Supplementary information:

Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways

Guang Yang,[†] Yi Zhang,[†] Nicholas K. Lee,[†] Monica A. Cozad,[†] Sara E. Kearney,^{†,§} Hendrik Luesch,[†] and Yousong Ding^{†,*}

[†]Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, USA [§]NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA

Table of Contents

- 1. Methods.
- 2. Table S1: Oligos used in the present study.
- 3. Table S2: PPTases used in the phylogenetic analysis.
- 4. Table S3: Selected CPs for the characterization of PPTases.
- 5. Table S4: Relative activity of seven PPTases in activating 11 CPs.
- 6. Fig. S1: Schematic representation of post-translational phosphopantetheinylation of a CP domain by a PPTase.
- 7. Fig. S2: Multiple-sequence alignment of characterized cyanobacterial PPTases and Sfp.
- 8. Fig. S3: Sequences of selected CP genes and codon optimized Sfp gene.
- 9. Fig. S4: SDS-PAGE analysis of purified PPTases and CP proteins.
- 10. Fig. S5: HR-MS spectra of apo- and holo-CPs that were used and produced in the PPTase reactions.
- 11. Fig. S6: Michaelis-Menten kinetic analysis of APPT evaluated for 11 selected CP substrates.
- 12. Fig. S7: Schematic representation of homologous replacement of the *SPPT* gene with foreign *PPTase* genes in *Synechocystis* sp. PCC6803.
- 13. Fig. S8. PCR analyses of the integration and transcription of the *APPT*, *MPPT* and *Sfp* genes in *Synechocystis* mutants.

Methods:

Reagents and chemicals

Restriction enzymes, *Taq* DNA polymerase and Phusion DNA polymerase were purchased from Thermo Scientific. The protein ladders were purchased from Thermo Scientific or NEB. Chemicals and solvents were from Sigma Aldrich, Fisher Scientific or RPI Corp (USA). The GeneJET Plasmid Miniprep Kit, PCR Purification Kit and Gel Extraction Kit were from Thermo Scientific. Oligonucleotide primers were synthesized by Sigma Aldrich, while codon-optimized *Sfp* gene was obtained from GenScript. DNA sequencing was performed at Eurofins.

Strains and culture conditions

Escherichia coli DH5 α and BL21-CodonPlus (DE3) RIPL were used for routine molecular biology studies and protein expression, respectively, and were grown in Luria-Bertani broth or Terrific broth. *Synechocystis* sp. PCC6803, *Anabaena* sp. PCC7120, *Anabaena variabilis* ATCC29413, *Fischerella* sp. PCC9339, *Microcystis aeruginosa* NIES-843, and *Synechococcus* sp. PCC7942 were purchased from UTEX or NIES (Japan) and cultured in BG11 medium with CO₂ bubbling. All cyanobacterial cultures were performed at 26 °C with 16h/8h light/dark cycle using 2000-2500 lux during lighting period. BG-11 medium supplemented with 1.0% (wt/vol) agar and 0.3% (wt/vol) sodium thiosulfate was used to grow cyanobacterial strains on the plate.

Construction of plasmids

All oligonucleotide primers used in this work were listed in **Table S1**. The *PPTase* and *CP* genes were PCR amplified and cloned into pET28b (Novagen) to generate the expression plasmids. The inserts in the integration plasmids were sequentially constructed in the PCR reactions as shown in **Fig. S6**. The details were included in the supporting information. Briefly, a T7 terminator fragment was first introduced to the 3'-end of *APPT*, *MPPT* and *Sfp* genes by the PCR reactions. The resulted amplicons were fused to the 3'-end of Ptrc promoter-ribosomal binding site (Ptrc-RBS) in the overlapping PCR reaction. Next, a kanamycin resistance cassette amplified from pUC4K (Pharmacia) was fused to the 3'-end of the above amplicons to generate the final insert products. The final products were cloned into the integration vector pUC19int. To generate the pUC19int, the upstream and downstream regions (~1 kb) of the *SPPT* gene in *Synechocystis* were amplified and fused in the PCR reactions. The fusion product was then digested by *Hind*III and *Eco*RI and cloned into pUC19 to create pUC19int. All constructed plasmids were sequenced to eliminate potential errors in the inserts.

