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This supplementary text contains additional information on the data analysis.
Section 1 contains information on processing the metabolite data for statistical
analyzes. Section 2 then contains extensive information on the analyzes surrounding
the differential expression, classification, and regulatory signatures. This section
also contains all obtained results. Please note that, as this supplementary text is
self-contained, there is some redundancy in presentation.

1. Data and Data Processing

1.1. Data. Plasma samples of 150 subjects with Alzheimer’s disease (AD) and
150 subjects with subjective cognitive decline (SCD) were available. Subjects with
SCD were used as cognitively normal controls in this study. Of these 300 subjects
263 (136 AD and 127 SCD) had their diagnosis confirmed by cerebral spinal fluid
(CSF) markers (t-tau/Aβ42 > 0.52 for AD diagnosis). The 263 subjects with
CSF-confirmed diagnosis were used for further study. Metabolite concentrations
in four metabolite classes were determined using four different mass spectrometry
platforms: amines (53), organic acids (22), lipids (120) and oxidative stress (40)
compounds (see Supplementary Text 1 ).

1.2. Data Processing. Metabolites with more than 10% missing observations
were removed, leading to the removal of 5 metabolites (the oxidative stress com-
pound iPF2a-Unknown, and the lipids CE(18:1), TG(57:2), TG(58:3), and PE(O-
38:7)). Three data samples (i.e., vectors of observed metabolite abundancies stem-
ming from corresponding plasma samples) were removed as their (plasma) quality
was deemed unsure. These samples had many (30 or more) concentrations below
the limit of detection (LOD) that could not be attributed to instrumental errors.
Twelve additional data samples were removed due to instrumental errors in one
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Table S2.1. List of clinical variables.

Variable Measurement

Anthropometric:
Age years at diagnosis

Sex male or female

APOE ε4 allele status at least one ε4 allele: yes, no

Mean arterial pressure approximated by DBP + 1
3

(SBP − DBP)

Body mass index weightkg/height2m

Intoxications:

Smoking status: current, former, never
Alcohol current consumption of: yes, no

Comorbidities:
Hypertension present: yes, no

Diabetes Mellitus present: yes, no

Hypercholesterolemia present: yes, no

Medication:
Cholesterol lowering medications usage: yes, no

Antidepressant medications usage: yes, no

Antiplatelet medications usage: yes, no

or more platforms. Hence, we only retain data samples that were free of instru-
mental errors across all four different mass spectrometry platforms. The remaining
missing values are attributable to concentrations failing the LOD. These (feature-
specific) missing values were imputed by half of the lowest observed value (for the
corresponding feature). The final metabolic data set thus contained n = 248 data
samples (127 AD and 121 SCD) and p = 230 metabolic features.

In addition to metabolomics data, phenotypic data (clinical and demographic
characteristics such as height, weight, and APOE ε4 allele status) were evaluated
for their possible confounding effects in the expression and classification signatures
demarcating the AD and SCD groups. The missing observations on these vari-
ables (14 at most, for the height variable) were imputed. Continuous variables
were imputed on the basis of Bayesian linear regression, polytomous variables were
imputed on the basis of polytomous regression, and binary variables were imputed
on the basis of logistic regression [S2.1]. To relief ‘correctional stress’ on the ex-
pression and classification signatures, certain aggregational clinical measures were
calculated. The Body Mass Index (BMI) was calculated as weightkg/height2m. In
addition, the Mean Arterial Pressure (MAP) was approximated from the systolic
blood pressure (SBP) and diastolic blood pressure (DBP) by DBP+ 1

3 (SBP−DBP).
See Table S2.1 for a full list of considered confounders.

2. Signatures

2.1. Differential Expression Signature.

2.1.1. Approach. Differential metabolic expression between AD and SCD subjects
was assessed by using nested linear models. We tested, for each individual metabo-
lite, if its addition to a model containing the clinical characteristics (see Table S2.1)
significantly contributed to model fit. One then assesses if, conditional on the ef-
fects of the clinical characteristics, metabolic expression does indeed differ between
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the AD and SCD groups. Let BGk represent the kth background or clinical variable
and let IAD denote an indicator variable for AD group-membership. We are then
interested in testing the following (abusing notation somewhat) nested models

metabolitej = β0 +

m∑
k=1

βkBGk + ε(S2.1)

metabolitej = β0 +

m∑
k=1

βkBGk + β(m+1)IAD + ε,(S2.2)

where the reduced model in (S2.1) is clearly nested in the full model (S2.2). This
entails a test for nested models which, in this case, is equivalent to testing H0 :
β(m+1) = 0 versus Ha : β(m+1) 6= 0. The associated test statistic F (see any
standard statistics textbook) is distributed as F1,n−(m+2) under the null hypothesis.
The p-value for the observed test statistic can be obtained in reference to this
distribution.

We have a multiple testing problem as we need to perform this test for each
individual metabolite. Our approach to multiple testing is by controlling the False
Discovery Rate (FDR), i.e., we aim to control “the expected proportion of falsely
rejected hypotheses” [S2.2]. We control the FDR at .05.

2.1.2. Results. The metabolic features that survive multiple testing correction are
listed in Table S2.2. The differential distributions for these features are depicted
in Figures S2.1, S2.2, and S2.3. We see that all implicated features (except for
SM(d18:1/20:1)) are underexpressed in the AD group relative to the control group.
Table S2.3 contains, for purposes of comparison, the list of metabolic features that
survive multiple testing correction when testing nested models in which only sex and
age are used as possible confounders. We see that under less stringent corrections
the list of potentially differentially expressed metabolites is longer. Substantive
corrections harness against overoptimistic expression signatures.

2.2. Classification Signature.

2.2.1. Approach. Metabolic classification signatures for the prediction of group
membership (AD or SCD) were constructed by way of penalized logistic regres-
sion with a Lasso-penalty [S2.3]. Two penalized settings were considered: (i) the
Lasso selects among the metabolites while the clinical characteristics go unpenal-
ized; and (ii) the Lasso selects among the metabolites without considering the
clinical characteristics. The resulting models were compared to an unpenalized lo-
gistic regression model that (iii) considered only the clinical characteristics. Model
estimation collides with minimizing the negative log-likelihood of the logistic model
under an `1-penalty. The general problem can then be stated as:

(S2.3) arg min
β0,βu,βp

{
− 1

n
L (β0,β

u,βp; y,Xu,Xp) + λ1‖βp‖1
}
,

with L(·) denoting the log-likelihood of the logistic model, y the binary n-
dimensional response vector, Xu denoting the (n × m)-dimensional matrix of
clinical-predictors, Xp denoting the (n × p)-dimensional matrix of metabolite-
predictors, βu an m-dimensional vector of unpenalized regression coefficients, βp

a p-dimensional vector of penalized regression coefficients, and with β0 denoting
an intercept. Lastly, λ1‖ · ‖1 indicates the `1-norm with penalty parameter λ1,
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Table S2.2. Differentially expressed metabolites.

