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SUPPLEMENTARY NOTE 1: THEORETICAL BACKGROUND

In this note we derive the effective Hamiltonian relevant for our system, calculate the input-output scattering matrix for the
electromagnetic modes and discuss the conditions for obtaining nonreciprocal microwave transmission.

We consider two mechanical degrees of freedom whose positions parametrically modulate the frequencies of two electromag-
netic modes via radiation-pressure coupling [1]. The Hamiltonian describing this situation is given by (~ = 1)

Ĥ =

2∑
i=1

(
ωc,iâ

†
i âi + Ωib̂

†
i b̂i

)
+ Ĥint + Ĥdrive, (1)

where â1 and â2 are the annihilation operators associated respectively with the two electromagnetic modes with frequencies
ωc,1 and ωc,2, b̂1 and b̂2 are those for the two mechanical modes with respective mechanical frequencies Ω1 and Ω2, and Ĥdrive

describes the electromagnetic pumps. Radiation-pressure coupling between the microwave and mechanical modes is described
by the interaction Hamiltonian [1]

Ĥint = −
2∑
j=1

2∑
k=1

g0,jk â
†
j âj(b̂k + b̂†k), (2)

with g0,jk the vacuum optomechanical coupling strength between electromagnetic mode j and mechanical mode k and where
we neglect cross coupling terms ∝ â†i âj , which is a good approximation for spectrally distinct modes |ωc,1 − ωc,2| � Ωi [2, 3].

In the experiment, both cavity modes are driven with two microwave tones each. These four tones are close to the lower
mechanical sidebands, but the ones driving the mechanical sidebands at frequency Ω1 are slightly detuned to the red, whereas
the ones driving the sidebands at frequency Ω2 are slightly detuned to the blue from the lower sideband. That is, the detuning of
the four drives are ∆jk = ωjk − ωc,j with ∆11 = ∆21 = −Ω1 − δ and ∆12 = ∆22 = −Ω2 + δ.

We separate mean and fluctuations in the microwave fields and move to a frame rotating at the cavity frequencies

âj = e−iωc,jt

(
(δâj) +

2∑
k=1

αjk e
−i∆jkt

)
(3)

where αjk is the coherent state amplitude due to the microwave drive with detuning ∆jk with j, k = 1, 2 and (δâj) describe the
fluctuations of the two microwave modes j = 1, 2. We then linearize the Hamiltonian by approximating

â†j âj ≈
(
δâ†j

)( 2∑
k=1

αjk e
−i∆jkt

)
+ H.c. (4)

To obtain a time-independent Hamiltonian we will assume that the system is in the resolved-sideband limit with respect to both
mechanical modes, i.e. Ω1,Ω2 � κ1, κ2, and that the two mechanical modes are well separated in frequency, i.e. |Ω1 − Ω2| �
Γm,1,Γm,2. Moving into a rotating frame with respect to the free evolution of the microwave modes, and keeping only non-
rotating terms, we obtain the effective Hamiltonian describing our system, which is given as equation (1) in the main manuscript,

Ĥ = −δ b̂†1b̂1 + δ b̂†2b̂2 + g11(â1b̂
†
1 + â†1b̂1) + g21(â2b̂

†
1 + â†2b̂1) + g12(â1b̂

†
2 + â†1b̂2) + g22(eiφâ2b̂

†
2 + e−iφâ†2b̂2). (5)

Here, gjk = g0,jk|αjk| are the optomechanical coupling strengths enhanced by the mean intracavity photon numbers njk =
|αjk|2 due to the drive at frequency ωjk and where we have renamed (δâj) → âj for notational convenience. Without loss of
generality, the phase of all but one coupling constant gjk can be chosen real. Here, we take all of them real and write out the
phase φ explicitly which is varied in our experiment.

From the Hamiltonian (supplementary eq. (5)) we derive the equations of motion for our system which can be written in
matrix form as [4, 5]

u̇ = M u + Luin (6)

with u = (â1, â2, b̂1, b̂2)T , uin = (â1,in, â2,in, â
(0)
1,in, â

(0)
2,in, b̂1,in, b̂2,in)T and uout = (â1,out, â2,out, â

(0)
1,out, â

(0)
2,out, b̂1,out, b̂2,out)

T , where

âi,in/out are the input-output modes of the external microwave feedline and â(0)
i,in/out are those corresponding to internal dissipation.