Protein expression and purification

Recombinant proteins with an N-terminal His-tag were expressed in *E. coli* BL21-CodonPlus (DE3) RIPL. Cells were grown at 37 °C to an OD600 = 0.5-0.6, and then cooled to 18 °C prior to the addition of 0.1-0.5 mM isopropyl- β -D-galactopyranoside (IPTG). The cultures were grown at 18 °C for another 18-20 h before harvesting. *E. coli* cells were collected after centrifugation at 4 °C, 4,000 x g for 15 min, and frozen at -80 °C until the use. Pellets were thawed on ice, resuspended in a suitable volume of lysis buffer (50 mM Tris-HCl buffer, pH 8.0, 300 mM NaCl, 3 mM BME, 10 mM imidazole, 10% glycerol; wt/vol = 1:4), and subjected to sonication on ice with 2-s pulses. The soluble fractions were collected after centrifugation at 4 °C, 25,000 x g for 30 min, and incubated with Ni-NTA agarose resin (Thermo Fisher) at 4 °C for 1 h. The resin was then washed successively with ~10 column volumes of the lysis buffer containing 30 mM imidazole. Recombinant proteins were eluted with 50-300 mM imidazole in the lysis buffer. Proteins were analyzed with 15% SDS-PAGEs that were stained with Coomassie blue for imaging. After SDS-PAGE analysis, elution fractions containing the targeted proteins were combined. The purified

proteins were then exchanged into a storage buffer (50 mM Tris-HCl buffer, pH 8, 100 mM NaCl, 10% glycerol) using PD-10 column according to the manufacture's protocol (GE), aliquoted and stored at -80 °C until the use. The concentrations of recombinant proteins were determined by Nanodrop and/or Bradford assay.

HPLC and LC-MS analysis

A Shimadzu Prominence UHPLC system (Kyoto, Japan) fitted with a Vydac 218TP54-C18 (5 µm, 4.6 mm x 250 mm) column was used for HPLC analysis. Solvent A was H₂O with 0.1% TFA and solvent B was CH₃CN with 0.1% TFA. The column was equilibrated with 10% solvent B for 2 min and then protein sample was eluted with a linear gradient of 10-70% in 30 min, followed by another linear gradient of 70-98% solvent B in 1 min. The column was further cleaned with 98% solvent B for 5 min and then re-equilibrated with 10% solvent B for 2 min. The flow rate was set as 0.8 mL/min, and the product was detected at 220 nm with a PDA detector. Apo- and holoproteins were further analyzed in LC-MS analysis. MS spectra were acquired by using an API Qstar Pulsar i hybrid tandem mass spectrometer (Applied Biosystems). An Agilent Eclipse Plus C18, (3.5 um, 2.1 x 100 mm) was used. In LC-MS analysis, solvent A was H₂O with 0.1% FA and solvent B was CH₃CN with 0.1% FA. The protein samples were eluted with a linear gradient of 10-90% in 15 min at a flow rate of 0.3 mL/min. HRMS data were obtained using a Thermo Fisher Q Exactive Focus mass spectrometer equipped with electrospray probe on Universal Ion Max API source. The LC conditions were the same as those for the LC-MS analysis.