Metabolite Compound class p-value Adjusted p-value

2-Aminoadipic acid Amines .0003110134 .03071051
TG(51:3) Lipids: Triglycerides .0005518318 .03071051

3-Hydroxyisovaleric acid Organic acids .0005645572 .03071051

Tyrosine Amines .0006614924 .03071051
TG(54:6) Lipids: Triglycerides .0009136006 .03071051

TG(50:4) Lipids: Triglycerides .0010320542 .03071051

S-3-Hydroxyisobutyric acid Organic acids .0011085893 .03071051
TG(56:8) Lipids: Triglycerides .0012115039 .03071051

Methyldopa Amines .0012272994 .03071051
8-iso-PGF2a (15-F2t-IsoP) Oxidative stress: Isoprostane .0013352397 .03071051

TG(48:3) Lipids: Triglycerides .0017977057 .03703538

O-Acetylserine Amines .0020920976 .03703538
TG(48:2) Lipids: Triglycerides .0025274816 .03703538

Methylmalonic acid Organic acids .0026395625 .03703538

TG(46:2) Lipids: Triglycerides .0027475334 .03703538
Valine Amines .0027973120 .03703538

TG(50:3) Lipids: Triglycerides .0031949553 .03703538

TG(52:4) Lipids: Triglycerides .0034264336 .03703538
TG(52:5) Lipids: Triglycerides .0034406945 .03703538

TG(56:7) Lipids: Triglycerides .0034900406 .03703538

TG(48:0) Lipids: Triglycerides .0035736266 .03703538
Ornithine Amines .0036249029 .03703538

SM(d18:1/23:0) Lipids: Sphingomyelins .0037035385 .03703538
SM(d18:1/20:1) Lipids: Sphingomyelins .0048428315 .04491679

TG(48:1) Lipids: Triglycerides .0049569537 .04491679

TG(58:10) Lipids: Triglycerides .0050775504 .04491679

generally referred to as the Lasso-penalty. The Lasso-penalty enables estimation in
our setting where the feature to observation ratio (230/248) is too high for stan-
dard logistic regression. It also achieves automatic model (i.e., feature) selection.
The problem in S2.3 is generally stated, in the sense that it captures all situa-
tions of interest. In situation (iii) only the clinical predictors Xu are considered,
such that the unpenalized parameters β0 and βu are estimated. In situation (ii)
only the metabolite-predictors Xp are considered, such that, next to β0, the penal-
ized parameters in βp are estimated. Situation (i) combines the former situations
and, hence, considers the the general problem, estimating both unpenalized and
penalized parameters. The optimal penalty parameter in the penalized models was
determined on the basis of leave-one-out cross-validation (LOOCV) of the model
likelihood. Predictive performance of all models was assessed by way of (the com-
parison of) Receiver Operating Characteristic (ROC) curves and Area Under the
ROC Curves (AUCs). ROC curves and AUCs for all models were produced by
10-fold cross-validation.

Note that the metabolic features were scaled in the classification exercises. The
(regularized) regression makes use of (in some sense) the covariance matrix of the
features. However, the variability of the features may differ substantially. In such
a situation the features with (relatively) extreme variability may drive the results.
Hence, it is appropriate to perform regularization on the standardized scale.

2.2.2. Results. Model performances can be found in Figure S2.4. The prediction
model carrying the clinical variables only resulted in an AUC of .736. The model
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Figure S2.1. Violin plots of (a selection of) the metabolites that survive
multiple testing correction. Violin plots [S2.4] combine the familiar box plot

with a kernel density to better represent the distribution of the data. We see
relative underexpression in the AD group for all depicted metabolites. The
associated adjusted p-values can be found in Table S2.2. The remaining violin

plots can be found in Figures S2.2 and S2.3.

that used the Lasso for selection amongst the metabolites sorts a comparable clas-
sification performance, yielding an AUC of approximately .7. The model that
adds a (Lasso-based) selection of metabolites to the clinical variables then im-
proves predictive performance along the full false positive rate range, sorting a
AUC of .79. Table S2.4 contains the metabolites selected in the selection-amongst-
metabolites-only situation. Table S2.5 then contains the metabolites selected in
the selection-amongst-metabolites-whilst-clinical-variables-present situation. The
highlighted features in these tables are also present in the differential expression
signature (see Section 2.1). We see that the signs of their effects concur with the
pattern of AD-associated under- and overexpression present in the differential ex-
pression signature.
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Figure S2.2. Violin plots of (a selection of) the metabolites that survive
multiple testing correction. Violin plots [S2.4] combine the familiar box plot

with a kernel density to better represent the distribution of the data. We see

relative underexpression in the AD group for all depicted metabolites. The
associated adjusted p-values can be found in Table S2.2. The remaining violin

plots can be found in Figures S2.1 and S2.3.

Note that the Lasso selects features from all metabolite classes. To assess if the
metabolite-class has predictive power a group-regularized logistic ridge regression
[S2.5] was used in which the metabolite-class serves as co-data. This analysis indi-
cated that the metabolite-class forms weakly informative co-data. This strengthens
faith in the Lasso results. The strongest predictor amongst the clinical variables is
(naturally) APOE ε4 allele status.

2.3. Regulatory Signature.

2.3.1. Graphical Modeling. A differential expression signature represents the fea-
tures that are relatively under- or overexpressed in diagnostic groups of interest.
This signature does not have to concur with the classification signature completely,
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Figure S2.3. Violin plots of (a selection of) the metabolites that survive
multiple testing correction. Violin plots [S2.4] combine the familiar box plot

with a kernel density to better represent the distribution of the data. We see

relative underexpression in the AD group for all depicted metabolites except
SM(d18:1/20:1). The associated adjusted p-values can be found in Table S2.2.

The remaining violin plots can be found in Figures S2.1 and S2.2.

as the latter (i) chooses amongst multicollinear features and (ii) emphasizes predic-
tion rather than shifts in location. The classification signature, in turn, is limited
in its capacity to represent complex dependencies amongst the metabolites (of in-
terest). Hence, we seek to explore a third signature: The regulatory signature.
This signature intends to uncover deregulation in metabolic biochemical pathways
as pertaining to the AD disease process. A metabolic pathway can be thought of
as a collection of metabolic features originating from all over the metabolome, that
work interdependently to regulate some biochemical (disease) process. Hence, a
pathway is a network. And a network can be represented by a graph. We thus take
interest in graphical modeling.
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Table S2.3. Differentially expressed metabolites when correcting
for sex and age only.

Metabolite Compound class p-value Adjusted p-value
2-Aminoadipic acid Amines 1.236871e−07 2.844803e−05
Valine Amines 3.316148e−06 3.494500e−04
Tyrosine Amines 4.558044e−06 3.494500e−04
Methyldopa Amines 7.515081e−06 4.321172e−04
Lysine Amines 2.749770e−05 1.264894e−03
Methylmalonic acid Organic acids 4.222770e−05 1.390688e−03
S-3-Hydroxyisobutyric acid Organic acids 4.232528e−05 1.390688e−03
TG(48:0) Lipids: Triglycerides 7.904916e−05 2.272663e−03
TG(50:4) Lipids: Triglycerides 9.542238e−05 2.438572e−03
TG(48:2) Lipids: Triglycerides 1.144591e−04 2.472172e−03
TG(51:3) Lipids: Triglycerides 1.182343e−04 2.472172e−03
TG(54:6) Lipids: Triglycerides 1.305959e−04 2.503088e−03
TG(50:3) Lipids: Triglycerides 1.629475e−04 2.882490e−03
TG(50:2) Lipids: Triglycerides 1.754559e−04 2.882490e−03
TG(50:1) Lipids: Triglycerides 2.217775e−04 3.400588e−03
TG(48:1) Lipids: Triglycerides 2.421916e−04 3.481504e−03
TG(52:4) Lipids: Triglycerides 3.157891e−04 4.141486e−03
TG(48:3) Lipids: Triglycerides 3.241163e−04 4.141486e−03
Leucine Amines 4.124135e−04 4.871236e−03
LPC(18:1) Lipids: Lysophosphatidylcholine 4.235858e−04 4.871236e−03
TG(46:2) Lipids: Triglycerides 5.465651e−04 5.986189e−03
TG(50:0) Lipids: Triglycerides 6.518719e−04 6.815024e−03
TG(52:5) Lipids: Triglycerides 7.216611e−04 7.216611e−03
TG(52:3) Lipids: Triglycerides 1.149358e−03 1.101469e−02
TG(51:2) Lipids: Triglycerides 1.393980e−03 1.252523e−02
TG(56:8) Lipids: Triglycerides 1.451992e−03 1.252523e−02
Isoleucine Amines 1.470353e−03 1.252523e−02
2-hydroxybutyric acid Organic acids 1.704211e−03 1.399888e−02
3-Hydroxyisovaleric acid Organic acids 1.845997e−03 1.464067e−02
TG(51:1) Lipids: Triglycerides 1.996360e−03 1.530543e−02
SM(d18:1/20:1) Lipids: Sphingomyelins 2.242748e−03 1.663974e−02
TG(52:1) Lipids: Triglycerides 2.377869e−03 1.709093e−02
8-iso-PGF2a (15-F2t-IsoP) Oxidative stress: Isoprostane 2.670123e−03 1.860995e−02
Proline Amines 3.197010e−03 2.162683e−02
TG(54:5) Lipids: Triglycerides 3.389655e−03 2.227487e−02
TG(56:7) Lipids: Triglycerides 3.846194e−03 2.401863e−02
PGD2 Lipids: Prostaglandins 3.863867e−03 2.401863e−02
TG(46:1) Lipids: Triglycerides 4.273714e−03 2.586722e−02
PC(O-44:5) Lipids: Plasmalogen Phosphatidylcholine 4.595494e−03 2.683819e−02
LPA C14:0 Lyso-phosphatidic acid 4.667512e−03 2.683819e−02
PC(O-34:1) Lipids: Plasmalogen Phosphatidylcholine 5.876174e−03 3.296390e−02
LPC(20:4) Lipids: Lysophosphatidylcholine 7.163584e−03 3.922915e−02
SM(d18:1/24:2) Lipids: Sphingomyelins 7.371942e−03 3.943132e−02
8,12-iPF2a IV Oxidative stress: Isoprostane 8.208661e−03 4.290891e−02
TG(46:0) Lipids: Triglycerides 8.513935e−03 4.351567e−02
5-iPF2a VI Oxidative stress: Isoprostane 9.211706e−03 4.589083e−02
TG(52:2) Lipids: Triglycerides 9.377692e−03 4.589083e−02
SM(d18:1/16:0) Lipids: Sphingomyelins 9.782507e−03 4.687451e−02
TG(58:10) Lipids: Triglycerides 1.063227e−02 4.861745e−02
Ornithine Amines 1.064486e−02 4.861745e−02
Histidine Amines 1.078039e−02 4.861745e−02

