Enabling the Cross-Coupling of Tertiary Organoboron Nucleophiles Through Radical Mediated Alkyl Transfer

David N. Primer and Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

*To whom correspondence should be addressed. E-mail: gmolandr@sas.upenn.edu

Supplementary Material

General considerations	S2
Procedure for synthesis of tertiary alkyltrifluoroborates	S2-S4
High-throughput screening for ligand identification	S4-S6
Selected reaction optimization studies	S6-S7
General procedure for photoredox cross-coupling reactions	S8-S9
Cyclic voltammetry and alkylation with tert-butyltrifluoroborate	S10
Oxidative addition complex synthesis and experiments	S11
Compound characterization data	S12-S20
References	S21
Spectras	S22-S111

General considerations

All reactions were carried out under an inert atmosphere of nitrogen or argon unless otherwise noted. DMA was purchased as 99.9%, extra dry. K₂HPO₄ was stored and dispensed in a dry glovebox. IrCl₃·xH₂O, and Ni(TMHD)₂ were purchased from commercial sources. All other reagents were purchased commercially and used as received. Photoredox reactions were irradiated by 1.2 W/ft. blue LED (420 nm) light strips, coiled in a circular setup approximately 38 inches in length. To accelerate the reactions, irradiation with 2–4 Kessil H150 blue LED flood lamps can also be used to complete reactions in under 24 h. Melting points (°C) are uncorrected. NMR spectra were recorded on a 500 MHz spectrometer. ¹⁹F NMR chemical shifts were referenced to external CFCl₃ (0.0 ppm). ¹¹B NMR spectra were referenced to an external BF₃·OEt₂ (0.0 ppm) with a negative sign indicating an upfield shift. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant *J* (Hz) and integration. The ¹³C signal of the carbon bonded to boron was not observed in all cases because of quadrupolar relaxation.

General Procedure for Conversion of Boronic Acid Derivatives to Alkyltrifluoroborate:

To a solution of boronic acid derivative in MeOH (0.1 M) at 0 °C was added saturated aq KHF₂ (4.5 M) dropwise over 30 min and then subsequently stirred for 3 h to rt. The resulting suspension was concentrated under reduced pressure. H₂O was azeotropically removed by suspension in toluene (100–150 mL) followed by rotary evaporation. The remaining solid was dried under high vacuum overnight. The resultant solid was resuspended in hot acetone and filtered. The filtrate was then concentrated to minimal volume, and the trifluoroborates were precipitated by the addition of cold Et₂O, CH₂Cl₂, and/or pentanes.

General Enone Borylation Procedure:

Following a slightly modified literature procedure,¹ a flask was charged with CuBr (14.8 mg, 0.1 mmol), CyJohnPhos (35 mg, 0.1 mmol), bisboronic acid (537.9 mg, 6 mmol) and NaOt-Bu (144.2 mg, 1.5 mmol). The flask was evacuated and purged 3 times with argon. EtOH (50 mL) and enone (5.0 mmol) were added via syringe, and the mixture was stirred for 21 h. The reaction mixture was filtered through a plug of Celite and then rinsed with EtOAc (3 x 40 mL). The filtrate was concentrated, and the resultant oil was dissolved in MeOH (50 mL). This solution was cooled in an ice-bath, and then a solution of saturated KHF₂ (42.5 mmol, 4.5 M) was added dropwise. The mixture was warmed to rt and was stirred for 3.5 h. The suspension was then evaporated to dryness. The resultant solid was triturated and sonicated with hot acetone and filtered three times. The filtrate was then concentrated to a minimal volume, and the alkyltrifluoroborates were precipitated through dropwise addition of cold Et₂O (10–50 mL). The mixture was filtered, washed with cold Et₂O (5–20 mL), and dried on high vacuum overnight to yield the desired β -trifluoroboratoester or –ketone.

Potassium (4-(2-Ethoxy-2-oxoethyl)tetrahydro-2H-pyran-4-yl)trifluoroborate (S1) prepared from ethyl 2-(tetrahydro-4H-pyran-4-ylidene)acetate (5 mmol) and obtained in 32% yield, 445 mg as a white crystalline solid, mp = 187 - 190 °C.

¹H NMR (500 MHz, acetone- d_6) δ 4.01 (q, J = 7.1 Hz, 2H), 3.72 – 3.64 (m, 2H), 3.55 – 3.49 (m, 2H), 2.15 (s, 2H), 1.73 – 1.62 (m, 2H), 1.33 – 1.25 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H).

¹³C NMR (125.8 MHz, acetone-*d*₆) δ 175.3, 64.4, 58.9, 42.2, 33.5, 13.9.

¹⁹F NMR (470.8 MHz, acetone-*d*₆) -146.8.

¹¹B NMR (400 MHz, acetone- d_6) δ 5.42.

IR (ATR): v = 1720, 1688, 1308, 1228, 1088, 1016, 999, 964, 533 cm⁻¹.

HRMS (ESI) m/z calc. for C₉H₁₅BF₃O₃⁻ (M-) 238.1103, found 238.1095.

Reductive Alkene Coupling Procedure:

Based on a slightly modified literature procedure,² to a solution of 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2dioxaborolane (5.0 mmol) in 20 mL of EtOH was added anhydrous Na₂HPO₄ (2.12 g, 10.0 mmol), Fe(acac)₃ (177 mg, 10 mol %), acceptor olefin (15.0 mmol), and PhSiH₃ (1.62 g, 15.0 mmol). The resulting mixture was heated in an oil bath preheated to 60 °C with stirring (until GC analysis indicated the consumption of starting material boronate ester, usually 2–4 h). The reaction mixture was then cooled to rt and diluted with brine (20 mL) and EtOAc (20 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, washed with brine (20 mL), dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The resulting crude product was then purified by silica gel flash column chromatography. The pinacol boronate obtained after column chromatography was dissolved in MeOH (10–20 mL) and converted to the alkyltrifluoroborate by addition of saturated aq KHF₂ (12 mL, 4.5 M, 54 mmol) at 0 °C. The mixture was then warmed to rt and stirred for 3.5 h. The suspension was then evaporated to dryness. The resultant solid was triturated and sonicated with warm acetone and filtered three times. The filtrate was then concentrated to a minimal volume, and the alkyltrifluoroborate was precipitated through dropwise addition of cold Et₂O and/or pentanes (10–30 mL). The mixture was filtered, washed with cold Et₂O (5–10 mL), and then dried on high vacuum overnight to yield the desired alkyltrifluoroborates.

Potassium Trifluoro(5-methoxy-2-methyl-5-oxopentan-2-yl)borate (S2) prepared using methyl methacrylate as the olefin acceptor and obtained in 44% yield, 522 mg as an off-white solid, mp = 129 - 131 °C.

¹H NMR (500 MHz, acetone- d_6) δ 3.55 (s, 3H), 2.47 – 2.17 (m, 2H), 1.55 – 1.30 (m, 2H), 0.68 (s, 6H).

¹³C NMR (126 MHz, acetone- d_6) δ 175.6, 137.0, 50.1, 36.0, 30.3, 24.1.

¹¹B NMR (128.4 MHz, acetone- d_6) δ 6.19.

¹⁹F NMR (470.8 MHz, acetone- d_6) δ -150.5.

IR (ATR): : v = 1732, 1646, 1236, 1174, 1026, 981, 937, 750, 567 cm⁻¹.

HRMS (ESI) m/z calc. for C₇H₁₃BF₃O₂- (M-) 196.0997, found 196.0975.

Potassium Trifluoro(2-methyl-5-oxohexan-2-yl)borate (S3) prepared using methyl vinyl ketone as the olefin acceptor, 45% yield, 497 mg as a colorless, viscous oil.

¹H NMR (500 MHz, acetone- d_6) δ 2.47 – 2.28 (m, 2H), 2.03 (s, 3H), 1.37 – 1.30 (m, 2H), 0.67 (s, 6H)

¹³C NMR (125.8 MHz, acetone- d_6) δ 210.5, 40.1, 34.9, 28.6, 24.2.

¹¹B NMR (128.4 MHz, acetone- d_6) δ 6.15 (with residual BF₄).

¹⁹F NMR (470.8 MHz, acetone- d_6) δ -149.0 (with residual BF₄).