Primers	Sequence 5'-3'	Function
Sfp-Fw	CATGCCATGGAAATTTATGGGATTTAC	Sfp expression
Sfp-Rv	CCGCTCGAGCTACAACAGTTCTTCATAG	Sfp expression
MPPT-Fw	CATGCCATGGTTATATCTACCGATGA	MPPT expression
MPPT-Rv	CCGCTCGAGTAGATCAGAAAGGCCA	MPPT expression
SPPT-Fw	CATGCCATGGTCCCCCAGCCCCAAAT	SPPT expression
SPPT-Rv	CCGCTCGAGGGGCAATGAATCAAGG	SPPT expression
SePPT-Fw	CATGCCATGGAACGCCCCAACCCTAG	SePPT expression
SePPT-Rv	CCGCTCGAGATGATTTTTCCGGATTATG	SePPT expression
APPT-Fw	CATGCCATGGTGCAGCATACTTGGC	APPT expression
APPT-Rv	CCGCTCGAGATAATGCCAGAATTTTG	APPT expression
AvPPT-Fw	CATGCCATGGTGCAGCATACTTGGCTAC	AvPPT expression
AvPPT-Rv	CCGCTCGAGATACTGCCAGAATTTTGGC	AvPPT expression
FPPT-Fw	CATGCCATGGGGTCTGAGACTAATCA	FPPT expression
FPPT-Rv	CCGCTCGAGATACTGCCAGTACTTTAA	FPPT expression
SFACP-Fw	CATGCCATGGATCAGGAAATTTTTGA	SFACP expression
SFACP-Rv	CCGCTCGAGTTTACTTTCGATATGCTC	SFACP expression
AFACP-Fw	GGAATTCCATATGAGCCAATCAG	AFACP expression
AFACP-Rv	CCGCTCGAGAGCTGATGCGGCAACTTG	AFACP expression
APACP-Fw	CATGCCATGGGTCTAAAACAAAATTATAG	APACP expression
APACP-Rv	CCGCTCGAGAGATTGTTCTTCCAATTCTTC	SFACP expression
APNPCP-Fw	CATGCCATGGAACAATCTACAACTAATC	APNPCP expression
APNPCP-Rv	CCGCTCGAGATCAGTAATAGGCGATTG	APNPCP expression
FNPCP-Fw	CATGCCATGGCCCAACGCCCTATCATTATC	FNPCP expression
FNPCP-Rv	CCGCTCGAGTTCAACTTCATCACTATC	FNPCP expression
FisPCP-Fw	CATGCCATGGGATCGCTTCCCAAACCTG	FisPCP expression
FisPCP-Rv	CCGCTCGAGTGAATTGGGAAAAACATC	FisPCP expression
FNsACP-Fw	CATGCCATGGCTTTTCTAGAAGATGTC	FNsACP expression
FNsACP-Rv	CCGCTCGAGGGAATTACCTAGAAAAGC	FNsACP expression
AprACP-Fw	CATGCCATGGAAATTTTTGAACAGGAAT	AprACP expression
AprACP-Rv	CCGCTCGAGACTAAAATTAATATCTTC	AprACP expression
MACP-Fw	CATGCCATGGTGACAACTGTTCAATC	MACP expression
MACP-Rv	CCGCTCGAGAAGATATAATTCCCCT	MACP expression
ScACP-Fw	CATGCCATGGAGCAGCGGCTGGCTC	ScACP expression
ScACP-Rv	CCGCTCGAGCTCCTGCTCGCCGAAC	ScACP expression
SSPCP-Fw	CATGCCATGGAGGAGATCCTCGCC	SSPCP expression
SSPCP-Rv	CCGCTCGAGGGTACGCCCGGCCAGGC	SSPCP expression
SPPT-Up-F	CCAAGCTT CCTGGCAGTAGTGTTGGTG	Integration vector
SPPT-Up-R	GGTAACGAAAACTAGTCGTACGAGGTCAGTTTAAACAGCG	Integration vector
SPPT-Dn-F	AAACTGACCTCGTACG ACTAGTTTTCGTTACCTTGGGCCG	Integration vector
SPPT-Dn-R	GTGAATTC GGGCTACACCGTCGCTAC	Integration vector
Syn-APPT-F	TAAAGAGGTATATATTAATGTTGCAGCATACTTGG	Integration vector
Syn-APPT-R	CATAGCTGTTTCCTGTGTCAAAAAACCCCCTCAAGACCCGTTTAGA GGCCCCAAGGGGTTATGCTAGTCAATAATGCCAGAATTTTG	Colony PCR
Svn-MPPT-F	TAAGAGGTATATATTAATGTTTATATCTACCGATG	Colony PCR
Syn-MPPT-R	CATAGCTGTTTCCTGTGTCAAAAAACCCCCTCAAGACCCGTTTAGA	Colony PCR
Syn mir i K	GGCCCCAAGGGGTTATGCTAGTCATAGATCAGAAAGGCC	
Syn-SFP-F	TAAAGAGGTATATATTAATGAAAATTTATGGGATTTAC	Colony PCR
Syn-SFP-R	CATAGCTGTTTCCTGTGTCAAAAAACCCCCTCAAGACCCGTTTAGA	Colony PCR
2	GGCCCCAAGGGGTTATGCTAGCTACAACAGTTCTTCATAG	5
Ptrc-F	CTCGTACGATTCTGAAATGAGCTGTTG	Colony PCR

 Table S1. Oligos used in the present study.