Graphical modeling refers to a class of probabilistic models that use graphs to
express conditional (in)dependence relations between random variables. We con-
sider graphs G = (V, E) consisting of a finite set V of vertices and set of edges E .
The vertices of the graph correspond to a collection of random variables with prob-
ability distribution P, i.e., {Y1, . . . , Yp} ∼ P. Edges in E consist of pairs of distinct
vertices such that Yj − Yj′ ∈ E . The basic assumption is: {Y1, . . . , Yp} ∼ Np(0,Σ),
with Σ positive definite. Hence, we focus on Gaussian graphical modeling.

In this Gaussian case, conditional independence between a pair of variables cor-
responds to zero entries in the precision matrix. Indeed, let Σ̂−1 = Ω̂ denote a
generic estimate of the precision matrix and consider its transformation to a par-
tial correlation matrix P̂. Then the following relations can be shown to hold for all
pairs {Yj , Yj′} ∈ V with j 6= j′ [see, e.g., S2.6]:

(P̂)jj′ = 0⇐⇒ (Ω̂)jj′ = 0⇐⇒ Yj ⊥⊥ Yj′ |V \ {Yj , Yj′} ⇐⇒ Yj 6− Yj′ ,
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where V \ {·} denotes set-minus notation and where 6− indicates the absence of
an edge. In words: A zero partial correlation implies a zero precision matrix en-
try which in turn implies that the corresponding two variables are conditionally
independent (given the remaining variables) which then implies the absence of an
edge between these variables in the corresponding graph. Such a graph can thus
be interpreted as a conditional independence graph.

2.3.2. Approach. Now, model selection efforts in Gaussian graphical models focus
on determining the support of the precision matrix. Problematic is that in situations
with p ≈ n or p > n the sample covariance matrix Σ̂ = S is ill-behaved or singular
such that it’s inverse (S−1, which would constitute an estimate of the precision
matrix) is unstable or does not exist. Moreover, the metabolic features of interest
are highly collinear (within the respective metabolite classes). Hence, we need a
regularized estimate of the precision matrix. In addition, we want to take into
account that our data consist of distinct classes of interest. The first distinction is,
naturally, AD versus SCD.

Figure S2.4. ROC curves for the classification models. The grey line

represents the ROC curve for the unpenalized logistic regression model that
entertains the clinical characteristics only. The red line represents the ROC
curve for the logistic model in which the Lasso performed variable selection

amongst the metabolites (and that does not consider the clinical characteris-
tics). The blue line represents the ROC curve of the logistic model in which

the clinical characteristics are present while the Lasso may select amongst the

metabolites. The clinical variables are listed in Table S2.1. Appears as Figure
2 in the main text.
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Table S2.4. Selected metabolites and parameter estimates when
considering only metabolites as potential predictors.

Metabolite Compound class β̂

LPC(18:1) Lipids: Lysophosphatidylcholine .431701077

PGD2 Oxidative stress: Prostaglandins −.335722610
8,12-iPF2a IV Oxidative stress: Isoprostane −.321506682

O-Acetylserine Amines −.290694860

Methyldopa Amines −.226545678
NO2-aLA (C18:3) Oxidative stress: Nitro-Fatty acid −.214894781

Methylmalonic acid Organic acids −.211631150
TG(51:3) Lipids: Triglycerides −.202508671

Tyrosine Amines −.192600743

Serine Amines .151993825
LPC(20:4) Lipids: Lysophosphatidylcholine .143911633

Arginine Amines .139364338
SM(d18:1/23:0) Lipids: Sphingomyelins −.138378505
Glyceric acid Organic acids −.107386135

Lysine Amines −.101945440

Glycolic acid Organic acids .096537107
cLPA C18:0 Oxidative stress: Cyclic-lyso-phosphatidic acid −.072919587

SM(d18:1/18:0) Lipids: Sphingomyelins .068838390

LPA C22:4 Oxidative stress: Lyso-phosphatidic acid .065264732
LPA C16 Oxidative stress: Lyso-phosphatidic acid −.064109038

3-Methoxytyramine Amines −.063622716
TG(54:6) Lipids: Triglycerides −.062333261

2,3-dinor-8-iso-PGF2a Oxidative stress: Isoprostane −.059017772

PC(O-34:3) Lipids: Plasmalogen Phosphatidylcholine −.048557268
Cis-Aconitic acid Organic acids −.038573969
3-Hydroxyisovaleric acid Organic acids −.034646727

LPA C14:0 Oxidative stress: Lyso-phosphatidic acid −.033059634
2-Aminoadipic acid Amines −.028720481

PC(O-36:6) Lipids: Plasmalogen Phosphatidylcholine −.025814804

PC(O-38:6) Lipids: Plasmalogen Phosphatidylcholine −.021959733
Putrescine Amines −.017413981

TG(48:0) Lipids: Triglycerides −.016328393

Homoserine Amines −.015906351
TG(O-50:0) Lipids: Triglycerides .014668718

Carnosine Amines .012064246
5-iPF2a VI Oxidative stress: Isoprostane −.003633138

Sarcosine Amines −.001072232

So, we are after jointly estimating multiple regularized precision matrices from
(aggregated) high-dimensional data consisting of distinct classes. From a network
perspective, molecular pathway-deregulation in the disease state is likely character-
ized by the loss of normal (wanted) molecular interactions and the gain of abnormal
(unwanted) molecular interactions. One would thus expect the network topologies
of our groups of interest to primarily share the same structure, while potentially
differing in a number of (topological) locations of interest. Our regularized network
extraction method takes this explicitly into account. Specifically, we employ a spe-
cial case of targeted fused ridge estimation [S2.7], solving the following estimation
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Table S2.5. Selected metabolites and parameter estimates when
considering metabolites as potential predictors on top of the clini-
cal variables.