IR (ATR): : v = 1696, 1471, 1296, 1254, 1016, 749, 480 cm⁻¹.

HRMS (ESI) m/z calc. for $C_7H_{13}BF_3O^-$ (M-) 181.1012, found 181.1029.

Potassium Trifluoro(2-methyl-5-morpholino-5-oxopentan-2-yl)borate (S4) prepared using 1-morpholinoprop-2en-1-one as the olefin acceptor, 53% yield, 764 mg as a white crystalline solid, mp = 164 - 166 °C. ¹H NMR (500 MHz, CD₃CN) δ 3.76–3.63 (m, 4H), 3.57 (s, 4H), 2.49–2.39 (m, 2H), 1.46–1.35 (m, 2H), 0.78 (s, 6H).

¹³C NMR (125.8 MHz, CD₃CN) δ 174.2, 66.5, 46.0, 41.4, 36.8, 29.8, 24.2.

¹¹B NMR (128.4 MHz, CD₃CN) δ 6.00.

¹⁹F NMR (470.8 MHz, CD₃CN) δ -149.7.

IR (ATR): v = 1645, 1482, 1429, 1281, 1114, 1038, 1017, 963, 935, 524 cm⁻¹.

HRMS (ESI) m/z calc. for C₁₀H₁₈BF₃NO₂⁻ (M-) 252.1388, found 252.1383.

Trifluoroborates below were synthesized according to known literature procedures:

Spectral data matched that reported in the literature^{1,3–5}

Selected reaction optimization studies:

High Throughput Experimentation was performed at the Penn/Merck Center for High Throughput Experimentation at the University of Pennsylvania. The screens were analyzed by UPLC with addition of an internal standard. The areas for the internal standard (IS), aryl bromide (ArBr), and product (P) from each of the screens are shown in the tables below. The ratios calculated are pertinent only to that specific screen; the ratios from one screen should not be quantitatively compared to those from a different screen. The results of the screens are illustrated in a heat map. The information conveyed in these heat maps is two-fold. First, the size of the circle corresponds to the amount of product. The larger the circle, the more product formed during the reaction. Secondly, the shade of the circle corresponds to the amount of starting material, in this case aryl bromide, remaining. The lighter the circle, the less aryl bromide remaining after 24 h. Therefore, for a reaction resulting in high conversion and product formation, the circle will be both large and light.

Procedure for screening at 10 µmol scale:

To a 96 well plate reactor containing 1 mL reaction vials equipped with a Teflon-coated magnetic stir bar in a glovebox was added sequentially: 1) solution of Ni source (0.1 equiv) dissolved in THF for $[Ni(COD)_2]$ or DMA [for all Ni(II) sources], and 2) ligand (0.1 equiv) in DMA. After addition, the plate was sealed and the vials were allowed to stir at 60 °C for 1 h to ensure complexation of ligand to the catalyst. Then, 100 μ L of a stock solution containing potassium *tert*-butyltrifluoroborate (1.5 equiv), aryl bromide (1.0 equiv – 10 μ mol), photocatalyst (0.03 equiv), and internal standard (0.1 equiv) was added to each vial. The vials were sealed and stirred over blue LED lights at rt (~24 °C). After 24 h the reactions were opened to air and diluted with 500 μ L of MeCN. After stirring, the diluted block for fifteen minutes15 min, 25 μ L aliquots were then taken from the reaction vials and dosed into a 96-well UPLC block. These aliquots were further diluted by the addition of 700 μ L of MeCN. The reaction mixtures were then analyzed by UPLC.

Note: If examining the effect of solid additives, these were added as slurries in THF or DCE (0.1 M) followed by solvent removal by Genovac evaporation before the following steps. If looking at the effect of liquid additives, these were added as stock solutions in DMA (1.0 M) after dosing all other ingredients.

Ni(COD)2				NiBr2dme							
L1	L2	L3	L4	L5	L6	0	L2	L3	L4	L5	L6
L7	L8	L9	L10	L11	L12	L7	L8	L9	L10	L11	L1 2
L13	L14	L15	L16	L17	L18	L13	L14	L15	L16	L17	L18
L19	L20	1.21	L 2 2	L23	L24	L19	L20	1	L22	L23	L24
L25	L26	L27	L28	L29	L30	L25	L26	L27	L28	L29	L30
L31	L32	L33	L34	L35	L36	L31	L32	L33	L34	L35	L36
L37	138	L39	L40	L41	L42	L37	L38	L39	L40	L41	L4 2
L.43	L44	L4 5	146	L47	L48	1 3	L44	L4 5	L46	L47	L48

Conditions: 3 mol % Ir cat 1, 10 mol % Ni, 10 mol % ligand, no base, 0.05 M DMA

Figure S1: Broad Ligand Screening for Baseline Conversion

Optimizing Precomplexed Diketonate Ligand Scaffold

Conditions: 3 mol % Ir cat. 1, 10 mol % Ni, 10 mol % ligand, 20 mol % additive, 1 equiv base, 0.05 M DMA

Figure S2: Effects of ligand structure, additives, NHC additives, and bases on overall yield

Procedure for screening at 0.1 mmol scale:

To a 1 dram vial containing a Teflon coated magnetic stir bar was added a stock solution of potassium *tert*butyltrifluoroborate (2.0 equiv), aryl halide (1 equiv), photocatalyst **1** (3 mol %), and internal standard 4,4'-di-*tert*butylbiphenyl (10 mol %) in THF. The solvent was then removed under high vacuum. To the reaction mixture was then added any additional base (1.0 equiv). The vial was then brought into a nitrogen filled glovebox and Ni(TMHD)₂ (10 mol %) was dosed in the reaction solvent of choice. The reactions were then monitored by GC analysis after stirring for 24 h with the product/IS ratios given below

Figure S3: Benchtop Screening of Solvents and Bases

Figure S4: Similar Structures Examined as Ligands with Relative Conversion (Red: <5%, Yellow: 5–50 %, Green: >50%)

Procedure for nickel complexation with above ligands:

Based on an adapted literature procedure,⁶ 2.0 equiv of ligand (0.2 mmol) were dosed into a vial Ni(OAc)₂ x 4H₂O (1.8 mg, 0.1 mmol). To the vial was added 0.5 mL of MeOH. The vial was then capped and stirred at 50 °C overnight to induce complexation of the ligand to the nickel center. The solvent was then removed under high vacuum to afford green to purple solids or semi-solids. The residual solid material was then dissolved in DMA and dosed as a 0.1 M stock solution.

Figure S5: Nickel to Photocatalyst Ratio Array (P/IS ratios under standard conditions after 24 h)

	protodehalo / IS	SM / IS	prod / IS
CzIPN (3 mol %)	2.073079791	0	1.354213274
No PC	0.623495552	2.10151753	0.107796965
No base	1.880733945	0.642201835	1.384301733
No Ni	0.623641304	3.65625	0
No light	0.011927181	3.925925926	0.026365348
Ni(COD)2 / ligand	0.450913242	1.146118721	2.171803653
Std. cond	0.298283262	0	3.617310443
No Zn	0.448275862	0	3.065922921
Nil2 / ligand	0.108389467	3.259644825	0.309246785
pyridine (20 mol %)	1.993569132	0.437299035	0.080385852

Figure S6: Deviation from Standard Conditions (HPLC ratios after 48 h)

General procedure A for adamantyltrifluoroborates photoredox cross-coupling reactions:

To a 4 dram borosilicate glass vial equipped with a Teflon-coated magnetic stir bar was added adamantyltrifluoroborate **S5** (181 mg, 0.75 mmol, 1.5 equiv), $Ir[dFCF_3ppy]_2(bpy)PF_6$ **1** (15.0 mg, 0.03 equiv), Ni(dtbbpy)(H₂O)₄Cl₂ (7.0 mg, 0.05 equiv), Na₂CO₃ (1.0 mmol, 2 equiv) and aryl bromide (0.5 mmol, 1 equiv) (liquid aryl bromides were added with solvent). The vial was then purged and evacuated 3x under argon atmosphere. To the vial was then added dioxane/DMA in a (6 mL in 5:1 mixture). The entire mixture was then sparged for 10 min with argon and then placed on a stir plate 4 cm away from 4 Kessil H150 blue flood lamps for 24 h. Two fans were placed above the reaction setup (shown below) to maintain an ambient temperature of 28–30 °C. After completion, the reaction mixture was diluted with an equal volume of H₂O and extracted with EtOAc (3 x 5 mL). The organic layer was then dried (Na₂SO₄), filtered, concentrated onto silica, and then purified by silica gel chromatography, eluting with EtOAc and hexanes to obtain the products in pure form.