The matrix M reads

M =


−κ1

2 0 −ig11 −ig12

0 −κ2

2 −ig21 −ig22e
−iφ

−ig11 −ig21 +iδ − Γm,1
2 0

−ig12 −ig22e
+iφ 0 −iδ − Γm,2

2

 (7)
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where the cavity dissipation rates are the sum of external and internal dissipation rates, i.e. κ1 = κex,1+κ0,1 and κ2 = κex,2+κ0,2,
and the matrix L reads

L =


√
κex,1 0

√
κ0,1 0 0 0

0
√
κex,2 0

√
κ0,2 0 0

0 0 0 0
√

Γm,1 0
0 0 0 0 0

√
Γm,2

 . (8)

Using the input-output relations for a one-sided cavity [4, 5]

uout = uin − LT u (9)

we can solve the input-output problem in the Fourier domain

uout(ω) = S(ω)uin(ω) (10)

with the scattering matrix

S(ω) = 16×6 + LT [+iω14×4 +M ]
−1

L. (11)

Eliminating the mechanical degrees of freedom from the equations of motion (supplementary eq. (6)) we obtain(
κ1

2 − iω + g2
11χ1(ω) + g2

12χ2(ω) g11χ1(ω)g21 + g12χ2(ω)g22e
+iφ

g11χ1(ω)g21 + g12χ2(ω)g22e
−iφ κ2

2 − iω + g2
21χ1(ω) + g2

22χ2(ω)

)(
â1

â2

)
=

( √
κex,1âin,1 +

√
κ0,1â

(0)
in,1 − ig11χ1(ω)

√
Γm,1b̂1,in − ig12χ2(ω)

√
Γm,2b̂2,in

√
κex,2âin,2 +

√
κ0,2â

(0)
in,2 − ig21χ1(ω)

√
Γm,1b̂1,in − ig22χ2(ω)e−iφ

√
Γm,2b̂2,in

)
(12)

where we introduced the mechanical susceptibilities χ−1
1 (ω) = Γm,1/2−i (δ + ω) and χ−1

2 (ω) = Γm,2/2+i (δ − ω). Inverting
the matrix in supplementary eq. (12) and exploiting the input-output relation (supplementary eq. (9)), we obtain equation (3) of
the main manuscript

S12(ω)

S21(ω)
=
g11χ1(ω)g21 + g12χ2(ω)g22e

+iφ

g11χ1(ω)g21 + g12χ2(ω)g22e−iφ
. (13)

Note that the expressions in the nominator and denominator in supplementary eq. (13) are equal to the matrix elements coupling
the two electromagnetic modes in supplementary eq. (12) which are the sum of the two (complex) amplitudes for the two
dissipative optomechanical pathways. Supplementary eq. (13) is used to generate Fig. 3 E of the main text, with all the parameters
(Γm,j , gij) independently measured.

For identical mechanical decay rates Γm,1 = Γm,2 = Γm and identical cooperativities C = Cij =
4g2ij

κiΓm,j
we find that the

transmission 2→ 1 vanishes on resonance ω = 0, i.e. S12 = 0, if

Γm

2δ
= tan

φ

2
. (14)

For a given δ, maximal transmission in the opposite direction 1→ 2 is then obtained for C = 1
2 + 2δ2

Γ2
m

and given by

|S21|2max =
κex,1κex,2

κ1κ2

4δ2

Γ2
m + 4δ2

=
κex,1κex,2

κ1κ2

(
1− 1

2C

)
. (15)

We see that for δ � Γm the optimal cooperativity C → ∞ and |S21(0)|2 → 1. Thus, we see that in this limit the electromagnetic
scattering matrix of our system becomes that of an ideal isolator, i.e. S11 = S12 = S22 = 0 and |S21| = 1.