Metabolite Compound class β̂

PGD2 Oxidative stress: Prostaglandins −.47539723

O-Acetylserine Amines −.45299269
Methylmalonic acid Organic acids −.39360564

NO2-aLA (C18:3) Oxidative stress: Nitro-Fatty acid −.32516790

TG(51:3) Lipids: Triglycerides −.29844463
SM(d18:1/20:1) Lipids: Sphingomyelins .29404906

3-Hydroxyisovaleric acid Organic acids −.27369915

8,12-iPF2a IV Oxidative stress: Isoprostane −.22711647
PE(38:2) Lipids: Phosphatidylethanolamine −.16302211

Gamma-glutamylalanine Amines .15344618

LPC(18:1) Lipids: Lysophosphatidylcholine .15057771
Methyldopa Amines −.14912088

SM(d18:1/23:0) Lipids: Sphingomyelins −.14714005

Putrescine Amines −.14137904
LPC(20:4) Lipids: Lysophosphatidylcholine .12467937
8-iso-PGF2a (15-F2t-IsoP) Oxidative stress: Isoprostane −.12101061
LPA C18:3 Oxidative stress: Lyso-phosphatidic acid −.10140491

LPA C14:0 Oxidative stress: Lyso-phosphatidic acid −.09396454

Uracil Organic acids .09348099
Citrulline Amines −.08529403

Histamine Amines .07351094

Glyceric acid Organic acids −.06673703
TG(56:8) Lipids: Triglycerides −.06152908
TG(58:10) Lipids: Triglycerides −.05699948

2,3-dinor-8-iso-PGF2a Oxidative stress: Isoprostane −.04718506
NO2-OA (C18:1) Oxidative stress: Nitro-Fatty acid −.04178329

Glycolic acid Organic acids .04016606
Carnosine Amines .03960024

Serine Amines .03620446

SM(d18:1/18:0) Lipids: Sphingomyelins .01812763
S-3-Hydroxyisobutyric acid Organic acids −.01042997

problem:

(S2.4) arg max
{Ωg}∈Sp

++

{
L ({Ωg}; {Sg})−

λ

2

∑
g

∥∥Ωg−T
∥∥2
F
− λf

4

∑
g1,g2

∥∥Ωg1−Ωg2

∥∥2
F

}
,

where the Sg indicate group-specific sample covariance matrices, λ denotes a strictly
positive ridge penalty, λf denotes a positive fusion penalty, and T denotes a target
matrix. The penalty parameter λ controls the rate of shrinkage of each precision
Ωg towards the corresponding target T, while λf determines the retainment of
entry-wise similarities between Ωg1 and Ωg2 for all class pairs g1 6= g2. For given
penalties the problem can be solved with an block coordinate ascent procedure
[S2.7], resulting in an estimated precision matrix for each class g. In this case
g = 1, 2.

We solve (S2.4) using the class-specific sample covariance matrices (i.e., the sam-
ple covariance matrices of the class-specific data) as the data entries. For the target
T we choose the (weakly informative) p-dimensional identity matrix Ip. The op-
timal penalty parameters were determined by the LOOCV procedure described in
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[S2.7]. The optimal penalty values were found to be λ∗ = 2.742348, and λ∗f =
9.867606e-22. These penalty values emphasize individual regularization over re-
tainment of entry-wise similarities, indicating strong differences in class-specific
precision matrices. The support of the estimated class precision matrices was de-
termined by thresholding. For each class-specific matrix, the 100 strongest edges
(in terms of absolute partial correlations) were retained. As metabolic networks
are very dense, retaining the 100 strongest edges is assumed to give a more clear
picture of the most influential regulatory players. The retained partial correlations
range, in absolute value, from .1670877 to .6412267 over the respective classes. All
analyzes were performed with the rags2ridges package [S2.8] in R [S2.9].

2.3.3. Visualization. The first idea regarding the network structures represented by
our class-specific precision matrices can be obtained by simple visualization. Figure
S2.5 contains the class-specific networks visualized with the Fruchterman-Reingold
(FR) algorithm [S2.10]. These networks contain all metabolic features, even when
they are not connected, resulting in ‘hairball’ networks: Networks that are too
tangled to be effectively visualized. They do, however, convey that the strongest
edges implicate metabolic features from all considered metabolite families.

Figure S2.6 contains the pruned class-specific networks visualized with the FR
algorithm. That is, it retains only the class-specific connected components from
Figure S2.5. The pruned networks more effectively represent the retained topolo-
gies.

To assess the topology more closely, it is beneficial to arrange the metabolic
features in fixed coordinates over the respective groups of interest. Figure S2.7

Figure S2.5. Class-specific networks visualized with the Fruchterman-
Reingold algorithm. The left-hand panel contains the network for the SCD

group. The right-hand panel contains the network for the AD group. The
metabolite compounds are colored according to metabolite family: Blue for

amines, yellow for lipids, orange for organic acids, and purple for oxidative

stress. Solid edges represent positive partial correlations while dashed edges
represent negative partial correlations.
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Figure S2.6. Class-specific pruned networks visualized with the

Fruchterman-Reingold algorithm. The left-hand panel contains the network
for the SCD group. The right-hand panel contains the network for the AD

group. The metabolite compounds are colored according to metabolite family:

Blue for amines, yellow for lipids, orange for organic acids, and purple for ox-
idative stress. Solid edges represent positive partial correlations while dashed

edges represent negative partial correlations.

contains the semi-pruned class-specific networks. They are semi-pruned as in each
class-specific topology all metabolites are depicted that are present in the union of
connected metabolites over all class-specific topologies. This allows us to visualize
the individual topologies with fixed metabolite-coordinates. The FR-based coordi-
nates for the SCD group serve as the reference coordinates for all topologies. We see
that the union of metabolic features is quite tight, suggesting that the core meta-
bolic features for the SCD and AD groups overlap to a large extent. At first glance
the diseased state indeed seem less locally connected. We now turn to numerical
and graph theoretic assessments to support understanding of the topologies.

2.3.4. Global Characteristics. Here, we will assess some global characteristics of
each class-related graph as given in Figure S2.7. Table S2.6 contains some global
metrics for each topology. Please note that formal definitions of all terms relating to
network science as used throughout this supplement can be found in, e.g., [S2.12].
Transitivity is a shape measure, with higher scores indicating stronger local con-
nectivity. Transitivity for the SCD topology is approximately .24, which is higher
than the transitivity score for the AD topology (≈ .15) and also higher than many
other biological networks [S2.12, p. 200 & Section 8.6]. Hence, the SCD topology is
stronger locally connected. Centrality [S2.13] is another shape measure, indicating
the degree in which the topology resembles a maximally centralized graph (i.e., a
star graph). The more centralized a network, the more vulnerable it is, in the sense
that it’s connectedness hinges upon few nodes. The centralization scores indicate
that both the SCD and the AD topology are not very centralized.
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Figure S2.7. Class-specific semi-pruned networks visualized with the Fruchterman-Reingold algorithm. The left-hand panel contains

the network for the SCD group. The right-hand panel contains the network for the AD group. The coordinates of the left-hand topology
serve as the reference coordinates. The metabolite compounds are colored according to metabolite family: Blue for amines, yellow for lipids,
orange for organic acids, and purple for oxidative stress. Solid edges represent positive partial correlations while dashed edges represent
negative partial correlations.
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In addition to shape metrics, there are cohesion metrics. One such cohesion
metric is ‘connectedness’, which, for the topologies of interest, is also given in
Table S2.6. Connectedness refers to the “proportion of pairs of nodes that can
reach each other by a path of any length” [S2.14]. The AD topology has a higher
connectedness score than the SCD topology. This is (in part) due to the fact that the
SCD topology has a large disconnected component (consisting of amine compounds
mostly). Figure S2.7 seems to indicate that the AD topology may be characterized
by an increased connection density within amine compounds and between amine
and oxidative stress compounds. This is reflected in the degree density and the
relative outdegree [S2.15] for the respective topologies. The between-metabolite-
family and within-metabolite-family degree densities (Figure S2.8) suggest that the
AD topology is characterized by increased amine-connections (connections in which
at least 1 amine compound is present). The relative outdegrees (Figure S2.9) imply
that the AD topology is characterized by more connections between amines and
organic acid compounds and more connections between amines and oxidative stress
compounds.