Table S1. Continued

Primer	Sequence 5'-3'	Function
Ptrc-APPT-R	CCAAGTATGCTGCAACATTAATATATACCTCTTTA	Colony PCR
Ptrc-MPPT-R	CATCGGTAGATATAAACATTAATATATACCTCTTTA	Colony PCR
Ptrc-SFP-R	GTAAATCCCATAAATTTTCATTAATATATACCTCTTTA	Colony PCR
Kana-F	GTCTTGAGGGGTTTTTTG ACACAGGAAACAGCTATG	Colony PCR
Kana-R	AAACTAGTAAACGACGGCCAGTGAAT	Colony PCR
RT-rnpB-F	CGTGAGGACAGTGCCACAG	RT-PCR
RT-rnpB-R	CGCTCTTACCGCACCTTTG	RT-PCR
RT-SPPT-F	TTTGATTGGCTTAAGTAC	RT-PCR
RT-SPPT-R	AATGCTTCCTTCGCTGTC	RT-PCR
RT-APPT-F	ATCTAGTGACGAATTAGC	RT-PCR
RT-APPT-R	AATAAACCACTCTCGGC	RT-PCR
RT-MPPT-F	GTATTAACTATCAATTGC	RT-PCR
RT-MPPT-R	AAGCTATCTAAATCTTTC	RT-PCR
RT-Sfp-F	TAGTCATTCTGGTCGCTG	RT-PCR
RT-Sfp-R	ATAAATCAGAGTATTCGG	RT-PCR

Accession Number	Gene name/locus tag	Organisms	Length (aa)
ABA22212.1	PPTase ^a	Anabaena variabilis ATCC 29413	237
WP 044522635.1	PPTase	Nostoc sp. PCC 7120	237
WP 004163140.1	PPTase	Microcystis aeruginosa NIES-843	220
ABB57835.1	HetI protein-like	Synechococcus elongatus PCC 7942	259
WP 012307697.1	PPTase	Synechococcus sp. PCC 7002	227
WP 010873553.1	PPTase	Synechocystis sp. PCC 6803	246
WP 017309026.1	PPTase	Fischerella sp. PCC 9339	240
ACG68433.1	Sfp	Bacillus subtilis	224
WP_009782852.1	PPTase	Lyngbya sp. PCC 8106	239
WP_026092908.1	PPTase	Calothrix sp. PCC 7103	241
WP 016950943.1	PPTase	Anabaena sp. PCC 7108	240
AAW67221.1	PPTase	Nodularia spumigena NSOR10	239
WP_015186867.1	PPTase	Gloeocapsa sp. PCC 7428	253
EHJ11403.1	PPTase	Crocosphaera watsonii WH 0003	248
WP_006529694.1	PPTase	Gloeocapsa sp. PCC 73106	242
WP_051044566.1	hypothetical protein	Pleurocapsa sp. PCC 7319	243
WP_006511535.1	PPTase	Xenococcus sp. PCC 7305	255
BAU66329.1	PPTase	Stanieria sp. NIES-3757	250
WP_017660318.1	hypothetical protein	Geitlerinema sp. PCC 7105	226
CUR17315.1	PPTase	Planktothrix sp. PCC 11201	249
WP_015112227.1	PPTase	Nostoc sp. PCC 7107	243
SCY12562.1	PPTase	Nitrosospira sp. Nsp13	246
WP_017306450.1	PPTase	Spirulina subsalsa	235
WP_029633554.1	hypothetical protein	Scytonema hofmanni UTEX B 1581	235
OCQ99688.1	PPTase	Oscillatoriales cyanobacterium USR001	254
WP_057178475.1	PPTase	Cylindrospermopsis sp. CR12	240
WP_041933312.1	PPTase	Cyanothece sp. PCC 7822	240
WP_054469188.1	hypothetical protein	Planktothricoides sp. SR001	247
WP_059000742.1	hypothetical protein	Leptolyngbya sp. NIES-2104	235
WP_015127290.1	PPTase	Calothrix sp. PCC 7507	234
ZP_00107102.1	PPTase	Nostoc punctiforme PCC 73102	239
ACN96032.1	holo-acyl-carrier-protein	Fischerella sp. MV11	128
WP_015181769.1	PPTase	Microcoleus sp. PCC 7113	139
AFY89096.1	PPTase	Chroococcidiopsis thermalis PCC 7203	137
WP_006519439.1	holo-ACP synthase	Leptolyngbya sp. PCC 7375	129
NP_926954.1	ACP synthase	Gloeobacter violaceus PCC 7421	132
AFY65439.1	holo-acyl-carrier-protein	Geitlerinema sp. PCC 7407	148
WP_006634204.1	holo-ACP synthase	Microcoleus vaginatus	157
WP_015187908.1	holo-ACP synthase	Gloeocapsa sp. PCC 7428	129
BAL39319.1	holo-acyl-carrier-protein	Escherichia coli str. K-12 substr. MDS42	126
AAH75207.1	MGC84206 protein	Xenopus laevis	302
XP_040785.1	PPTase	Homo sapiens	309
AGP54231.1	PPTase	Streptomyces rapamycinicus NRRL 5491	247