General procedure B for tertiary photoredox cross-coupling reactions

To a 4 dram borosilicate glass vial equipped with a Teflon-coated magnetic stir bar was added tertiary alkyltrifluoroborate (1.0 mmol, 2 equiv), $Ir[dFCF_3ppy]_2(bpy)PF_6 \mathbf{1}$ (5.0 mg, 0.01 equiv), and aryl bromide (0.5 mmol, 1 equiv) (liquid aryl bromides were added with solvent). The vial was then transferred into a glove box where $Ni(TMHD)_2$ (21.2 mg, 0.05 mmol), $ZnBr_2$ (11.3 mg, 0.05 mmol), and anhydrous K_2HPO_4 (87 mg, 0.5 mmol) were added. The vial was then capped and removed from the glovebox. Anhydrous DMA (5 mL) was added to the vial via syringe under inert atmosphere. The vial was then sparged with argon for 10 min. The vial containing all the reagents was further sealed with parafilm and Teflon tape and stirred for 48–72 h approximately 4 cm away from a ring of blue LED lights strips (see below). A fan was blown across the reaction setup to maintain an ambient temperature around 27 °C. After completion, the crude reaction mixture was diluted with H₂O (10 mL) and extracted with Et₂O (2 X 10 mL) EtOAc (5 mL). The organic layer was then washed with saturated aq NaCl (5 mL) and dried (Na₂SO₄). The resulting organics were then concentrated, and the residue was purified by column chromatography on silica gel, eluting with EtOAc and hexanes, to obtain products in pure form.

General procedure C for tertiary photoredox cross-couplings

Setup for these reactions remains the same as procedure B, however, the reactions are instead irradiated with 4 Kessil H150 blue flood lamps at 30 °C for 24 h. The greater light intensity in these systems significantly accelerates reaction progress and mirrors acceleration seen in other systems.⁷

Figure S7: Procedure B photoredox cross-coupling reaction set-up (0.50 mmol scale)

Fig S8: Procedure A and C Kessil lamp setup for shortened reaction times (0.25 – 0.50 mmol scale)

Cyclic Voltammetry (CV) Data

Electrochemical measurements were recorded on a CH Instruments: Model 600E Series Electrochemical Analyzer (observed in 0.002 M MeCN; $[N(Bu)_4](PF_6) = 0.1$ M; Ag/AgCl = electrode; reported in SCE based on a ferrocene internal standard).

Figure S9: Oxidation Potential of Tertiary Alkyltrifluoroborate 13

Alkyltrifluoroborate Oxidation Experiment

Based on a literature procedure reported by Akita,⁵ a one dram vial equipped with a Teflon coated magnetic stir bar was charged with alkyltrifluoroborate **13** (82 mg, 0.50 mmol) and $Ir[dFCF_3ppy]_2(bpy)PF_6$ **1** (10 mg, 0.01 mmol), then acetone (5.0 mL), MeOH (0.5 mL) and methyl vinyl ketone (140 mg, 2.0 mmol) were added under inert atmosphere. The vessel was degassed by Ar sparging for 10 min. The vial was then exposed to the blue LED setup in procedure B (vide supra) at rt for 24 h. The resulting mixture was extracted with CH₂Cl₂, and the combined organic layers were dried (Na₂SO₄) and filtered. The filtrate was concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel to afford **14** as a colorless oil (47 mg, 73%).

¹H NMR (500 MHz, CDCl₃) δ 2.44-2.40 (m, 2H), 2.18 (s, 3H), 1.52-1.48 (m, 2H), 0.91 (s, 9H).

¹³C NMR (125.8 MHz, CDCl₃): δ 209.2, 39.1, 37.0, 29.5, 29.1, 28.8.

Spectroscopic data matches that previously reported.8

Nickel oxidative addition complex synthesis:

Nickel complex (**15**) was prepared according to an adapted literature procedure.⁹ A dry, clean 50 mL round bottom flask was charged a Teflon coated stir bar and 536 mg of 4,4'-di-*tert*-butyl-2,2'-bipyridine (2.0 mmol), and brought into a glove box under inert atmosphere. In the glove box, 5 mL of dry, degassed, cooled toluene (~20 °C) was added to dissolve the ligand. To the mixture was then added a solution containing 550 mg of Ni(COD)₂ (2.0 mmol) in 20 mL of cooled toluene (~20 °C), followed by 3.4 mL of 2-bromotoluene (20 mmol). The mixture was then stirred to room temperature over the course of 9 h. The resultant orange mixture was filtered and then concentrated to a residue under high vacuum overnight. The residue was then extracted with ether. Evaporation of the ether afforded **15** as an orange powder (647 mg, 65%). ¹H NMR (500 MHz, acetone-*d*₆) δ 9.27 (d, *J* = 4.4 Hz, 1H), 8.40 (d, *J* = 19.0 Hz, 2H), 7.68 (s, 1H), 7.57 – 7.48 (m, *J* = 6.4 Hz, 1H), 7.33 (s, 1H), 7.07 – 6.95 (m, *J* = 5.5 Hz, 1H), 6.77 – 6.62 (m, 3H), 3.01 (s, 3H), 1.43 (s, 9H), 1.36 (s, 9H).

Nickel oxidative addition complex experiments:

To a 1 dram vial was added **15** (12.5 mg, 0.025 mmol), oxidant (0.025 mmol), and alkyltrifluoroborate (0.025 mmol). The vial was then capped, purged and evacuated three times. Under inert atmosphere, 0.5 mL of dry, degassed THF was introduced via syringe. For the oxidant reactions, these were wrapped with tin foil and stirred vigorously overnight. For the vials containing photocatalyst, the oxidant was replaced with 2.5 mg of photocatalyst (0.0025 mmol) and the reactions were stirred vigorously in front of a blue LED light setup (see above) overnight.

After 16 hours, the reactions were quenched by addition of 1 mL of acetonitrile containing 10 mol % of 4,4'-di-*tert*butylbiphenyl. Aliquots from the reaction were then taken and further diluted with acetonitrile before being analyzed by GCMS. Yields were determined by ratio to internal standard.

Stoichiometric Experiments with Nickel (II) Oxidative Addition Complex

Compound Characterization Data

4-(Adamantan-1-yl)benzonitrile (19): obtained as a white amorphous solid using procedure A at 0.50 mmol scale (76 mg, 64%), mp = 125-128 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 2.12 (s, 3H), 1.90 (s, 6H), 1.83 – 1.72 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 156.8, 132.2, 126.0, 119.4, 109.4, 42.9, 37.0, 36.7, 28.8.

IR (ATR): v = 2916, 2898, 2847, 2233, 1506, 1343, 1101, 849, 806, 563 cm⁻¹.

HRMS (EI) m/z calc. for $C_{17}H_{19}N$ (M+) 237.1517, found 237.1501.

1-(4-((3r, 5r, 7r)-Adamantan-1-yl)phenyl)ethan-1-one (20): obtained as a white solid using procedure A at 0.50 mmol scale (97 mg, 76%), mp = 108–110 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 2.59 (s, 3H), 2.12 (s, 3H), 1.92 (s, 6H), 1.83 – 1.72 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 198.1, 157.1, 134.8, 128.5, 125.3, 43.0, 36.8, 36.8, 28.9, 26.7.

IR (ATR): $v = 2907, 2848, 1678, 1602, 1359, 1267, 1245, 832, 804, 596 \text{ cm}^{-1}$.

HRMS (EI) m/z calc. for C₁₈H₂₂O (M+) 254.1671, found 254.1675.

21

4-((3r,5r,7r)-Adamantan-1-yl)-2-methylpyridine (21): obtained as a pale yellow semi-solid using procedure A at 0.25 mmol scale (29 mg, 51%).

¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, J = 5.4 Hz, 1H), 7.11 (s, 1H), 7.06 (d, J = 5.4 Hz, 1H), 2.55 (s, 3H), 2.11 (s, 3H), 1.89 (s, 6H), 1.83 - 1.75 (m, 6H).

¹³C NMR (125.8 MHz, CDCl₃) δ 160.1, 158.0, 148.9, 119.7, 117.4, 42.3, 36.5, 36.0, 28.6, 24.5.

IR (ATR): v = 2901, 2848, 1602, 1550, 1449, 1397, 1296, 1038, 976, 837, 806 cm⁻¹.

HRMS (EI) m/z calc. for C₁₆H₂₁N (M+) 227.1674, found 227.1665.

1-(3-((3r,5r,7r)-Adamantan-1-yl)phenyl)ethan-1-one (22): obtained as a colorless semi-solid with procedure A at 0.25 mmol scale (43 mg, 68%).

¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.41 (dd, *J* = 7.6, 7.8 Hz, 1H), 2.61 (s, 3H), 2.12 (s, 3H), 1.94 (s, 6H), 1.82 – 1.75 (m, 6H).

¹³C NMR (125.8 MHz, CDCl₃) δ 193.8, 152.0, 137.2, 130.1, 128.5, 126.0, 124.8, 43.2, 36.8, 36.5, 29.0, 26.9.

IR (ATR): v = 2900, 1847, 1682, 1426, 1355, 1270, 963, 789, 695, 588 cm⁻¹.

HRMS (EI) m/z calc. for C₁₈H₂₃O (M+H) 255.1743, found 255.1748.

1-(4-(Methylsulfonyl)phenyl)adamantane (23): obtained as a white amorphous solid with procedure A at 0.25 mmol scale (66 mg, 91%), mp = $167-170 \text{ }^{\circ}\text{C}$.

¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 3.04 (s, 3H), 2.13 (s, 3H), 1.92 (s, 6H), 1.83 – 1.72 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 157.8, 137.7, 127.4, 126.2, 44.7, 43.0, 37.0, 36.7, 28.8.

IR (ATR): v = 2902, 2848, 1596, 1449, 1308, 1291, 1148, 1090, 954, 777, 558, 473 cm⁻¹ HRMS (EI) m/z calc. for C₁₇H₂₂O₂S (M+) 290.1341, found 290.1341

(**3r,5r,7r)-1-(4-Methoxyphenyl)adamantane** (**24**) obtained as a pale yellow oil using procedure A at 0.25 mmol scale (12 mg, 20%).

¹H NMR (500 MHz, DMSO- d_6) δ 7.24 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.69 (s, 3H), 2.01 (s, 3H), 1.80 (s, 6H), 1.70 (s, 6H).

¹³C NMR (125.8 MHz, DMSO-*d*₆) δ 157.4, 143.4, 125.9, 113.8, 55.3, 43.2, 36.6, 35.4, 28.7.

HRMS (EI) m/z calc. for C₁₇H₁₆O (M+) 242.1671, found 242.1677.

Spectroscopic data matches with previously reported data.¹⁰

1-(4-(1-Phenylcyclopropyl)phenyl)ethan-1-one (25): obtained as a colorless oil with procedure A at 0.25 mmol scale (55 mg, 93% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.34 – 7.19 (m, 7H), 2.57 (s, 3H), 1.43 – 1.32 (m, 4H). ¹³C NMR (125.8 MHz, CDCl₃) δ 197.9, 151.9, 144.6, 135.0, 129.1, 128.6, 128.6, 128.0, 126.6, 30.2, 26.7, 17.2. IR (ATR): v = 3143, 2950, 1678, 1603, 1404, 1265, 957, 821, 760, 699, 598 cm⁻¹. HRMS (EI) m/z calc. for C₁₇H₁₆O (M+) 236.1201, found 236.1206.

1-(4-(*tert***-Butyl)phenyl)ethan-1-one (26)**: obtained as a colorless oil with procedure B (80 mg, 90%). ¹H NMR (CDCl₃, 500 MHz): δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 2.58 (s, 3H), 1.36 (s, 9H). ¹³C NMR (CDCl₃, 125.8 MHz): δ 198.0, 157.0, 134.8, 128.4, 125.7, 35.2, 31.2. Spectroscopic data matches with previously reported data.¹¹

4-(*tert*-**Butyl**)**benzonitrile** (27): obtained as a colorless oil with procedure B (71 mg, 89%); with C (66 mg, 83%) ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (125.8 MHz, CDCl₃) δ 156.6, 131.9, 126.1, 119.0, 109.2, 35.2, 30.8. HRMS (ESI) m/z calc. for C₁₁H₁₄N (M+H) 160.1126, found 160.1123. Spectroscopic data matches with previously reported data.¹¹

4-(*tert*-**Butyl**)**benzaldehyde** (**28**): obtained as a crystalline solid with procedure B (74 mg, 91%) (with <5% protodehalogenation).

¹H NMR (CDCl₃, 500 MHz): δ 9.98 (s, 1H), 7.83 – 7.80 (m, 2H), 7.56 – 7.54 (m, 2H), 1.36 (s, 9H). ¹³C NMR (CDCl₃, 125.8 MHz): δ 192.2, 158.6, 134.2, 129.8, 126.1, 125.6, 35.5, 31.2. HRMS (ESI) m/z calc. for C₁₁H₁₅O (M+H) 163.1123, found 163.1129.

Spectroscopic data matches with previously reported data.¹¹

1-(4-(*tert***-Butyl)phenyl)-2,2,2-trifluoroethan-1-one (29)**: obtained as a colorless oil with procedure B (109 mg, 96%).

¹H NMR (CDCl₃, 500 MHz): δ 8.02 (d, J = 8.0 Hz, 2H), 7.57 – 7.55 (m, 2H), 1.37 (s, 9H).

¹³C NMR (125.8 MHz, CDCl₃) δ 180.2 (q, *J* = 34.7 Hz), 160.0, 130.3 (q, *J* = 2.5 Hz), 127.5, 126.3, 116.9 (q, *J* = 291.4 Hz), 35.58, 31.02.

¹⁹F NMR (CDCl₃, 282.4 MHz): δ -71.3.

HRMS (ESI) m/z calc. for $C_{12}H_{16}O$ (M+) 230.0918, found 230.0904.

Spectroscopic data matches with previously reported data.¹²

4-(*tert*-**Butyl**)-**3**-fluorobenzenesulfonyl fluoride (30): obtained as a colorless oil with procedure B (69 mg, 59%). ¹H NMR (CDCl₃, 500 MHz): δ 7.87 (m, 1H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.33 (dd, *J* = 11.5, 1.5 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (CDCl₃, 125.8 MHz): δ 182.0, 163.8 (d, *J* = 7.5 Hz), 160.7, 130.6, 122.1 (d, *J* = 3.3 Hz), 115.0 (d, *J* = 20.6 Hz), 36.0, 30.9.

¹⁹F NMR (CDCl₃, 470.8 MHz): δ 106.8(1), 106.8(3).

IR (ATR): v = 2970, 1607, 1571, 1420, 1215, 1203, 781, 644, 535 cm⁻¹.

HRMS (EI) m/z calc. for $C_{10}H_{12}F_2O_2S$ (M+) 234.0526, found 234.0534.