Table S2.6. Global metrics for the two topologies of interest (see
Figure S2.7).

Topology Transitivity Connectedness Centralization
SCD group .2424242 .4864865 .0879304
AD .1458967 .6187387 .0879304

Figure S2.8. Heatmaps of degree densities for the SCD and AD networks.

The reported numbers represent the degree density for the (combinations
of) metabolite groups. Degree density represents the number of connections
(edges) divided by the number of possible connections. For example, in the

network for the SCD group the proportion of actual edges relative to the num-
ber of possible edges between Amines and oxidative stress compounds is .0196.

Note that all heatmaps received the same color key. Hence, the color intensities

(i.e., the color-spectrum representations of the cell-numbers) are comparable
over the respective heatmaps.
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Figure S2.9. Heatmaps of relative outdegrees for the class-specific net-
works. The reported numbers represent the relative outdegree for the (combi-

nations of) metabolite groups. The relative outdegree represents the number

of connections (edges) between two metabolite groups divided by the number
of ‘outgoing’ connections for one of these groups. For example, in the network

for the SCD group the number of edges between lipid and oxidative stress

compounds accounts for approximately 29% of all edges involving lipids and
approximately 49% of all edges involving oxidative stress compounds. Note

that all heatmaps received the same color key. Hence, the color intensities

(i.e., the color-spectrum representations of the cell-numbers) are comparable
over the respective heatmaps. Note that the column numbers should sum to

unity.

2.3.5. Node Characteristics. In addition to global metrics, we assess certain charac-
teristics of individual nodes within the topologies of interest, focusing especially on
the notion of centrality. Centrality, in general, refers to metrics regarding the most
central or (functionally) important nodes in a network. Several centrality measures
are used whose formal definition can be found in, e.g., [S2.12]: degree centrality,
betweenness centrality, closeness centrality, and eigenvalues centrality. Degree cen-
trality simply indicates the number of connections in which a node takes part. It
is indicative of the nodes that are central or influential in terms of the number of
connections: more connections could imply deeper regulatory influence. Between-
ness centrality [S2.16] measures centrality in terms of information flow. Under the
assumption that information is passed over short(est) paths a node becomes cen-
tral when the number of short(est) paths that pass through it is high. Closeness
centrality indicates the mean distance of a node to other nodes. A node is central
under the closeness centrality metric when it’s mean distance to other nodes is
low. Note that closeness as used here reflects the sum of inverse distances [S2.17],
such that nodes that are close to many other nodes receive high closeness scores.
The eigenvalue centrality [S2.12] is an extension of the degree centrality. A node’s
eigencentrality is based on the centrality of the nodes to which it is connected:
connections to central others are weighted more heavily in the final eigencentrality
score than connections to less central others. These various centrality scores thus
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have different flavors and may indicate correspondingly flavored hubs (i.e., highly
central nodes).

Figures S2.10 and S2.11 contain target plots [S2.18] depicting the various central-
ity properties of the metabolite compounds retained in the SCD and AD topologies.
The target plots were created with the help of the sna and igraph packages in R

[S2.19, S2.20, S2.21]. Tables S2.7 and S2.8 then contain, to accompany these fig-
ures, the top centrality metrics for the SCD and AD topologies, respectively. The
strongest hub in the SCD topology is the oxidative stress compound LPA C18:2.
This compound sorts the highest scores on all centrality measures. The top com-
pounds, in terms of centrality, in the SCD topology all belong to either the oxidative
stress or lipid family. Next to LPA C18:2, the Phosphatidylcholines PC(34:1) and
PC(36:2) are consistently represented as hubs by all centrality measures. LPA C18:2
is also the strongest hub compound in the AD topology. The top compounds, in
terms of centrality, of the AD topology indeed largely overlap with the top com-
pounds of the SCD topology. Although the same compound may be a hub in both
the AD and SCD topologies, it can still be wired very differently, i.e., it’s connec-
tions may differ greatly between the two topologies (see Section 2.3.6). In addition,
for the AD topology the amines Glycylglycine and Tyrosine are quite consistently
indicated as central compounds by the degree, betweenness, and closeness metrics.

Table S2.7. Centrality measures for the SCD topology.

Degree Betweenness Closeness Eigenvalue
LPA C18:2 9 LPA C18:2 483.00 LPA C18:2 .317 LPA C18:2 .415
PC(36:2) 7 TG(52:2) 454.06 TG(52:2) .295 PAF C16:0 .378
PAF C16:0 7 PC(36:3) 300.00 PAF C16:0 .279 LPA C16 .331
TG(50:2) 6 PC(36:2) 291.50 PC(36:2) .276 LPA C16:1 .315
TG(52:2) 6 Proline 220.00 PC(34:1) .274 PC(36:2) .271
PC(34:1) 6 TG(50:1) 202.00 TG(50:2) .274 PC(34:1) .238
LPA C16 6 PC(34:1) 180.85 LPA C16:1 .271 LPA C18:1 .237
LPA C16:1 6 Alanine 180.00 LPA C16 .270 LPC(16:0) .235

Table S2.8. Centrality measures for the AD topology.

Degree Betweenness Closeness Eigenvalue
LPA C18:2 9 LPA C18:2 661.87 LPA C18:2 .395 LPA C18:2 .353
PC(36:2) 8 TG(52:2) 533.69 TG(52:2) .359 PC(36:2) .331
TG(52:2) 7 Glycylglycine 328.92 PC(36:2) .345 LPA C20:4 .293
PC(36:4) 7 Tyrosine 249.87 Glycylglycine .336 PAF C16:0 .286
PAF C16:0 7 TG(50:1) 220.17 PC(36:4) .331 LPA C18:1 .284
Glycylglycine 6 PC(36:4) 194.85 PAF C16:0 .327 PC(36:4) .270
PC(34:1) 6 PC(36:2) 180.92 LPA C18:1 .325 PC(34:1) .248
LPA C16 6 L-Lactic acid 178.38 PC(34:1) .325 LPA C16 .218
LPA C20:4 6 PC(34:1) 173.10 Tyrosine .322 LPA C22:6 .211

2.3.6. Communities. The nodes in a network often cluster in groups: collections of
nodes that are more deeply connected to each other than to nodes outside their
topological environment. There is thus interest in the detection of these groups. We
approach the question of node-grouping from two angles. The first is the perspective
of k-cores. A k-core of a network is the maximal connected subnetwork in which all
nodes have a degree of at least k [S2.12]. In this setting, the k-core decomposition
of a topology is used as an indication of the core-periphery structure of a network.
Figure S2.12 contains the k-core decomposition of the SCD and AD topologies
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Figure S2.10. Target plots [S2.18] visualizing various centralities for the
network representing the SCD group. The upper-left panel represents degree

centralities. The upper-right panel represents betweenness centralities. The
lower-left panel represents closeness centralities. The lower-right panel repre-

sents eigenvalue centralities. Note that, for each target plot, the network is the

same as in the left-hand panel of Figure S2.7. The topology is now however
plotted to represent metabolite features according to various centrality scores.
For example, the oxidative stress compound LPA C18:2 has the highest degree

centrality and, hence, is depicted in the center of the upper-left panel. The
metabolite compounds are again colored according to metabolite family: Blue

for amines, yellow for lipids, orange for organic acids, and purple for oxidative
stress. Solid edges represent positive partial correlations while dashed edges

represent negative partial correlations. The metabolite features attaining the
highest centrality scores are given in Table S2.7.
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Figure S2.11. Target plots [S2.18] visualizing various centralities for the
network representing the AD group. The upper-left panel represents degree

centralities. The upper-right panel represents betweenness centralities. The
lower-left panel represents closeness centralities. The lower-right panel repre-

sents eigenvalue centralities. Note that, for each target plot, the network is the
same as in the right-hand panel of Figure S2.7. The topology is now however
plotted to represent metabolite features according to various centrality scores.