Table S2. PPTases used in the phylogenetic analysis.

^a: PPTase is an abbreviation of 4'-phosphopantetheinyl transferase.

Table 55. Selected CPS for the characterization of PPT ases
--

CPs	Strains	Matabalitas	Biosynthetic	Apo-form	Holo-form MW		GenBank accession number	
Crs	Strains	Metabolites	pathway	MW	Calculated ^d Observed			
SFACP	Synechocystis sp. PCC6083	Fatty acid	FAS	9655.69	9995.69	9997.78	ss12084	
AFACP	Anabaena sp. PCC7120	Fatty acid	FAS	10282.20	10622.20	10622.65	WP_010997493.1	
APACP	Anabaena sp. PCC7120	Glycolipid	PKS	10804.09	11144.09	11012.84ª	WP_010999481.1	
APNPCP	Anabaena sp. PCC7120	Unknown	NRPS/PKS	12115.69	12455.69	12455.54	WP_010996791.1	
FNPCP	Fischerella sp. PCC9339	Unknown	NRPS	10699.21	11039.21	10908.39ª	WP_017308667.1	
FisPCP	Fischerella sp. PCC9339	Shinorine	NRPS	12475.06	12815.06	12683.13ª	WP_017312907.1	
FNsACP	Fischerella sp. PCC9339	Unknown ^b	NRPS/PKS	15215.20	15555.20	15422.01ª	WP_017308557.1	
AprACP	Moorea bouillonii	Apratoxin	NRPS/PKS	10693.38	11033.38	11035.41	ctg1_8 ^c	
MACP	Microcystis aeruginosa NIES843	Unknown	NRPS/PKS	11106.54	11446.54	11314.81ª	WP_012265828.1	
ScACP	Streptomyces coelicolor A(3)2	Concanamycin	PKS	11186.50	11526.50	11526.67	WP_011030786.1	
SsPCP	Streptomyces scabiei 87.22	Thaxtomin	PKS	8240.44	8580.44	8580.49	CBG75339.1	

^aValues corresponded to the proteins without the *N*-terminal methionine residue; ^bFNsACP is a homolog of NdaC from *Nodularia spumigena* NSOR10; ^cgene sequence is provided in the supporting information; ^dThe MW of a holoform CP was calculated by adding the mass of a phosphopantetheinyl moiety (340 Da) to that of its apo-form.

Table S4. Relative activity of seven PPTases in activating 11 CPs^a.