4-(*tert*-**Butyl**)**benzenesulfonamide** (**31**): obtained as a colorless oil with procedure B (47 mg, 44%). ¹H NMR (CDCl₃, 500 MHz): δ 7.85 (d, *J* = 7.0 Hz, 2H), 7.51 (d, *J* = 7.0 Hz, 2H), 5.12 (bs, 2H), 1.34 (s, 9H). ¹³C NMR (CDCl₃, 125.8 MHz): δ 156.7, 139.1, 126.4, 126.3, 35.3, 31.2. HRMS (ESI) m/z calc. for C₁₀H₁₅NO₂S (M+) 213.0824, found 213.0837. Spectroscopic data matches with previously reported data.¹³

1-(*tert***-Butyl)-4-(methylsulfonyl)benzene (32)**: obtained as a colorless oil with procedure B (88 mg, 83%),. ¹H NMR (CDCl₃, 500 MHz): δ 7.85 – 7.83 (m, 2H), 7.56 – 7.54 (m, 2H), 3.02 (s, 3H), 1.33 (s, 9H). ¹³C NMR (CDCl₃, 125.8 MHz): δ 157.7, 137.8, 127.3, 126.5, 44.7, 35.4, 31.2. HRMS (ESI) m/z calc. for C₁₁H₁₆O₂S (M+) 212.0871, found 212.0863. Spectroscopic data matches with previously reported data.¹¹

1-(*tert*-**Butyl**)-4-(**trifluoromethyl**)**benzene** (**33**) obtained as a pale yellow oil with procedure B (96 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 1.35 (s, 9H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 155.3, 127.9 (q, *J* = 31.4 Hz), 125.8, 125.1 (q, *J* = 3.8 Hz), 124.5 (q, *J* = 271.8 Hz), 35.1, 31.3 (residual ligand peaks, less than 5% at 27.5, 90.9, 201.6).

¹⁹F NMR (CDCl₃, 282.4 MHz): δ 62.3.

HRMS (ESI) m/z calc. for $C_{11}H_{13}F_3$ (M+) 202.0969, found 202.0958.

Spectroscopic data matches with previously reported data.¹⁴

4-(*tert*-**Butyl**)-**N**-methoxy-N-methylbenzamide (34) obtained as yellow oil with procedure B (43 mg, 39%). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 3.59 (s, 3H), 3.36 (s, 3H), 1.34 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 169.9, 153.9, 131.0, 128.0, 124.9, 60.9 34.8, 33.9, 31.0. HRMS (ESI) m/z calc. for $C_{13}H_{20}NO_2$ (M+H) 222.1494, found 222.1492. Spectroscopic data matches with previously reported data.¹⁴

2-(*tert*-**Butyl**)**benzofuran (35):** obtained as a colorless oil with procedure C (46 mg, 53%). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.4 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 1H), 7.25 – 7.14 (m, 2H), 6.37 (s, 1H), 1.40 (s, 9H).

 13 C NMR (126 MHz, CDCl₃) δ 167.1, 154.5, 128.8, 123.0, 122.2, 120.2, 110.7, 98.8, 32.9, 28.8. Spectroscopic data matches with previously reported data.¹⁵

36

1-(5-(*tert***-Butyl)thiophen-2-yl)ethan-1-one (36):** obtained as a yellow oil with procedure B (60 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 3.9 Hz, 1H), 6.88 (d, *J* = 3.9 Hz, 1H), 2.52 (s, 3H), 1.41 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 190.6, 167.2, 141.2, 132.5, 122.8, 35.1, 32.1, 26.4. HRMS (ESI) m/z calc. for C₁₀H₁₅OS (M+H) 183.0844, found 183.0821. Spectroscopic data matches with previously reported data.¹⁶

4-(4-Acetylphenyl)-4-methylpentan-2-one (**39**): obtained as a colorless oil with procedure B (73 mg, 67%). ¹H NMR (CDCl₃, 500 MHz): δ 7.93 – 7.91 (m, 2H), 7.47 – 7.44 (m, 2H), 2.82 (s, 2H), 2.59 (s, 3H), 1.89 (s, 3H), 1.45 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 206.9, 197.6, 153.9, 134.9, 128.3, 125.7, 56.2, 37.4, 31.6, 28.8, 26.4. IR (ATR): ν = 2964, 1715, 1678, 1605, 1406, 1356, 1269, 1014, 958, 596 cm⁻¹. HRMS (ESI) m/z calc. for C₁₄H₁₈O₂Na (M+Na) 241.1204, found 241.1210.

4-Methyl-4-(4-(trifluoromethyl)phenyl)pentan-2-one (40): obtained as a clear oil, procedure B (89 mg, 73%). ¹H NMR (CDCl₃, 500 MHz): δ 7.57 (d, *J* = 7.5 Hz, 2H), 7.47 (d, *J* = 7.5 Hz, 2H), 2.81 (s, 2H), 1.91 (s, 3H), 1.45 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 206.8, 152.4 128.2, 125.8, 125.1 (q, *J* =3.8 Hz), 124.1 (q, *J* = 275.5 Hz) 56.1, 37.2, 31.6, 28.3.

¹⁹F NMR (CDCl₃, 470.8 MHz): δ -62.4.

IR (ATR): v = 2967, 1718, 1618, 1409, 1325, 1112, 1104, 1068, 1014, 838, 530 cm⁻¹.

HRMS (ESI) m/z calc. for C₁₃H₁₅OF₃ (M+) 244.1075, found 244.1072.

Methyl 4-(2-Methyl-4-oxopentan-2-yl)benzoate (**41**): obtained as a colorless oil with procedure B (93 mg, 82%). ¹H NMR (CDCl₃, 500 MHz): δ 7.98 – 7.95 (m, 2H), 7.43 – 7.40 (m, 2H), 3.88 (s, 3H), 2.78 (s, 2H), 1.84 (s, 3H), 1.42 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 207.3, 167.1, 153.9, 129.7, 128.0, 125.7, 56.6, 52.1, 37.6, 31.8, 29.0.

HRMS (ESI) m/z calc. for $C_{14}H_{19}O_3$ (M+H) 235.1334, found 235.1340.

Spectroscopic data matches with previously reported data.¹¹

4-(4-(1,3,4-Oxadiazol-2-yl)phenyl)-4-methylpentan-2-one (**42**): obtained as a yellow oil with procedure B (73 mg, 60%).

¹H NMR (CDCl₃, 500 MHz): δ 8.45 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 2H), 7.51 (d, *J* = 7.5 Hz, 2H), 2.82 (s, 2H), 1.90 (s, 3H), 1.46 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 207.1, 164.8, 153.0, 152.6, 127.2, 126.5, 121.3, 56.5, 37.6, 31.8, 29.0.

IR (ATR): v = 3250, 2965, 1714, 1616, 1494, 1380, 1097, 954, 713, 640 cm⁻¹.

HRMS (ESI) m/z calc. for C₁₄H₁₇N₂O₂ (M+H) 245.1290, found 245.1282.

43

3-(2-Methyl-4-oxopentan-2-yl)benzaldehyde (**43**): obtained as a colorless oil with procedure C (62 mg, 61%). ¹H NMR (CDCl₃, 500 MHz): δ 10.02 (s, 1H), 7.88 (s, 1H), 7.72 – 7.70 (m, 1H), 7.66 – 7.63 (m, 1H), 7.51 – 7.48 (m, 1H), 2.82 (s, 2H), 1.90 (s, 3H), 1.46 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 207.1, 192.7, 149.8, 136.6, 132.0, 129.1, 128.1, 126.5, 56.4, 37.4, 31.9, 29.1. IR (ATR): v = 2964, 1694, 1603, 1361, 1261, 1177, 1083, 801, 697 cm⁻¹.

HRMS (ESI) m/z calc. for C₁₃H₁₆O₂ (M+) 204.1150, found 204.1149.

4-(2-Methyl-4-oxopentan-2-yl)benzonitrile (**44**): obtained as a colorless oil with procedure C (73 mg, 73%). ¹H NMR (CDCl₃, 500 MHz): δ 7.59 (d, *J* = 7.0 Hz, 2H), 7.45 (d, *J* = 7.0 Hz, 2H), 2.81 (s, 2H), 1.93 (s, 3H), 1.42 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 206.6, 154.2, 132.2, 126.5, 119.1, 109.9, 56.1, 37.6, 31.7, 29.0. HRMS (ESI) m/z calc. for C₁₃H₁₆NO (M+H) 202.1232, found 202.1240.

Spectroscopic data matches with previously reported data. $^{\rm 17}$

4-([1,1'-Biphenyl]-4-yl)-4-methylpentan-2-one (**45**): obtained as a viscous oil with procedure C (54 mg, 43%). ¹H NMR (CDCl₃, 500 MHz): δ 7.61 – 7.53 (m, 4H), 7.45 – 7.40 (m, 4H), 7.35 – 7.31 (m, 1H), 2.79 (s, 2H), 1.86 (s, 3H), 1.47 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 208.1, 147.5, 140.9, 138.9, 128.9, 127.3, 127.1(1), 127.0(8), 126.1, 57.0, 37.3, 32.0, 29.1.