For example, the oxidative stress compound LPA C18:2 has the highest degree

centrality and, hence, is depicted in the center of the upper-left panel. The
metabolite compounds are again colored according to metabolite family: Blue

for amines, yellow for lipids, orange for organic acids, and purple for oxidative
stress. Solid edges represent positive partial correlations while dashed edges
represent negative partial correlations. The metabolite features attaining the

highest centrality scores are given in Table S2.8.
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depicted in the radial layout of a target plot [S2.18]. For both panels the center
represents the 3-core, the first ring of features around the center represents the 2-
core, and the subsequent feature-rings represent the 1-core and 0-core, respectively.
The k-cores of the SCD and AD topologies are similar, although the AD topology
places the amine Glycylglycine in the 2-core instead of the 1-core.

Figure S2.12. Target plots [S2.18] with the k-core decomposition of the
SCD (left-hand panel) and AD (right-hand panel) networks. Note that the

SCD and AD networks are the same as depicted in the panels of Figure S2.7.

The respective topologies are now however plotted to represent k-coreness.
The features in the middle of the radial layouts then represent features in the

graph-core while features that are plotted further from the center represent the

peripheral features. The metabolite compounds are again colored according
to metabolite family: Blue for amines, yellow for lipids, orange for organic

acids, and purple for oxidative stress. Solid edges represent positive partial

correlations while dashed edges represent negative partial correlations.

The second perspective on finding node-groupings is community detection. Com-
munity detection, loosely speaking, refers to the “search for naturally occurring
groups in a network” [S2.12, p. 371]. A betweenness-based method of community
detection is used, commonly known as the Girvan-Newman algorithm [S2.22]. Fig-
ure S2.13 contains the same networks as Figure S2.7, but now they are visualized
to express the community structure. The colored borders demarcate communities
within the respective topologies. Most notably, the SCD topology seems to have 2
loosely connected amine components while the AD topology seems to have a larger
and more densely connected amine component that has ties to oxidative stress
components.
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Figure S2.13. Class-specific semi-pruned networks visualized with the Fruchterman-Reingold algorithm and their community struc-
ture. The left-hand panel contains the network for the SCD group. The right-hand panel contains the network for the AD group. Solid
edges represent positive partial correlations while dashed edges represent negative partial correlations.
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2.3.7. Differential Graphs. Section 2.3.5 indicated that certain metabolites act as
hubs in both the SCD and AD topologies. Section 2.3.6 then indicated that these
hubs belong to different communities in the SCD and AD topologies. Thus, while
the SCD and AD topologies may contain the same hub-compounds, these com-
pounds may be connected very differently, implying differential regulatory func-
tioning in the respective networks. Hence, we take interest in the networks of
shared and differential connections over the SCD and AD topologies. Figure S2.14
depicts in the left-hand panel the connections that are shared between the SCD
and AD networks, and in the right-hand panel the connections that are unique
to either the SCD or the AD network. This figure is accompanied by Table S2.9,
which contains the top degrees for the differential network (right-hand panel of
Figure S2.14). These degrees indicate the compounds that are most differentially
wired between the SCD and AD topologies. We see that the regulatory functioning
(in terms of connections) of the oxidative stress compounds LPA C18:2 and PAF
C16:0 – central to both the SCD and AD topologies – is different across the SCD
and AD topologies. In addition, we see compounds that, although not central in
either the SCD or AD topologies, are central in the differential network, such as the
Phosphatidylcholine PC(38:6). Moreover, we see compounds whose wiring seems to
be unique to either the SCD or AD topologies. For example, the amine Glutamine
seems to be connected in the SCD topology mostly, while the amine Glycylglycine
seems mostly unique to the AD topology, in which it connects with other amines
and oxidative stress compounds. Overall, the most differentially wired metabolites
across the SCD and AD topologies belong predominantly to the Lyso-phosphatidic
acid oxidative stress compounds, the Phosphatidylcholines, and the amine family.

Table S2.9. Most differentially wired metabolic features in the
differential network for the SCD group versus the AD group.

Feature Compound class Degree

LPA C18:2 Oxidative stress: Lyso-phosphatidic acid 10
Glycylglycine Amines 6

PC(36:4) Lipids: Phosphatidylcholine 6

PC(38:6) Lipids: Phosphatidylcholine 6
LPA C16 Oxidative stress: Lyso-phosphatidic acid 6

PAF C16:0 Platelet activating factor 6

Glutamine Amines 5
LPA C18:1 Oxidative stress: Lyso-phosphatidic acid 5

LPA C20:4 Oxidative stress: Lyso-phosphatidic acid 5
Tyrosine Amines 4

LPA C16:1 Oxidative stress: Lyso-phosphatidic acid 4



B
L
O
O
D
-B

A
S
E
D

M
E
T
A
B
O
L
IC

S
IG

N
A
T
U
R
E
S

IN
A
L
Z
H
E
IM

E
R
’S

D
IS

E
A
S
E
:
S
M

T
2

2
3

Figure S2.14. Common and differential networks for the SCD versus AD class. The left-hand panel contains the network consisting of
the edges (solid and colored blue) that are shared between the SCD and AD groups. The right-hand panel contains the network consisting
of the edges that are unique for either the SCD or the AD group. Red edges represent connections that are present in the AD group

only. Green edges represent connections that are present in the SCD group only. Solid edges represent positive partial correlations while
dashed edges represent negative partial correlations. The metabolite compounds are colored according to metabolite family: Blue for
amines, yellow for lipids, orange for organic acids, and purple for oxidative stress. Note that the nodes in these networks have coordinates
concordant with the node-placing of Figure S2.7.
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2.4. Regulatory Signature: Including APOE ε4 allele status.

2.4.1. Approach. In our graphical modeling approach we take into account that our
data consist of distinct classes of interest. In the preceding section we looked at
the first natural distinction: AD versus SCD. The second distinction is having no
APOE ε4 allele versus having at least 1 APOE ε4 allele. The APOE ε4 indicator
proved influential in the classification signature. Moreover, having at least 1 APOE
ε4 allele is strongly associated with the AD disease label: The Fisher exact test on
Table S2.10 sorts a p-value of 1.553e-10, indicating that persons with AD are more
likely to have at least 1 APOE ε4 allele. One may expect that AD with and AD
without the APOE ε4 allele represent two (somewhat) distinct disease processes.
Moreover, one could expect that for a portion of the SCD cases that have at least
1 APOE ε4 allele, certain metabolic changes indicative of looming AD may already
be present. In this situation we thus have four classes or groups of interest (Table
S2.10 gives the number of observations for each group).

Table S2.10. Number of observations in the cross-tabulation of
AD disease status and APOE ε4 allele status.

At least 1 APOE ε4 allele
No Yes

AD 40 87
SCD 87 34

The graphical modeling approach is analogous to the strategy described in Sec-
tion 2.3.2, but now we have g = 1, . . . , 4. We solve (S2.4) using the class-specific
sample covariance matrices (i.e., the sample covariance matrices of the class-specific
data) as the data entries. For the target T we again choose the (weakly informa-
tive) p-dimensional identity matrix Ip. The optimal penalty parameters were again
determined by LOOCV [S2.7]. The optimal penalty values were found to be λ∗ =
10.02109, and λ∗f = 3.970277e-17. These penalty values again emphasize individual
regularization over retainment of entry-wise similarities, indicating strong differ-
ences in class-specific precision matrices. For each class-specific matrix, the 100
strongest edges (in terms of absolute partial correlations) were retained. The re-
tained partial correlations range, in absolute value, from .1376073 to .5791377 over
the respective classes. All analyzes were again performed with the rags2ridges

package [S2.8] in R [S2.9].