The full scattering matrix Sij of supplementary eq. (11) is used in Supplementary Fig. 1 to show optimal transmission in each
direction for the symmetric case, with different values of the cooperativity. As the cooperativity increases, the overall bandwidth
of conversion increases to Γeff , but the nonreciprocal bandwidth stays constant. This can be seen in the ratio S12(ω)/S21(ω) in
supplementary eq. (13) that depends only on the bare mechanical susceptibilities χ1(ω) and χ2(ω).

For unequal decay rates Γm,1 6= Γm,2, but equal effective decay rates of the mechanical modes Γeff,j = Γm,j(1 + C1j + C2j),
nonreciprocity is obtained for Γ+

2δ = tan φ
2 off-resonance at a frequency ω = Γ+Γ−

4δ where Γ± = 1
2 (Γm,1 ± Γm,2). For unequal

decay rates Γm,1 6= Γm,2, but matched cooperativities Cjk = C, we find nonreciprocity for Γ+

2δ = tan φ
2 , but at ω = −Γ−δ

Γ+
.
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Supplementary Fig. 1. Microwave transmission of the nonreciprocal electromechanical device in each direction for different values of the
cooperativity C, derived from supplementary eq. (11) for the case of symmetric mechanical modes (Γm,1 = Γm,2 = Γm). The detuning δ and
the phase φ are set for maximal transmission according to supplementary eq. (15). As the cooperativity is increased, the overall bandwidth
of the frequency conversion increases to Γeff , however the bandwidth of nonreciprocal transmission stays constant and is on the order of the
intrinsic mechanical damping rate Γm. This illustrates the fact that the intrinsic dissipation of the mechanical oscillator is the underlying
resource for the nonreciprocity.

SUPPLEMENTARY NOTE 2: NOISE ANALYSIS OF THE DEVICE

In this note we analyse the noise properties of the nonreciprocal electromechanical device. We assume the bosonic input noise
operators obey

〈â1,in(t)â†1,in(t′)〉 = δ(t− t′) (16)

〈â2,in(t)â†2,in(t′)〉 = δ(t− t′) (17)

〈â(0)
1,in(t)â

(0)†
1,in (t′)〉 = δ(t− t′) (18)

〈â(0)
2,in(t)â

(0)†
2,in (t′)〉 = δ(t− t′) (19)

〈b̂1,in(t)b̂†1,in(t′)〉 = (n̄m,1 + 1)δ(t− t′) (20)

〈b̂2,in(t)b̂†2,in(t′)〉 = (n̄m,2 + 1)δ(t− t′), (21)

i.e. the baths of the microwave modes are assumed to be at zero temperature whereas the mechanical modes have a finite thermal
occupation n̄m,1 and n̄m,2, respectively.

The symmetrised output noise spectra [5] are determined by the scattering matrix of the device (supplementary eq. (11)) as
well as the noise properties of the microwave and mechanical baths (supplementary eq. (16) to (21)). Explicitly, we find that the
cavity output spectra are given by

S̄1,out(ω) =
1

2

∫ ∞
−∞
dt eiωt〈â†1,out(t)â1,out(0) + â1,out(0)â†1,out(t)〉

= 1
2

[
|S11(−ω)|2 + |S12(−ω)|2 + |S13(−ω)|2 + |S14(−ω)|2

]
+ |S15(−ω)|2(n̄m,1 + 1

2 ) + |S16(−ω)|2(n̄m,2 + 1
2 )
(22)

and

S̄2,out(ω) =
1

2

∫ ∞
−∞
dt eiωt〈â†2,out(t)â2,out(0) + â2,out(0)â†2,out(t)〉

= 1
2

[
|S21(−ω)|2 + |S22(−ω)|2 + |S23(−ω)|2 + |S24(−ω)|2

]
+ |S25(−ω)|2(n̄m,1 + 1

2 ) + |S26(−ω)|2(n̄m,2 + 1
2 ).
(23)

In the limit of overcoupled cavities κex,i ≈ κi and for the optimal phase φ and detuning δ, the noise emitted in the backward
direction 2→ 1 on resonance ω = 0 is