IR (ATR): $v = 2962, 2927, 1715, 1702, 1487, 1356, 1161, 765, 697 \text{ cm}^{-1}$.

HRMS (ESI) m/z calc. for $C_{18}H_{20}O$ (M+) 252.1514, found 252.1521.

4-(3,5-Dimethoxyphenyl)-4-methylpentan-2-one (**46**): obtained as a colorless oil with procedure B (40 mg, 34%). ¹H NMR (CDCl₃, 500 MHz): δ 6.52 (d, *J* = 2.0 Hz, 2H), 6.33 (d, *J* = 2.0 Hz, 1H), 3.81 (s, 6H), 2.71 (s, 2H), 1.86 (s, 3H), 1.40 (s, 6H).

¹³C NMR (CDCl₃, 125.8 MHz): δ 207.9, 160.6, 150.9, 104.4, 97.1, 56.7, 55.1, 37.5, 31.7, 28.8.

IR (ATR): v = 2961, 1838, 1703, 1594, 1423, 1315, 1203, 1154, 1052, 700 cm⁻¹.

HRMS (ESI) m/z calc. for $C_{14}H_{20}O_3Na$ (M+Na) 259.1310, found 259.1313.

3-(4-Acetylphenyl)-3-methylcyclohexan-1-one (48): obtained as a colorless oil with procedure C (97 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 2.89 (d, *J* = 14.2 Hz, 1H), 2.57 (s, 3H), 2.46 (d, *J* = 14.2 Hz, 1H), 2.37 – 2.13 (m, 3H), 2.00 – 1.83 (m, 2H), 1.63 (bs, 1H), 1.33 (s, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 210.9, 197.8, 153.0, 135.4, 128.8, 126.1, 53.0, 43.4, 40.8, 37.9, 29.9, 26.7, 22.1. HRMS (ESI) m/z calc. for C₁₅H₁₉O₂ (M+H) 231.1385, found 231.1372. Spectroscopic data matches with previously reported data.¹⁸

3-Methyl-3-(4-(methylsulfonyl)phenyl)cyclohexan-1-one (49): obtained as a colorless oil with procedure C (87 mg, 65%).

¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 3.05 (s, 3H), 2.89 (d, J = 14.2 Hz, 1H), 2.50 (d, J = 14.2 Hz, 1H), 2.38 – 2.19 (m, 3H), 1.97 (d, J = 12.6 Hz, 2H), 1.68 – 1.62 (m, 1H), 1.35 (s, 3H).

¹³C NMR (125.8 MHz, CDCl₃) δ 210.2, 153.7, 138.4, 127.6, 126.7, 52.6, 44.4, 43.3, 40.6, 37.6, 29.7, 21.9. IR (ATR): ν = 2929, 1705, 1596, 1305, 1146, 1094, 954, 727, 538 cm⁻¹. HRMS (ESI) m/z calc. for C₁₄H₁₈O₃S (M+) 266.0977, found 266.0987.

4-(1-Methyl-3-oxocyclohexyl)benzaldehyde (50): obtained as a colorless oil with procedure C (63 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 2.90 (d, *J* = 14.1 Hz, 1H), 2.49 (d, *J* = 14.1 Hz, 1H), 2.38 – 2.18 (m, 3H), 2.02 – 1.85 (m, 2H), 1.70 – 1.62 (m, 1H), 1.35 (s, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 210.5, 191.7, 154.4, 134.6, 129.9, 126.3, 52.7, 43.4, 40.6, 37.7, 29.6, 21.9. IR (ATR): v = 2936, 1701, 1608, 1226, 825 cm⁻¹. HRMS (ESI) m/z calc. for C₁₄H₁₆O₂ (M+) 216.1150, found 216.1146.

3-(4-Acetylphenyl)-3-methylcyclopentan-1-one (**51**): obtained as a white semi-solid with procedure C (72 mg, 67%).

¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 2.64 (d, *J* = 17.5 Hz, 1H), 2.59 (s, 3H), 2.54 – 2.28 (m, 5H), 1.40 (s, 3H).

¹³C NMR (125.8 MHz, CDCl₃) δ 217.8, 197.8, 154.1, 135.5, 128.9, 125.9, 52.0, 44.2, 36.7, 35.7, 29.3, 26.7.

IR (ATR): $v = 2960, 1739, 1679, 1605, 1406, 1271, 1156, 958, 836, 601 \text{ cm}^{-1}$.

HRMS (ESI) m/z calc. for C₁₄H₁₆O₂ (M+) 216.1150, found 216.1165.

Ethyl 3-(4-Acetylphenyl)-3-methylbutanoate (52) obtained as a colorless oil with procedure C (62 mg, 50 %). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 6.7, 1.8 Hz, 2H), 7.46 (dd, J = 6.7, 1.8 Hz, 2H), 3.97 (q, J = 7.1 Hz, 2H), 2.64 (s, 2H), 2.58 (s, 3H), 1.47 (s, 6H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 198.0, 171.3, 154.0, 135.1, 128.4, 126.0, 60.2, 48.2, 37.6, 29.0, 26.7, 14.2. IR (ATR): v = 2971, 1730, 1682, 1606, 1406, 1366, 1270, 1034, 837 cm⁻¹.

HRMS (EI) m/z calc. for $C_{15}H_{20}O_3$ (M+) 248.1412, found 248.1416.

Ethyl 2-(4-(4-Acetylphenyl)tetrahydro-2H-pyran-4-yl)acetate (53) obtained as a colorless oil with procedure C (60 mg, 41%).

¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 3.89 – 3.76 (m, 4H), 3.66 – 3.48 (m, 2H), 2.65 (s, 2H), 2.59 (s, 3H), 2.34 – 2.22 (m, 2H), 2.12 – 1.98 (m, 2H), 0.98 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 197.9, 170.6, 150.0, 135.5, 128.6, 127.1, 64.2, 60.3, 46.9, 39.0, 36.2, 26.8, 14.1. IR (ATR): v = 2956, 1727, 1682, 1605, 1407, 1358, 1114, 1030, 831 cm⁻¹. HRMS (EI) m/z calc. for C₁₇H₂₂O₄ (M+) 290.1518, found 290.1537.

1-(4-(2-Methyl-1-phenylpropan-2-yl)phenyl)ethan-1-one (54) obtained as a colorless oil using procedure C (68 mg 54%).

¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.15 – 7.10 (m, 3H), 6.84 – 6.72 (m, 2H), 2.89 (s, 2H), 2.60 (s, 3H), 1.35 (s, 6H).

¹³C NMR (125.8 MHz, CDCl₃) δ 197.9, 154.6, 138.1, 134.7, 130.2, 128.0, 127.5, 126.4, 126.0, 50.7, 39.2, 28.0, 26.5.

IR (ATR): v = 3028, 2966, 2926, 1682, 1605, 1357, 1269, 1015, 838, 702 cm⁻¹.

HRMS (EI) m/z calc. for C₁₈H₂₀O (M+) 252.1514, found 252.1529.

Methyl 4-(4-Acetylphenyl)-4-methylpentanoate (55) obtained as a colorless oil with procedure C (76 mg, 61 %). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 3.60 (s, 3H), 2.60 (s, 3H), 2.18 – 1.92 (m, 4H), 1.35 (s, 6H). ³C NMP (126 MHz, CDCl₃) δ 198 0, 174 3, 154 0, 135 1, 128 6, 126 2, 51 7, 38 8, 37 9, 30 0, 28 7, 26 7

¹³C NMR (126 MHz, CDCl₃) δ 198.0, 174.3, 154.0, 135.1, 128.6, 126.2, 51.7, 38.8, 37.9, 30.0, 28.7, 26.7. IR (ATR): v = 2963, 1736, 1682, 1606, 1566, 1435, 1357, 1269, 1118, 958, 601 cm⁻¹. HRMS (EI) m/z calc. for C₁₅H₂₀O₃ (M+) 248.1412, found 248.1413.

