by

Γ(gain)
n←m = 2π

∑
j,σ

t2j | 〈n| d
†
j,σ |m〉 |2nF (En − Em − eVj), (12)

whereas if it results in the loss of an electron to the normal leads, we have

Γ(loss)
n←m = 2π

∑
j,σ

t2j | 〈n| dj,σ |m〉 |2
(
1− nF (Em − En − eVj)

)
. (13)
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Here nF represents the Fermi-Dirac distribution, which gives the probability to find an elec-

tron in the normal leads, and {Em} represent the eigenenergies of the S-QD-QD-S system.

The rate equation (11) takes into account all possible single-electron transitions between

Andreev molecular states. However, as we show below, we can use the symmetries of the

Andreev molecular Hamiltonian to effectively reduce Eq. (11) to involve only transitions

between two subspaces of opposite parity, containing a total of 2N and 2N + 1 electrons

(N � 1).

As shown in Fig. 18, the 2N and 2N + 1 subspaces are directly coupled by transitions

involving either the addition of an electron to the 2N subspace or the removal of an electron

from the 2N + 1 subspace. Using Eqs. (12) and (13), those rates are given by

Γ
(gain)
αO←βE = 2π

∑
j,σ

t2j | 〈2N + 1, αO, c
′, s′| d†jσ |2N, βE, c, s〉 |2nF

(
Ec′,s′

2N+1,αO
− Ec,s

2N,βE
− eVj

)
,

(14)

Γ
(loss)
αE←βO = 2π

∑
j,σ

t2j | 〈2N,αE, c′, s′| djσ |2N + 1, βO, c, s〉 |2
(

1− nF
(
Ec,s

2N+1,βO
− Ec′,s′

2N,αE
− eVj

))
.

(15)

For simplicity of notation, here and henceforth we label the spin subspaces by αE(O), βE(O) =

S, T0,±(D±), where the E,O subscripts emphasize that these are transitions between the

NT = 2N (even) and NT = 2N + 1 (odd) Andreev molecular subspaces of the S-QD-QD-S

system.

We refer to transitions described by Eqs. (14) and (15) as type 1 transitions. Type 2

transitions connect the 2N and 2N + 1 subspaces to the 2N − 1 and 2N + 2 subspaces (see

Fig. 18). Type 2 transitions can be mapped back onto the 2N and 2N+1 subspaces because

when the number of Cooper pairs is changed by one on a lead at fixed bias voltage, within

our model, the eigenenergies are trivially shifted according to the change in electro-chemical

potential energy, i.e., Ec,s
NT±2,α = Ec,s

NT ,α
±2eVj. Thus, by using this relation and the operators

S+ and S−, we can write the following identities:

| 〈2N + 1, α′, c′, s′| djσ |2N + 2, α, c, s〉 |2
(

1− nF
(
Ec,s

2N+2,α − E
c′,s′

2N+1,α′ − eVj
))

= | 〈2N + 1, α′, c′, s′| djσS+ |2N,α, c, s〉 |2
(

1− nF
(
Ec,s

2N,α − E
c′,s′

2N+1,α′ + eVj
))
, (16)

| 〈2N + 2, α, c′, s′| d†jσ |2N + 1, β, c, s〉 |2nF
(
Ec′,s′

2N+2,α − E
c,s
2N+1,β − eVj

)
= | 〈2N,α, c′, s′|S−d†jσ |2N + 1, β, c, s〉 |2nF

(
Ec′,s′

2N,α − E
c,s
2N+1,β + eVj

)
, (17)
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Equations (16) and (17) thus show how transitions of type 2 can be effectively mapped onto

a transition between the 2N and 2N + 1 subspaces. Note that those transitions are driven

by the exchange of a single electron with the normal leads together with the creation or

annihilation of a Cooper pair on the superconducting component of the same lead. The

rates for type-2 transitions are then given by

Γ̃
(gain)
αE←βO = 2π

∑
j,σ

t2j | 〈2N,αE, c′, s′|S−d
†
jσ |2N + 1, βO, c, s〉 |2nF

(
Ec′,s′

2N,αE
− Ec,s

2N+1,βO
+ eVj

)
,

(18)

Γ̃
(loss)
αO←βE = 2π

∑
j,σ

t2j | 〈2N + 1, αO, c
′, s′|S+djσ |2N, βE, c, s〉 |2

(
1− nF

(
Ec,s

2N,βE
− Ec′,s′

2N+1,αO
+ eVj

))
,

(19)

which describe either the removal of an electron from an even parity state or the addition

of an electron to an odd eigenstate.

It is easy to generalize this mapping to all other NT subspaces and show that any single-

electron transition rate are of type 1 or 2 and, hence, can be calculated from Eqs. (14),

(15), (18), or (19). Those effective transitions between the 2N and 2N + 1 subspaces are

illustrated in Fig. 19. In this way, we reduce Eq. (11) to a single even (2N) and odd (2N+1)

subspaces. From now on, we simply refer to those subspaces as even and odd.