Nbw = S̄1,out(0) = |S11|2 ×
1

2
+ |S12|2 ×

1

2
+ |S15|2 ×

(
n̄m,1 +

1

2

)
+ |S16|2 ×

(
n̄m,2 +

1

2

)
= 0× 1

2
+ 0× 1

2
+

1

2
×
(
n̄m,1 +

1

2

)
+

1

2
×
(
n̄m,2 +

1

2

)
=

1

2
+
n̄m,1 + n̄m,2

2
,

(24)
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i.e. in the backward direction the noise of the device is dominated by the noise emitted by the mechanical oscillators.
The noise emitted in the forward direction 1→ 2 on resonance ω = 0 is

Nfw = S̄2,out(0) = |S21|2 ×
1

2
+ |S22|2 ×

1

2
+ |S25|2 ×

(
n̄m,1 +

1

2

)
+ |S26|2 ×

(
n̄m,2 +

1

2

)
=

(
1− 1

2C

)
× 1

2
+ 0× 1

2
+

1

4C
×
(
n̄m,1 +

1

2

)
+

1

4C
×
(
n̄m,2 +

1

2

)
=

1

2
+
n̄m,1 + n̄m,2

4C
,

(25)

i.e. in the forward direction the noise contribution from the mechanical oscillators vanishes at large cooperativity C � 1.
Therefore, intriguingly, the noise emitted on resonance by the nonreciprocal device is not symmetric in the forward and backward
directions.

SUPPLEMENTARY NOTE 3: NOISE INTERFERENCE AS ORIGIN OF ASYMMETRIC NOISE EMISSION

In the previous note we concluded that the circuit emits more noise in the backward direction as compared to the forward
direction. This is also corroborated by the experimental data, shown in Fig. 4 in the main text. In the following, in order to
understand the different noise performance in the forward and backward direction, we consider two different points of view.
First, we derive the scattering amplitude from one mechanical resonator to one cavity, eliminating the other two modes. In this
picture, the imbalance can be understood as an interference of the two paths the noise can take in the circuit, analogously to
the interference in the microwave transmission. Second, we eliminate the mechanical resonators, but taking their input noise
into account. This leads to the same scattering matrix for the microwaves as discussed in the main text, but the mechanical
noise appears as additional, effective noise input operators for the cavities. In the second formulation we can therefore use our
knowledge of the microwave scattering matrix to deduce properties of the noise scattering.

Let us first consider the scattering from a mechanical resonator to cavities 1 and 2. Since in the experiment mechanical
resonator 1 is strongly cross-damped due to off-resonant couplings, the noise emitted stems almost exclusively from resonator
2. If we are interested in the noise scattering from mechanical resonator 2 to cavity 2, we can eliminate the other two modes and
drop their input noise. In frequency space, their equations of motion are(

χ−1
c,1(ω) −ig11

−ig∗11 χ−1
1 (ω)

)(
â1

b̂1

)
=

(
ig12b̂2
ig∗21â2

)
+ noises. (26)

We drop the noise terms and solve for â1, b̂1(
â1(ω)

b̂1(ω)

)
=

1

χ−1
1 (ω)χ−1

c,1(ω) + |g11|2

(
χ−1

1 (ω) ig11

ig∗11 χ−1
c,1(ω)

)(
ig12b̂2(ω)
ig∗21â2(ω)

)
≡ χâ1b̂1(ω)

(
ig12

ig∗21

)(
b̂2(ω)
â2(ω)

)
,

(27)

where we defined the cavity susceptibility χ−1
c,i (ω) = κi/2 − iω and the susceptibility of the coupled system of modes â1, b̂1,

χâ1b̂1(ω). We turn to the other two modes, the ones that we are actually interested in. For those, we have a similar equation,
which can be obtained from interchanging 1↔ 2(

χ−1
2 (ω) −ig∗22

−ig22 χ−1
c,2(ω)

)(
b̂2(ω)
â2(ω)

)
=

(
ig∗12

ig21

)(
â1(ω)

b̂1(ω)

)
+

(√
Γm,2b̂2,in(ω)√
κ2â2,in(ω)

)
. (28)