5-(4-Acetylphenyl)-5-methylhexan-2-one (56) obtained as a colorless oil with procedure C (40 mg, 34%). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 2.60 (s, 3H), 2.16 (t, *J* = 8.0 Hz, 2H), 2.04 (s, 3H), 1.95 (t, *J* = 8.0 Hz, 2H), 1.34 (s, 6H). ¹³C NMR (125.8 MHz, CDCl₃) δ 208.5, 197.7, 154.0, 134.8, 128.3, 126.0, 39.3, 37.5, 37.2, 29.8, 28.6, 26.4. IR (ATR): v = 2964, 1713, 1682, 1606, 1271, 838, 640, 556 cm⁻¹. HRMS (EI) m/z calc. for C₁₅H₂₀O₂ (M+) 232.1463, found 232.1460.

REFERENCES

- (1) Molander, G. A.; McKee, S. A. Org. Lett. **2011**, *13*, 4684.
- (2) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. *Nature* 2014, 516, 343.
- (3) Verbelen, B.; Cunha Dias Rezende, L.; Boodts, S.; Jacobs, J.; Van Meervelt, L.; Hofkens, J.; Dehaen, W. *Chem. A Eur. J.* **2015**, *21*, 12667.
- (4) Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
- (5) Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
- (6) Woods, J.; Omoregie, H. O. Int. J. Chem. 2011, 3, 24.
- (7) Le, C.; Wismer, M. K.; Shi, Z.-C.; Zhang, R.; Conway, D. V.; Li, G.; Vachal, P.; Davies, I. W.; MacMillan, D. W. C. ACS Cent. Sci. 2017, 3, 647
- (8) Kerr, W. J.; Mudd, R. J.; Brown, J. A. Chem. A Eur. J. 2016, 22, 4738.
- (9) Yakhvarov, D. G.; Tazeev, D. I.; Sinyashin, O. G.; Giambastiani, G.; Bianchini, C.; Segarra, A. M.; Lönnecke, P.; Hey-Hawkins, E. *Polyhedron* **2006**, *25*, 1607.
- (10) Udding, A. C.; Strating, J.; Wynberg, H. *Tetrahedron Lett.* **1968**, *9*, 1345.
- (11) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc. 2015, 137, 11562.
- (12) Rudzinski, D. M.; Kelly, C. B.; Leadbeater, N. E. Chem. Commun. 2012, 48, 9610.
- (13) Roizen, J. L.; Zalatan, D. N.; Du Bois, J. Angew. Chem. Int. Ed. 2013, 52, 11343.
- (14) Lin, X.; Hou, C.; Li, H.; Weng, Z. Chem. A Eur. J. 2016, 22, 2075.
- (15) Ortega, N.; Urban, S.; Beiring, B.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 1710.
- (16) Kim, B. H.; Jeon, I.; Han, T. H.; Park, H. J.; Jun, Y. M. J. Chem. Soc. Perkin Trans. 1 2001, 0, 2035.
- (17) Carlson, G. L. B.; Quina, F. H.; Zarnegar, B. M.; Whitten, D. G. J. Am. Chem. Soc. 1975, 97, 347.
- (18) Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 133, 6902.

¹H NMR (CDCl₃, 500 MHz) of 4-(adamantan-1-yl)benzonitrile (19)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(adamantan-1-yl)benzonitrile (19)

¹H NMR (CDCl₃, 500 MHz) of 1-(4-((3r,5r,7r)-Adamantan-1-yl)phenyl)ethan-1-one (20)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(4-((3r,5r,7r)-Adamantan-1-yl)phenyl)ethan-1-one (**20**)

¹H NMR (CDCl₃, 500 MHz) of 4-((3r,5r,7r)-adamantan-1-yl)-2-methylpyridine (21):

¹³C NMR (CDCl₃, 125.8 MHz) of 4-((3r,5r,7r)-adamantan-1-yl)-2-methylpyridine (21):

¹H NMR (CDCl₃, 500 MHz) of 1-(3-((3r,5r,7r)-Adamantan-1-yl)phenyl)ethan-1-one (**22**)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(3-((3r,5r,7r)-Adamantan-1-yl)phenyl)ethan-1-one (**22**)

¹H NMR (CDCl₃, 500 MHz) of 1-(4-(methylsulfonyl)phenyl)adamantane (23)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(4-(methylsulfonyl)phenyl)adamantane (23)

¹H NMR (DMSO-*d*₆, 500 MHz) of (3r,5r,7r)-1-(4-methoxyphenyl)adamantane (**24**): (with less than 5% anisole)

¹³C NMR (DMSO-*d*₆, 125.8 MHz) of (3r,5r,7r)-1-(4-methoxyphenyl)adamantane (24):

¹H NMR (CDCl₃, 500 MHz) of 1-(4-(1-phenylcyclopropyl)phenyl)ethan-1-one (25)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(4-(1-phenylcyclopropyl)phenyl)ethan-1-one (25)

¹H NMR (CDCl₃, 500 MHz) of 1-(4-(*tert*-Butyl)phenyl)ethan-1-one (26)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(4-(*tert*-Butyl)phenyl)ethan-1-one (26)

¹H NMR (CDCl₃, 500 MHz) of 4-(*tert*-Butyl)benzonitrile (27)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(*tert*-Butyl)benzonitrile (27)

¹H NMR (CDCl₃, 500 MHz) of 4-(*tert*-Butyl)benzaldehyde (28)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(*tert*-Butyl)benzaldehyde (28)

¹H NMR (CDCl₃, 500 MHz) of 1-(4-(tert-butyl)phenyl)-2,2,2-trifluoroethan-1-one (29)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(4-(tert-butyl)phenyl)-2,2,2-trifluoroethan-1-one (29)

¹⁹F NMR (CDCl₃, 282.4 MHz) of 1-(4-(tert-butyl)phenyl)-2,2,2-trifluoroethan-1-one (**29**)

¹H NMR (CDCl₃, 500 MHz) of 4-(tert-butyl)-3-fluorobenzenesulfonyl fluoride (**30**)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(tert-butyl)-3-fluorobenzenesulfonyl fluoride (**30**)

¹⁹F NMR (CDCl₃, 470.8 MHz) of 4-(tert-butyl)-3-fluorobenzenesulfonyl fluoride (**30**)

¹H NMR (CDCl₃, 500 MHz) of 4-(*tert*-Butyl)benzenesulfonamide (**31**)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(*tert*-Butyl)benzenesulfonamide (**31**)

¹H NMR (CDCl₃, 500 MHz) of 1-(*tert*-Butyl)-4-(methylsulfonyl)benzene (**32**)

⊢650 $< \frac{127.34}{126.48}$ -157.75 -44.69 1 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 **⊢**0 --50 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 20 -10 40 30 10 0

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(*tert*-Butyl)-4-(methylsulfonyl)benzene (**32**)

¹H NMR (CDCl₃, 500 MHz) of 1-(tert-butyl)-4-(trifluoromethyl)benzene (**33**) (with <5% ligand)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(tert-butyl)-4-(trifluoromethyl)benzene (**33**) (with <5% ligand)

¹⁹F NMR (CDCl₃, 282.4 MHz) of 1-(tert-butyl)-4-(trifluoromethyl)benzene (**33**) (with <5% ligand)

Z765 Z763 Z741 Z741 ---3.59 -5500 -5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 -0 2:04-I 3.00 -<u>∓</u> 3.07 -<u>∓</u> 9.04-I -500 5.5 5.0 f1 (ppm) 8.5 8.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 l1.0 10.5 10.0 9.5 9.0 7.5 7.0 6.5 6.0

¹H NMR (CDCl₃, 500 MHz) of 4-(tert-butyl)-N-methoxy-N-methylbenzamide (**34**)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(tert-butyl)-N-methoxy-N-methylbenzamide (34)

¹H NMR (CDCl₃, 500 MHz) of 2-(*tert*-Butyl)benzofuran (**35**)

¹³C NMR (CDCl₃, 125.8 MHz) of 2-(*tert*-Butyl)benzofuran (**35**)

¹H NMR (CDCl₃, 500 MHz) of 1-(5-(tert-butyl)thiophen-2-yl)ethan-1-one **(36)**

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(5-(tert-butyl)thiophen-2-yl)ethan-1-one (36)