PPTase						CPs					
	SFACP	AFACP	APNPCP	FNPCP	FisPCP	AprACP	APACP	MACP	FNsACP	ScACP	SsPCP
APPT	99.1 ± 1.1	100 ± 2.0	100 ± 1.4	75.4 ± 2.9	100 ± 1.5	100 ± 1.4	100 ± 1.6	89.7 ± 3.9	100 ± 1.4	64.9 ± 3.1	28.8 ± 3.8
AvPPT	98.3 ± 2.4	98.7 ± 0.6	98.6 ± 2.6	81.9 ± 1.4	93.7 ± 3.2	93.7 ± 1.2	22 ± 2.3	88.5 ± 2.5	94.5 ± 0.6	28.6 ± 2.1	32.8 ± 2.7
MPPT	94.8 ± 1.3	99.6 ± 1.7	93.9 ± 1.3	96.2 ± 0.6	97.4 ± 3.6	93.2 ± 1.9	84.6 ± 3.8	100 ± 2.1	93.5 ± 1.3	18.8 ± 0.6	24 ± 3.9
FPPT	96.1 ± 2.1	94.5 ± 0.8	0.0	100 ± 0.7	78.5 ± 3.1	89.9 ± 2.1	10.1 ± 1.0	0.0	91.0 ± 2.4	0.0	29 ± 3.2
SePPT	99.5 ± 0.8	94.9 ± 2.2	0.0	30.5 ± 2.7	47.3 ± 2.8	11.9 ± 1.1	11.9 ± 0.8	0.0	43.6 ± 3.3	0.0	0.0
SPPT	100 ± 1.6	98.8 ± 3.1	71.6 ± 2.3	96.1 ± 1.5	87.8 ± 1.3	79.3 ± 2.7	79.3 ± 4.1	16.1 ± 1.7	79.2 ± 3.2	0.0	8.3 ± 0.8
Sfp	98.6 ± 1.7	96.2 ± 1.3	53.3 ± 3.8	82.8 ± 1.9	25.1 ± 1.5	99.6 ± 2.2	98 ± 3.3	97.1 ± 2.9	92.9 ± 2.0	100 ± 1.7	100 ± 1.0

^aThe data represented mean \pm SD of three independent experiments.

Fig. S1. Schematic representation of post-translational phosphopantetheinylation of a CP domain by a PPTase. The modification leads to a mass increase of 340 Dalton.

Sfp SePPT SPPT MPPT FPPT AvPPT APPT	MKIYGIYMDRPLSQEENE MQRPNPSDAVPVPSIPSCDRGPIPNPVTWRTSPEPLFLSAQTVHLWRCSLTRSLSSAE MLPQPQIWLCPTDRPLIP MFISTDEVHLYFISLDPSGDRLE MGSETNHLWLTAPTNLTLLPDDVHVWRISLDRPESELQ MLQHTWLPKPPNLTLLSDEVHLWRIPLDRPESQLQ MLQHTWLPKPPNLTLLSDEVHLWRIPLDQPESQLQ	18 58 18 23 38 35 35
Sfp SePPT SPPT MPPT FPPT AvPPT APPT	RFMTFISPEKREKCRRFYHKEDAHRTLLGDVLVRSVISRQYQLDKSDIRFSTQEYGKPCI QAIVAADCDRAQA-YGSNRRHQFLCGRWWLRQLLSLYLPEEPADFRFQLSPTGKPEL GYQALLSSEEMARGERYQRPQDKQRFLTMRLALRILLARQLDCLPQQLQFTYGPQGKPEL TLASLLSEDEIIRANRYHFPEHKRRFLVARGCLREILGSYLAISPEKIEFIYSERGKPSI ALQTTLSSDEIARAQRFYFEQHRQRFVAGRGILRTILGRYLGVEPQAVEFTYELRGKPLL HLAATLSSDELARANRFYFPEHRQRFTAGRGILRSILGLYLGVEPKQVKFEYESRGKPIL DLAATLSSDELARANRFYFPEHRRRFTAGRGILRSILGGYLGVEPGQVKFDYESRGKPIL	78 114 78 83 98 95 95
	* *	
Sfp SePPT SPPT MPPT FPPT AvPPT APPT	PDLPDAHFNISHSGRWVIGAFD-SQPIGIDIEKTKPISLEIAKRFFSKTEYSDLL PQSNLCFNLSHSGSTLLIAIAW-QPVGVDVEQPRSR-SWLALARRYFPSAELAAMQ VDRERR-SPWFNVAHSGNYGLIGLSTEGEIGVDLQIMLPKPHYLKLAKRFFAPQEVQQLE NYQLQFNLSHSEEMAICGLTLTARIGVDLEKMRQMKDLDSLTKRFFCAREHELVE ADRFADSGVSFNLSHSQDLALCGVSRNRKIGIDVEYMRSVSDVEALAERFFAPREYEVVR GDRFADSGLLFNLSHSQNLGLCAVNYTRQIGIDLEYLRPTSDLESLAKRFFLPREYELLR GDRFAESGLLFNLSHSQNLALCAVNYTRQIGIDLEYLRPTSDLESLAKRFFLPREYELLR	132 168 137 138 158 155
Sfp SePPT SPPT MPPT FPPT AvPPT APPT	* AKDKDEQTDYFYHIWSMKESFIKQEGKGLSLPLDSFSVRLHQDGQVSIELPDSHSPCYIK QSTDCDRWGLASWVCKEAVIKAQGRTLANSLRHLQCAWTANGQPRLSGLGSEES-QVQ SLEGEKRTKLFYQIWTAKEAFLKATGKGISGGLNQVIPDENLAKYQYLPDSG-DTN KSAEKEKLFFQIWTAKEAFLKAVGTGISGGLDRVEVGLNPLKLDNVAG-EWQ SLPSNQQQQVFFRYWTCKEAFLKAIGVGIVQ-LEKVEISLTLEQPAKLITDE-EWS SLPDEQKQKIFFRYWTCKEAFLKATGDGIAK-LEEIEIALTPTEPAKLQTTP-AWS SLPDEQKQKIFFRYWTCKEAFLKATGDGIAK-LEEIEIALTPTEPAKLQTAP-AWS	192 225 192 189 212 209 209
Sfp SePPT SPPT MPPT FPPT AvPPT APPT	TYEVDPGYKMAVCAAHPDFPEDITMVSYEELL LLQVDPQEQLWAAI-AMPAGWNYQTWTAAIIRKNH	224 259 246 220 240 237 237