Eliminating the modes â1, b̂1 with supplementary eq. (27), we arrive at

(√
Γm,2b̂2,in(ω)√
κ2â2,in(ω)

)
=

(χ−1
2 (ω) −ig∗22

−ig22 χ−1
c,2(ω)

)
−

(
ig∗12

ig21

)(
χ−1

1 (ω) ig11

ig∗11 χ−1
c,1(ω)

)(
ig12

ig∗21

)
χ−1

1 (ω)χ−1
c,1(ω) + |g11|2

(b̂2(ω)
â2(ω)

)

≡
[
χ−1

b̂2â2
(ω)−

(
ig∗12

ig21

)
χâ1b̂1(ω)

(
ig12

ig∗21

)](
b̂2(ω)
â2(ω)

)
.

(29)



5

In the second line, we have formulated the equation in terms of the susceptibilities of the two subsystems (â1, b̂1) and (â2, b̂2).
This equation is a bit complicated, but we note that the coupling between â2 and b̂2 is

iTâ2b̂2(ω) = −ig22

[
1− e−iφp

C12C21/(C22C11)

1 + (χc,1(ω)χ1(ω)|g11|2)
−1

]
. (30)

Analogously, changing the indices referring to the cavity, we obtain the coupling between â1 and b̂2

iTâ1b̂2(ω) = −ig12

[
1− e+iφp

C11C22/(C12C21)

1 + (χc,2(ω)χ1(ω)|g21|2)
−1

]
, (31)

The coupling phase φp appears as the relative phase between indirect and direct coupling path, as for the microwave signal trans-
mission. Equations (30) and (31) demonstrate that the transmission of noise from the mechanical resonators to the microwave
cavities is subject to interference, which ultimately leads to the difference in noise emitted in the forward versus the backward
direction.

In a second picture, we can also understand the mechanical noise interference in terms of the nonreciprocity in the scattering
matrix for the microwave modes. In order to do so, we solve the equations of motion for the mechanical resonators (given in
supplementary eq. (6)), which leads to

b̂j(ω) = χj(ω)

[
i
∑
i

g∗ij âi(ω) +
√

Γm,j b̂j,in(ω)

]
. (32)

We obtain equations that only relate the cavities(
χ−1
c,1(ω) + iT11(ω) iT12(ω)

iT21(ω) χ−1
c,2(ω) + iT22(ω)

)(
â1(ω)
â2(ω)

)
= i

(
g11 g12

g21 g22

)(√
Γm,1χ1(ω)b̂1,in(ω)√
Γm,2χ2(ω)b̂2,in(ω)

)
+

(√
κ1â1,in(ω)√
κ2â2,in(ω)

)
, (33)

where

iTij(ω) ≡ −i
∑
k

χk(ω)gikg
∗
jk. (34)

We can think of mechanical noise as coloured and correlated noise in the optical inputs. That is, consider the replacement(√
κ1ĉ1,in(ω)√
κ2ĉ2,in(ω)

)
≡ i
(
g11 g12

g21 g22

)(√
Γm,1χ1(ω)b̂1,in(ω)√
Γm,2χ2(ω)b̂2,in(ω)

)
. (35)

The effective noise ĉi,in is both coloured 〈ĉ†1,in(ω)ĉ1,in(ω′)〉 6= δ(ω + ω′)n̄1,eff and correlated 〈ĉ†1,in(ω)ĉ2,in(ω′)〉 6= 0.
Using the input-output relation âout = âin −

√
κâ, the cavity output is given by(

â1,out(ω)
â2,out(ω)

)
= S(ω)

(
â1,in(ω)
â2,in(ω)

)
+ [S(ω)− 12]

(
ĉ1,in(ω)
ĉ2,in(ω)

)
, (36)

where in the last step we have identified the 2-by-2 optical scattering matrix S(ω) that relates the cavity inputs to the outputs
âi,out(ω) =

∑
j Sij(ω)âj,in(ω). The fact that supplementary eq. (36) contains mechanical noise as well, but can be written

entirely in terms of the optical scattering matrix constitutes the central result here. Since the two effective input noises ĉi,in are
coloured and correlated, they can interfere.