¹H NMR (CDCl₃, 500 MHz) of 4-(4-Acetylphenyl)-4-methylpentan-2-one **(39)**

¹³C NMR (CDCl₃, 125.8 MHz) of of 4-(4-Acetylphenyl)-4-methylpentan-2-one (39)

¹H NMR (CDCl₃, 500 MHz) of 4-Methyl-4-(4-(trifluoromethyl)phenyl)pentan-2-one (40)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-Methyl-4-(4-(trifluoromethyl)phenyl)pentan-2-one (40)

¹⁹F NMR (CDCl₃, 470.8 MHz) of 4-Methyl-4-(4-(trifluoromethyl)phenyl)pentan-2-one (40)

¹H NMR (CDCl₃, 500 MHz) of Methyl 4-(2-methyl-4-oxopentan-2-yl)benzoate (41)

¹³C NMR (CDCl₃, 125.8 MHz) of Methyl 4-(2-methyl-4-oxopentan-2-yl)benzoate (41)

¹H NMR (CDCl₃, 500 MHz) of 4-(4-(1,3,4-Oxadiazol-2-yl)phenyl)-4-methylpentan-2-one (42)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(4-(1,3,4-Oxadiazol-2-yl)phenyl)-4-methylpentan-2-one (42)

¹H NMR (CDCl₃, 500 MHz) of 3-(2-Methyl-4-oxopentan-2-yl)benzaldehyde (43)

¹³C NMR (CDCl₃, 125.8 MHz) of 3-(2-Methyl-4-oxopentan-2-yl)benzaldehyde (43)

¹H NMR (CDCl₃, 500 MHz) of 4-(2-Methyl-4-oxopentan-2-yl)benzonitrile (44) 2.597.467.46-2.81

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(2-Methyl-4-oxopentan-2-yl)benzonitrile (44)

¹H NMR (CDCl₃, 500 MHz) of 4-([1,1'-Biphenyl]-4-yl)-4-methylpentan-2-one (45)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-([1,1'-Biphenyl]-4-yl)-4-methylpentan-2-one (45)

¹H NMR (CDCl₃, 500 MHz) of 4-(3,5-Dimethoxyphenyl)-4-methylpentan-2-one (46)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(3,5-Dimethoxyphenyl)-4-methylpentan-2-one (46)

¹H NMR (CDCl₃, 500 MHz) of 3-(4-acetylphenyl)-3-methylcyclohexan-1-one (48)

¹³C NMR (CDCl₃, 125.8 MHz) of 3-(4-acetylphenyl)-3-methylcyclohexan-1-one (48)

¹H NMR (CDCl₃, 500 MHz) of 3-methyl-3-(4-(methylsulfonyl)phenyl)cyclohexan-1-one **(49)**

¹³C NMR (CDCl₃, 125.8 MHz) of 3-methyl-3-(4-(methylsulfonyl)phenyl)cyclohexan-1-one (49)

7.85 7.83 7.51 7.49 6 -6000 -5500 -5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 -0 2.16 1.10 I 1-99.1 L.02-7:00 1.01 3.09 1 3.05 H D-95---500 5.5 5.0 f1 (ppm) 8.5 8.0 4.5 4.0 3.5 3.0 2.5 2.0 11.0 10.5 10.0 9.5 9.0 7.5 7.0 6.5 6.0 1.5 1.0 0.5 0.0 -0.5

¹H NMR (CDCl₃, 500 MHz) of 4-(1-Methyl-3-oxocyclohexyl)benzaldehyde (50)

¹³C NMR (CDCl₃, 125.8 MHz) of 4-(1-Methyl-3-oxocyclohexyl)benzaldehyde (50)

¹H NMR (CDCl₃, 500 MHz) of 3-(4-Acetylphenyl)-3-methylcyclopentan-1-one (51)

¹³C NMR (CDCl₃, 125.8 MHz) of 3-(4-Acetylphenyl)-3-methylcyclopentan-1-one (51)

¹H NMR (CDCl₃, 500 MHz) of ethyl 3-(4-acetylphenyl)-3-methylbutanoate **(52)**

¹³C NMR (CDCl₃, 125.8 MHz) of Ethyl 3-(4-acetylphenyl)-3-methylbutanoate (52)

¹H NMR (CDCl₃, 500 MHz) of ethyl 2-(4-(4-acetylphenyl)tetrahydro-2H-pyran-4-yl)acetate (53)

¹³C NMR (CDCl₃, 125.8 MHz) of ethyl 2-(4-(4-acetylphenyl)tetrahydro-2H-pyran-4-yl)acetate (53)

¹H NMR (CDCl₃, 500 MHz) of 1-(4-(2-methyl-1-phenylpropan-2-yl)phenyl)ethan-1-one (54)

¹³C NMR (CDCl₃, 125.8 MHz) of 1-(4-(2-methyl-1-phenylpropan-2-yl)phenyl)ethan-1-one (54)

¹H NMR (CDCl₃, 500 MHz) of methyl 4-(4-acetylphenyl)-4-methylpentanoate (55)

¹³C NMR (CDCl₃, 125.8 MHz) of methyl 4-(4-acetylphenyl)-4-methylpentanoate (55)

¹H NMR (CDCl₃, 500 MHz) of 5-(4-Acetylphenyl)-5-methylhexan-2-one (**56**)

¹³C NMR (CDCl₃, 125.8 MHz) of 5-(4-Acetylphenyl)-5-methylhexan-2-one (56)

¹H NMR (acetone-*d*₆, 500 MHz) of potassium (4-(2-ethoxy-2-oxoethyl)tetrahydro-2H-pyran-4-yl)trifluoroborates (**S1**)

¹³C NMR (acetone-*d*₆, 125.8 MHz) of potassium (4-(2-ethoxy-2-oxoethyl)tetrahydro-2H-pyran-4-yl)trifluoroborates (**S1**)

¹⁹F NMR (acetone-*d*₆, 470.8 MHz) of potassium (4-(2-ethoxy-2-oxoethyl)tetrahydro-2H-pyran-4-yl)trifluoroborates (**S1**)

¹¹B NMR (acetone-*d*₆, 128.4 MHz) of potassium (4-(2-ethoxy-2-oxoethyl)tetrahydro-2H-pyran-4-yl)trifluoroborates (**S1**)

¹H NMR (acetone-*d*₆, 500 MHz) of potassium trifluoro(5-methoxy-2-methyl-5-oxopentan-2-yl)borate **(S2)**

¹³C NMR (acetone-*d*₆, 125.8 MHz) of potassium trifluoro(5-methoxy-2-methyl-5-oxopentan-2-yl)borate (S2)

¹⁹F NMR (acetone-*d₆*, 470.8 MHz) of potassium trifluoro(5-methoxy-2-methyl-5-oxopentan-2-yl)borate (S2)

¹¹B NMR (acetone-*d*₆, 128.4 MHz) of potassium trifluoro(5-methoxy-2-methyl-5-oxopentan-2-yl)borate **(S2)**

¹H NMR (acetone-*d*₆, 500 MHz) of potassium trifluoro(2-methyl-5-oxohexan-2-yl)borate (S3)

¹³C NMR (acetone-*d*₆, 125.8 MHz) of potassium trifluoro(2-methyl-5-oxohexan-2-yl)borate (S3)

¹⁹F NMR (acetone-*d*₆, 470.8 MHz) of potassium trifluoro(2-methyl-5-oxohexan-2-yl)borate (S3) with residual BF₄

¹¹B NMR (d₆-acetone, 128.4 MHz) of potassium trifluoro(2-methyl-5-oxohexan-2-yl)borate (S3) with residual BF₄

¹H NMR (CD₃CN, 500 MHz) of potassium trifluoro(2-methyl-5-morpholino-5-oxopentan-2-yl)borate (S4)

¹³C NMR (CD₃CN, 125.8 MHz) of potassium trifluoro(2-methyl-5-morpholino-5-oxopentan-2-yl)borate (S4)

¹⁹F NMR (CD₃CN, 470.8 MHz) of potassium trifluoro(2-methyl-5-morpholino-5-oxopentan-2-yl)borate (**S4**)

¹¹B NMR (CD₃CN, 128.4 MHz) of potassium trifluoro(2-methyl-5-morpholino-5-oxopentan-2-yl)borate (S4)