2.4.2. Results. Here, we state all results for the the group-specific networks stem-
ming from the cross-tabulation of AD disease status APOE ε4 allele status. For
detail on technical terms, see Section 2.3.

Figure S2.15 contains the class-specific pruned networks visualized with the FR
algorithm [S2.10]. Figures S2.16 and S2.17 then contain the class-specific networks
over the union of retained metabolites in which the FR-based coordinates of the
network of the SCD group with no APOE ε4 allele serve as reference coordinates.
As stated, the FR algorithm prefers coiled structures. From this perspective the
network for the SCD group with no APOE ε4 allele (SCD¬ε4) and the network for
the AD group with at least 1 APOE ε4 allele (ADε4) seem the most structured
ones. Perhaps this is natural for the former group, given that these persons are,
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in some sense, the least at risk for developing AD, and thus should represent the
normal biochemical state. This might also be natural for the latter group, as
this network may represent structured APOE ε4-driven changes in metabolism.
The networks for the SCD group with at least 1 APOE ε4 allele (SCDε4) and
the AD group with no APOE ε4 allele (AD¬ε4) appear more random, i.e., less
modular or locally connected. As stated, one could expect that for a portion of
the SCDε4 group, certain metabolic changes indicative of looming AD may already
be present. Also, the AD¬ε4 group may represent various alternative AD disease
processes. In short, both these latter groups are likely heterogeneous. Table S2.11
then contains some global characteristics of each class-related graph as given in
Figures S2.16 and S2.17. These metrics corroborate to some degree the assessment
made above: The topology for the SCD¬ε4 group is most strongly locally connected,
and the topologies for the SCD¬ε4 group and the ADε4 group are most cohesive
(overall). Figures S2.18 and S2.19 also indicate that the topologies for the SCDε4

group and the AD¬ε4 group are more diffuse. Moreover, they indicate that the
topology for the ADε4 group can be characterized (vis-à-vis the SCD¬ε4 topology)
by increased connection density within the amine compounds and between the
amine and oxidative stress compounds.

Table S2.11. Global metrics for the four topologies of interest.

Topology Transitivity Connectedness Centralization

SCD group with no APOE ε4 allele .2136986 .7134809 .1055901
SCD group with at least 1 APOE ε4 allele .142315 .6201207 .1496894

AD group with no APOE ε4 allele .1758621 .5758551 .1937888

AD group with at least 1 APOE ε4 allele .1480519 .7126761 .1496894

Figures S2.20, S2.21, S2.22, and S2.23 contain target plots depicting the various
centrality properties of the metabolite compounds retained in the SCD¬ε4, SCDε4,
AD¬ε4, and ADε4 topologies, respectively. Tables S2.13, S2.14, S2.15, and S2.16
then contain the top centrality metrics for these topologies. The top compounds, in
terms of centrality, in the SCD¬ε4 topology, all belong to either the oxidative stress
or lipid family. The SCDε4 and AD¬ε4 topologies are indeed, as also indicated in
Table S2.11, more centralized, having more compounds with a high degree. The
centrality picture for these topologies is more diffuse in terms of compound-families
(i.e., all compound families are represented). The top compounds in the ADε4

topology largely overlap with the to compounds of the SCD¬ε4 topology. However,
ADε4 topology the amines Glycylglycine and Tyrosine are consistently indicated as
central compounds by all centrality measures. Interestingly, these amines are also
consistently marked as central in the SCDε4 topology.

Figure S2.24 depicts the k-core decomposition of the topologies of interest. The
inner-core of the SCD¬ε4 topology consists exclusively of lipid and oxidative stress
compounds. The inner-core of the ADε4 topology includes the amines Glycylglycine,
Tyrosine, Isoleucine, Threonine, and Valine. The inner-cores of the SCDε4 and
AD¬ε4 topologies include metabolites from all compound-families and are thus less
compound-family centered. Figure S2.25 contains the SCD¬ε4 and SCDε4 topolo-
gies visualized with their community structure. Figure S2.26 then contains the
AD¬ε4 and ADε4 topologies visualized with their community structure. The col-
ored borders demarcate communities within the respective topologies. The SCD¬ε4
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and ADε4 topologies are indeed the most modular ones. The SCD¬ε4 has clear
organic acid, triglyceride, Phosphatidylcholine, and amine communities. The Lyso-
phosphatidic acids (oxidative stress compounds) largely form a community with
the Phosphatidylcholines. It contains 2 loosely connected amine communities. The
ADε4 topology, on the other hand, seems to have larger and more densely con-
nected amine communities that include organic acid compounds and that have ties
to oxidative stress compounds.

The SCD¬ε4 and ADε4 topologies represent the most structured graphs. More-
over, they represent (relatively) homogenous groups (in terms of AD pathology).
In assessing differential graph structures, we thus focus on these two topologies.
Figure S2.27 then contains in the left-hand panel the network of shared connec-
tions and in the right-hand panel the network of unique connections between the
SCD¬ε4 and ADε4 groups. Table S2.12 then contains a list of metabolites with the
highest degrees in the differential network (right-hand panel of S2.27). These dif-
ferential degrees indicate the metabolites that change their regulatory function (in
terms of differential connections) the most between the SCD¬ε4 and ADε4 groups.
Overall, the most differentially wired metabolites across their topologies belong ex-
clusively to the oxidative stress and amine compound-families. The oxidative stress
compound LPA C18:2 is well-connected in both the SCD¬ε4 and ADε4 topologies,
but is wired very differently between them. From this perspective LPA C18:2 is
implied in the loss of normal and the gain of abnormal connections in the AD state
driven by APOE ε4. The oxidative stress compound PAF C16:0 seems to be well-
connected in the SCD¬ε4 group mostly. Hence, this compound is implied in the
loss of normal regulatory connections in the AD state driven by APOE ε4. The
amine Glycylglycine seems to be well-connected in the ADε4 group mostly. This
compound is thus implied in the gain of abnormal regulatory connections in the AD
state driven by APOE ε4. These connections are amongst amines predominantly.
This latter observation also, to a lesser degree, holds for the amines Tyrosine and
Glutamine.

Table S2.12. Most differentially wired metabolic features in the
differential network for the SCD group with no APOE ε4 allele
versus the AD group with at least 1 APOE ε4 allele.

Feature Compound class Degree
LPA C18:2 Oxidative stress: Lyso-phosphatidic acid 13
Glycylglycine Amines 11
Tyrosine Amines 8
PAF C16:0 Oxidative stress: Platelet activating factor 8
Glutamine Amines 7



BLOOD-BASED METABOLIC SIGNATURES IN ALZHEIMER’S DISEASE: SMT2 27

Figure S2.15. Class-specific pruned networks visualized with the
Fruchterman-Reingold algorithm. The upper-left panel contains the network

for the SCD group with no APOE ε4 allele. The upper-right panel contains

the network for the SCD group with at least 1 APOE ε4 allele. The lower-
left panel represents the network for the AD group with no APOE ε4 allele.
The lower-right panel represents the network for the AD group with at least 1
APOE ε4 allele. The metabolite compounds are colored according to metabo-
lite family: Blue for amines, yellow for lipids, orange for organic acids, and

purple for oxidative stress. Solid edges represent positive partial correlations
while dashed edges represent negative partial correlations. Appears as Figure

3 in the main text.
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Figure S2.16. Class-specific semi-pruned networks visualized with the Fruchterman-Reingold algorithm. The left-hand panel contains
the network for the SCD group with no APOE ε4 allele. The right-hand panel contains the network for the SCD group with at least 1