Most importantly, we can consider what happens when the circuit is impedance matched to the signal and perfectly isolating.
We choose the detunings δ1 = Γm,1δ/2, δ2 = −Γm,2δ/2, for some dimensionless parameter δ. For simplicity, let us choose all
cooperativities to be equal C = Cij . For δ2 = 2C − 1 (impedance matching), the optical scattering matrix of the isolator is (up
to some irrelevant phase)

S(0) =

(
0 0√

1− 1/(2C) 0

)
≡ T

(
0 0
1 0

)
. (37)

The cavity output on resonance is(
â1,out
â2,out

)
= T

(
0
â1,in

)
− i√

2
C
(

eiφp 1
1− Teiφp 1− T

)(
b̂1,in(0)

b̂2,in(0)

)
. (38)

As C → ∞, T → 1 and φp = arccos(1− 1/C)→ 0, such that the second cavity does not receive any noise, which is due to an
interference of ĉ1,in with ĉ2,in. In the backward direction, no interference can take place, since cavity 2 is isolated from cavity 1.
As a consequence, the number of noise quanta emerging from cavity 1 on resonance is Nbw = (n̄m,1 + n̄m,2 + 1)/2.
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SUPPLEMENTARY NOTE 4: OPTOMECHANICAL CIRCULATOR

In this note we present a scheme for a circulator based on the same principles as the isolator previously discussed. The scheme
naturally overcomes the shortcomings of the isolator, becoming wideband and quantum limited in the high cooperativity limit.

We consider three microwave modes (described by their annihilation operators â1, â2, â3) with resonance frequencies ωc,1,
ωc,2, ωc,3 and dissipation rates κ1, κ2, κ3. These three microwave modes are coupled to two mechanical modes (described by
the annihilation operators b̂1, b̂2) with resonance frequencies Ω1, Ω2 and dissipation rates Γm,1 and Γm,2. The optomechanical
coupling strengths gij are taken to be real and we define three phases φ1, φ2 and φ3 associated respectively to the couplings
g11, g21 and g31. The three cavities are driven with two microwave tones each. These six tones are close to the lower motional
sidebands, with detunings of ∆11 = ∆21 = ∆31 = −Ω1 + δ1 and ∆12 = ∆22 = ∆32 = −Ω2 + δ2. The cooperativities are set
to be equal for all couplings, with C = Cij =

4gij
κiΓj

.
The linearised Hamiltonian that describes the system, in a frame rotating with the cavity frequencies and keeping only time-

constant terms is given by

Ĥ =δ1b̂
†
1b̂1 + δ2b̂

†
2b̂2

+ g11(â†1b̂1e
iφ1 + â1b̂

†
1e
−iφ1) + g12(â†1b̂2 + â1b̂

†
2)

+ g21(â†2b̂1e
iφ2 + â2b̂

†
1e
−iφ2) + g22(â†2b̂2 + â2b̂

†
2)

+ g31(â†3b̂1e
iφ3 + â3b̂

†
1e
−iφ3) + g32(â†3b̂2 + â3b̂

†
2).

(39)

From this Hamiltonian, we derive the equations of motion for our system in the matrix form (as in supplemen-
tary eq. (6)) with u = (â1, â2, â3, b̂1, b̂2)T , uin = (â1,in, â2,in, â3,in, â

(0)
1,in, â

(0)
2,in, â

(0)
3,in, b̂1,in, b̂2,in)T and uout =

(â1,out, â2,out, â3,out, â
(0)
1,out, â

(0)
2,out, â

(0)
3,out, b̂1,out, b̂2,out)

T . The matrix M is here given by

M =


−κ1

2 0 0 −ig11e
iφ1 −ig12

0 −κ2

2 0 −ig21e
iφ2 −ig22

0 0 −κ3

2 −ig31e
iφ3 −ig32

−ig11e
−iφ1 −ig21e

−iφ2 −ig31e
−iφ3 −Γm,1

2 + iδ1 0

−ig12 −ig22 −ig32 0 −Γm,2
2 + iδ2

 , (40)

where the cavity dissipation rates are the sum of the external and internal dissipation rates, i.e. κi = κex,i + κ0,i. The matrix L
is here

L =


√
κex,1 0 0

√
κ0,1 0 0 0 0

0
√
κex,2 0 0

√
κ0,2 0 0 0

0 0
√
κex,3 0 0

√
κ0,3 0 0

0 0 0 0 0 0
√

Γm,1 0
0 0 0 0 0 0 0

√
Γm,2

 . (41)

Using the input-output relation (supplementary eq. (9)) and the matrix form of the equations of motion (supplementary eq. (6)),
we can compute the scattering matrix S(ω) similarly to supplementary eq. (11).