Fig. S2. Multiple-sequence alignment of characterized cyanobacterial PPTases and Sfp. The completely conserved residues are shaded in gray. The proposed magnesium binding residues are indicated with asterisks (*). Boxed region indicates the conserved W/KEA motif.

SFACP

ATCAGGAAATTTTTTGAAAAAGTAAAAAAATCGTCGTGGAACAGTTGGAAGTGGATCCTGACAAAGTGA CCCCCGATGCCACCTTTGCCGAAGATTTAGGGGCTGATTCCCTCGATACAGTGGAATTGGTCATGGCCCT GGAAGAAGAGTTTGATATTGAAATTCCCGATGAAGTGGCGGAAACCATTGATACCGTGGGCAAAGCCGT TGAGCATATCGAAAGTAAA

AFACP

GCCAATCAGAAACTTTTGAAAAAAGTCAAAAAAATTGTTATCGAACAACTAAGTGTGGAGAACCCTGACA CAGTAACTCCAGAAGCTAGTTTTGCCAACGATTTACAGGCTGATTCCCTCGATACAGTAGAACTAGTAAT GGCTTTGGAAGAAGAATTTGATATCGAAATTCCCGATGAAGCCGCAGAGAAAATTACCACTGTTCAAGA AGCGGTGGATTACATCAATAACCAAGTTGCCGCATCAGCT

APACP

GTCTAAAACAAAATTATAGTGCAGCAGATATTCAAGCTTGGATGATATCTAATCTAGCTGAATTGTTGGG AGTAGATGGTGATGAAATCGATGCTACTGTCAATTTAGAAAGCTATGGTTTGGATTCGGCACAGGCAAT GGTACTAGTTAGTAAACTAGAGCAATTGTTGGGATTTCAACCATCACCTTTGTTGTTGTGGGCATTACCCC ACTATTGAATCGTTGTCTGAACGTTTAGCTGAAGAAATTGGAAGAACAATCT

APNPCP

FNPCP

CCCAACGCCCTATCATTATCCCTCGTACAAATACTGAACAGCGAATAGGCGAGATTTGGAAGAAGGCGA TGAAGTGGGATTCTGTCTCGATATGTGATGATGATTTCTTTGAATCTGGCGGAAATTCACTTATTGCTGTGAG AATAATCAACGCTATCAACAAAGAATTTCATTGTGCCTTGCCTTTACATGCTCTTTTTGAAGCTCCAAGC ATTGAAAAGCTCGCTCATAAGGTTGATAGTGATGAAGTTGAA