Supplementary Figure 19. Effective transitions between the even (NT = 2N) and odd (NT =

2N + 1) Andreev molecular subspaces of the S-QD-QD-S system. The solid, blue arrows represent

transitions of type 1, which involve the exchange of an electron between the normal leads and the

quantum dots (see Eqs. (14) and (15)). Transitions of type 2 (dashed, green arrows), on the other

hand, are driven by the exchange of an electron between the dots and the normal lead, but followed

by the creation or annihilation of a Cooper pair in the superconducting component of the same

lead (see Eqs. (18) and (19)).
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We obtain the steady-state solution of Eq. (11) from the eigenvalue equation

Mout
S M in

S←D+
M in

S←D− 0 0 0

M in
D+←S Mout

D+
0 M in

D+←T+ M in
D+←T0 M in

D+←T−

M in
D−←S 0 Mout

D−
M in

D−←T+ M in
D−←T0 M in

D−←T−

0 M in
T+←D+

M in
T+←D− Mout

T+
0 0

0 M in
T0←D+

M in
T0←D− 0 Mout

T0
0

0 M in
T−←D+

M in
T−←D− 0 0 Mout

T−





~PS

~PD+

~PD−

~PT+

~PT0

~PT−


= 0, (20)

where the matrices M in
α←β = Γα←β + Γ̃α←β and Mout

α = −
∑

β

(
Γβ←α + Γ̃β←α

)
describe the

influx and outflux of probability of subspace α (with α, β = S,D±, T0,±). Note that the

vectors ~Pα have dimension dαc d
α
s , where dαc (dαs ) is the number of color (shift) states in

subspace α. Similarly, Mout
α and M in

α←β are matrices of dimension equal to dαc d
α
s × dαc dαs and

dαc d
α
s × dβc dβs .

Steady-state Current

The steady-state current is obtained from the rate at which electrons go through the

S-QD-QD-S device and is given by

I = −e
∑
α,β

(
γ

(gain)
R,α←β − γ

(loss)
R,α←β

)
~Pβ (21)

where the matrices γ
(gain)
R,α←β and γ

(loss)
R,α←β (of dimension dαc d

α
s × dβc dβs ) provide the current rates

for transitions to the odd subspace, which are given by

γ
(gain)
R,αO←βE = 2πt2j

∣∣∣〈α(c′,s′)
O

∣∣∣ d†jσ ∣∣∣β(c,s)
E

〉∣∣∣2 nF (Ec′,s′

αO
− Ec,s

βE
− eVj

)
(2s′ − 2s− 1), (22)

γ
(loss)
R,αO←βE = 2πt2j

∣∣∣〈α(c′,s′)
O

∣∣∣S+djσ

∣∣∣β(c,s)
E

〉∣∣∣2 (1− nF
(
Ec,s
βE
− Ec′,s′

αO
+ eVj

))
(2s′ − 2s− 1),

(23)

and for transitions to the even subspace, which are given by

γ
(gain)
R,αE←βO = 2πt2j

∣∣∣〈α(c′,s′)
E

∣∣∣S−d†jσ ∣∣∣β(c,s)
O

〉∣∣∣2 nF (Ec′,s′

αE
− Ec,s

βO
+ eVj

)
(2s′ − 2s− 1), (24)

γ
(loss)
R,αE←βO = 2πt2j

∣∣∣〈α(c′,s′)
E

∣∣∣ djσ ∣∣∣β(c,s)
O

〉∣∣∣2 (1− nF
(
Ec,s
βO
− Ec′,s′

αE
− eVj

))
(2s′ − 2s− 1). (25)
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Numerical simulations

We solve the master equation (20) and compute the current (21) numerically, by first

finding the set of even and odd eigenstates of the S-QD-QD-S Hamiltonian (4) via exact

diagonalization. As discussed above, we restrict this calculation to even and odd subspaces

with a total of 2N and 2N + 1 electrons. Note that because of the conservation of the total

electron number, the exact value of N only sets an overall offset and, hence, N can be taken

as an arbitrary parameter. After diagonalizing H, we select the reference color eigenstates

and eigenenergies for each subspace. Together with the Cooper pair transfer operators T±,

we then construct the ladders of Andreev molecular states, whose energies are calculated

from Eq. (10). We use the ladders of Andreev states to compute the transition probabilities

between the even and odd subspaces and their respective Fermi electron (hole) occupation

probabilities on the normal leads. Finally, this allow us to calculate the transition rates (14),

(15), (18), (19), and (22)–(25) and then to construct and solve both the master equation (20)

and the current equation (21).
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