We choose to operate the circulator in a way that suppresses the propagation in the clockwise direction, i.e. S12(0) = 0,
S23(0) = 0, and S31(0) = 0. For this suppression to occur on resonance (ω = 0), δ1 must scale with Γm,1 and δ2 with Γm,2 so
we define δ1 = αΓm,1 and δ2 = βΓm,2. The equations corresponding to S12(0) = S23(0) = S31(0) = 0 are

−2iα− 2iβei(φ1−φ2) − C(1− ei(φ1−φ3) − ei(φ3−φ2) + ei(φ1−φ2))− (1 + ei(φ1−φ2)) = 0, (42)

−2iα− 2iβei(φ2−φ3) − C(1− ei(φ2−φ1) − ei(φ1−φ3) + ei(φ2−φ3))− (1 + ei(φ2−φ3)) = 0, (43)

−2iα− 2iβei(φ3−φ1) − C(1− ei(φ3−φ2) − ei(φ2−φ1) + ei(φ3−φ1))− (1 + ei(φ3−φ1)) = 0. (44)

Analysing this set of equations, we see that only two phases are independent. Setting φ1 = 2π/3, φ2 = −2π/3 and φ3 = 0
leads to a set of fully degenerate equations. We then obtain S13(0) = S32(0) = S21(0) = 0 if

2
√

3β − 3C − 1 + i
(

4α− 2β + 3
√

3C +
√

3
)

= 0. (45)

Solving supplementary eq. (45) with respect to the cooperativity C gives

C =
2β√

3
− 1

3
and α = −β. (46)
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We note that if α 6= −β, then C must contain an imaginary part leading to complex coupling strengths, which is inconsistent
with their definition as being real. Moreover, C must be positive (such that gij ∈ R) and non-zero (else gij = 0). The lower
bound for β is thus given by 1/(2

√
3).

We can write the transmission in the counter-clockwise direction (|S13|2, |S32|2 and |S21|2) on resonance as

|S13|2 =
κex,1κex,3

κ1κ3

1

(1 + 1
3C )2

, (47)

|S32|2 =
κex,3κex,2

κ3κ2

1

(1 + 1
3C )2

, (48)

|S21|2 =
κex,2κex,1

κ2κ1

1

(1 + 1
3C )2

. (49)

We find that, in the case of overcoupled cavities κi ≈ κex,i, the transmission approaches unity with increasing cooperativity.
The symmetrised output noise spectra is computed as in the supplementary note 2. In the limit of overcoupled cavities,

κi ≈ κex,i, the noise emitted on resonance at each port is given by

N =
1

2
+

3C
(3C + 1)2

(n̄m,1 + n̄m,2). (50)

In the limit of large cooperativity, the noise contribution from the mechanical oscillators is entirely suppressed, leaving only
vacuum noise amounting to half a quantum.

SUPPLEMENTARY REFERENCES

[1] Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
[2] Law, C. K. Interaction between a moving mirror and radiation pressure: A hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995).
[3] Dobrindt, J. M. & Kippenberg, T. J. Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer.

Phys. Rev. Lett. 104, 033901 (2010).
[4] Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: Quantum stochastic differential equations and the master

equation. Physical Review A 31, 3761–3774 (1985).
[5] Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and

amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).


	
	 Supplementary Note 1: Theoretical background 
	 Supplementary Note 2: Noise analysis of the device
	 Supplementary Note 3: Noise interference as origin of asymmetric noise emission
	 Supplementary Note 4: optomechanical circulator
	Supplementary References
	References