FNsACP

GCTTTTCTAGAAGATGTCCCTCCAACAGAACGTCGAGAACACTTATTAGAATATCTTGGAAAAGAAGTA GCAAAAATCTTAGGAATAAAACATATACCCGACCCAGAACAAGGATTTATAGAAATGGGAATTGACTCT TTGCTTTCCATTGAATTCAAAAATCGTTTAGAAAAAGGATTAGAAATTGCTTTACCATCTACTTTAATATT TGATTTTCCGAATATTAGCAAATTAAATAATTATCTATTTGAGCAAATTTATGGTTGGGAAGTAAATACT ACCGTGGAGACAACTGTTGATATTGTAGAAGATTAATGAAGATTTAATTTTGCAAGAACTGGCAGATTTA GAAGCTTTTCTAGGTAATTCCCTCGAGCACCACCACCACCACCACCAC

FisPCP

AprACP

МАСР

 $TGACAACTGTTCAATCTCCTTGTACCGTTGAAGACATTCAAAACTGGCTCGTTGATCAGTTTGCTCAACA\\ ACTCGATGTTGACCTTGATGACATTGATATTGAAGAACCTTTTGATAATTATGAACTCGACTCACGAAAA\\ GCGTTAGTTTTATTAGGACGCTTAGAAAAATGGCTCGGAAAGGAATTAAATCCTGTGGTCATTTTTAACT\\ ATCCCACCATTGCTGAATTAGCAACCCGATTAGGGGAATTATATCTT$

ScACP

SsPCP

GCCCGCCGGCTCGAACCGTTGGACGAACCCGCGCGACGCCGTCTGCTGCTCGACCTGGTGTGCGACCAC GCGGCCGCGGTCTCGGCCACACCGGCCGCCAGGCCGTCCCGGCCGACCAGGCGTTCTCCGCCGTCGGG TTCGACTCGATGCTCGCCGTGTCCTTCCGTAACCGGCTGCGCACCGCGACCGGCGTCCCCGTCGCCGCGA CGGTGGTGTTCGACCATCCCACCCCGCCGCCGCCGCCGCCGACCACCTGTACGACGGGTTGAGCGCCCGTC CGGACCGGCCGTT

Codon optimized Sfp

Fig. S3. Nucleotide sequences of selected wild type CP genes and codon optimized Sfp gene.

Fig. S4. SDS-PAGE (15%) analysis of the purified PPTase (A) and CP (B) proteins. All proteins showed expected molecular weights and CPs were validated in LC-MS analysis.

apo-form (calculated): 8240.44

apo-form (observed): 8240.40

[M+9H]⁹⁺

[M+8H]8+

1031.05

916.60

[M+10H]¹⁰⁺

825.04

apo-form (calculated): 9955.69

apo-form (observed): 9654.33

[M+9H]⁹⁺

1073.41

[M+8H]8+

1207.42

[M+10H]10+

966.23

apo-form (calculated): 10282.20

apo-form (observed): 10283.08

[M+10H]¹⁰⁺

1029.11

[M+9H]9+

1143.32

[M+11H]¹¹⁺

935.66

Fig. S5. HR-MS spectra of apo- and holo-CPs. The charge status, m/z value, and calculated and observed molecular weights of CPs were shown.

Fig. S6. Michaelis-Menten kinetic analysis of APPT evaluated for 11 selected CP substrates.

Synechocystis chromosome integrated with homologous PPTase

Fig. S7. Schematic representation of homologous replacement of the *SPPT* gene with foreign *PPTase* genes in *Synechocystis*.

Fig. S8. PCR analyses of the integration and transcription of the *APPT*, *MPPT* and *Sfp* genes in *Synechocystis* mutants. (A) PCR diagnosis of *Synechocystis* mutants whose *SPPT* gene was chromosomally replaced by the *APPT*, *MPPT* and *Sfp* genes. The *SPPT* gene was detected in the wild type (lane 1) but not in three mutants (lanes 2 to 4). The *APPT*, *MPPT* and *Sfp* genes were found in one of three mutants, respectively (lanes 2 to 4). (B) RT-PCR analysis of the transcription of *SPPT*, *APPT*, *MPPT* and *Sfp* genes in *Synechocystis* wild type and mutants (lanes 2 to 5, respectively). The *rnpB* gene was used as a positive control (lane 1).