APOE ε4 allele. The coordinates of the left-hand topology serve as the reference coordinates. The metabolite compounds are colored
according to metabolite family: Blue for amines, yellow for lipids, orange for organic acids, and purple for oxidative stress. Solid edges
represent positive partial correlations while dashed edges represent negative partial correlations.
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Figure S2.17. Class-specific semi-pruned networks visualized with the Fruchterman-Reingold algorithm. The left-hand panel contains
the network for the AD group with no APOE ε4 allele. The right-hand panel contains the network for the AD group with at least 1 APOE
ε4 allele. The coordinates of the left-hand topology in Figure S2.16 serve as the reference coordinates. The metabolite compounds are
colored according to metabolite family: Blue for amines, yellow for lipids, orange for organic acids, and purple for oxidative stress. Solid

edges represent positive partial correlations while dashed edges represent negative partial correlations.
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Figure S2.18. Heatmaps of degree densities for the class-specific net-
works. The reported numbers represent the degree density for the (combi-

nations of) metabolite groups. Degree density represents the number of con-

nections (edges) divided by the number of possible connections. For example,
in the network for the SCD group with no APOE ε4 allele the proportion of

actual edges relative to the number of possible edges between Amines and ox-
idative stress compounds is .0343. Note that all heatmaps received the same

color key. Hence, the color intensities (i.e., the color-spectrum representations

of the cell-numbers) are comparable over the respective heatmaps.
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Figure S2.19. Heatmaps of relative outdegrees for the class-specific net-
works. The reported numbers represent the relative outdegree for the (combi-

nations of) metabolite groups. The relative outdegree represents the number

of connections (edges) between two metabolite groups divided by the number
of ‘outgoing’ connections for one of these groups. For example, in the network

for the SCD group with no APOE ε4 allele the number of edges between lipid
and oxidative stress compounds accounts for approximately 29% of all edges

involving lipids and approximately 38% of all edges involving oxidative stress

compounds. Note that all heatmaps received the same color key. Hence, the
color intensities (i.e., the color-spectrum representations of the cell-numbers)

are comparable over the respective heatmaps. Note that the column numbers

sum to unity.
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Figure S2.20. Target plots visualizing various centralities for the network

representing the SCD group with no APOE ε4 allele. The upper-left panel
represents degree centralities. The upper-right panel represents betweenness
centralities. The lower-left panel represents closeness centralities. The lower-

right panel represents eigenvalue centralities. Note that, for each target plot,

the network is the same as in the left-hand panel of S2.16. The topology
is now however plotted to represent metabolite features according to various

centrality scores. For example, the oxidative stress compounds LPA.C18.2 and
PAF.C16.0 have the highest degree centrality and, hence, are depicted in the
center of the upper-left panel. The metabolite compounds are again colored

according to metabolite family: Blue for amines, yellow for lipids, orange for
organic acids, and purple for oxidative stress. Solid edges represent positive

partial correlations while dashed edges represent negative partial correlations.

The metabolite features attaining the highest centrality scores are given in
Table S2.13.
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Figure S2.21. Target plots visualizing various centralities for the network
representing the SCD group with at least 1 APOE ε4 allele. The upper-left

panel represents degree centralities. The upper-right panel represents between-
ness centralities. The lower-left panel represents closeness centralities. The

lower-right panel represents eigenvalue centralities. Note that, for each target
plot, the network is the same as in the right-hand panel of S2.16. The topology
is now however plotted to represent metabolite features according to various
centrality scores. For example, the Amine Glycylglycine has the highest degree

centrality and, hence, it is depicted in the center of the upper-left panel. The
metabolite compounds are again colored according to metabolite family: Blue

for amines, yellow for lipids, orange for organic acids, and purple for oxidative
stress. Solid edges represent positive partial correlations while dashed edges
represent negative partial correlations. The metabolite features attaining the
highest centrality scores are given in Table S2.14.
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Figure S2.22. Target plots visualizing various centralities for the network
representing the AD group with no APOE ε4 allele. The upper-left panel

represents degree centralities. The upper-right panel represents betweenness

centralities. The lower-left panel represents closeness centralities. The lower-
right panel represents eigenvalue centralities. Note that, for each target plot,

the network is the same as in the left-hand panel of S2.17. The topology
is now however plotted to represent metabolite features according to various
centrality scores. For example, the Amine Glycylglycine has the highest degree

centrality and, hence, it is depicted in the center of the upper-left panel. The

metabolite compounds are again colored according to metabolite family: Blue
for amines, yellow for lipids, orange for organic acids, and purple for oxidative

stress. Solid edges represent positive partial correlations while dashed edges
represent negative partial correlations. The metabolite features attaining the
highest centrality scores are given in Table S2.15.
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Figure S2.23. Target plots visualizing various centralities for the network

representing the AD group at least 1 APOE ε4 allele. The upper-left panel
represents degree centralities. The upper-right panel represents betweenness

centralities. The lower-left panel represents closeness centralities. The lower-

right panel represents eigenvalue centralities. Note that, for each target plot,
the network is the same as in the right-hand panel of S2.17. The topology

is now however plotted to represent metabolite features according to vari-

ous centrality scores. For example, the oxidative stress compound LPA.C18.2
has the highest degree centrality and, hence, it is depicted in the center of

the upper-left panel. The metabolite compounds are again colored according
to metabolite family: Blue for amines, yellow for lipids, orange for organic
acids, and purple for oxidative stress. Solid edges represent positive partial

correlations while dashed edges represent negative partial correlations. The
metabolite features attaining the highest centrality scores are given in Table

S2.16.
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Table S2.13. Centrality measures for the SCD group with no
APOE ε4 allele.

Degree Betweenness Closeness Eigenvalue
LPA C18:2 10 PAF C16:0 585.19 PAF C16:0 0.416 LPA C18:2 .405
PAF C16:0 10 LPA C20:4 507.93 LPA C18:2 0.406 PAF C16:0 .376
TG(50:2) 7 LPA C18:2 409.96 LPA C16 0.379 LPA C16 .330
PC(34:1) 7 PC(34:1) 363.92 PC(34:1) 0.375 LPA C18:1 .270
LPA C16 7 Tyrosine 248.58 LPA C20:4 0.371 LPA C20:4 .254
LPA C20:4 7 LPA C22:6 243.67 TG(52:2) 0.354 PC(34:1) .245
TG(52:2) 6 LPA C16 232.80 LPA C18:1 0.348 PC(36:2) .233

Table S2.14. Centrality measures for the SCD group with at
least 1 APOE ε4 allele.

Degree Betweenness Closeness Eigenvalue
Glycylglycine 13 Glycylglycine 365.75 Glycylglycine .443 Glycylglycine .360
LPA C18:2 12 LPA C18:2 305.64 LPA C18:2 .429 Tyrosine .346
PAF C16:0 12 TG(52:2) 294.73 Tyrosine .427 LPA C18:2 .290
Tyrosine 11 Phenylalanine 292.56 Phenylalanine .419 PAF C16:0 .281
Phenylalanine 9 Tyrosine 267.47 TG(52:2) .411 Phenylalanine .279
L-Lactic acid 9 PAF C16:0 241.17 PAF C16:0 .410 Glutamine .272
TG(52:2) 9 L-Lactic acid 166.26 Glutamine .394 TG(52:2) .255
Glutamine 7 SPH C18:1 140.86 L-Lactic acid .381 L-Lactic acid .209
PC(36:2) 6 TG(50:2) 120.13 PC(36:2) .368 PC(36:2) .204
SPH C18:1 6 Glutamine 111.86 SPH C18:1 .354 SPH C18:1 .184

Table S2.15. Centrality measures for the AD group with no
APOE ε4 allele.

Degree Betweenness Closeness Eigenvalue
Glycylglycine 16 Glycylglycine 418.71 Glycylglycine .455 LPA C18:2 .369
LPA C18:2 14 LPA C18:2 376.70 LPA C18:2 .446 Glycylglycine .356
L-Lactic acid 12 PC(34:2) 319.04 PC(34:2) .436 PC(34:2) .353
PC(34:2) 12 TG(52:2) 250.23 L-Lactic acid .419 L-Lactic acid .331
PAF C16:0 10 L-Lactic acid 216.33 PAF C16:0 .405 PAF C16:0 .288
Tyrosine 6 PC(34:1) 184.65 PC(34:1) .367 SPH C18:1 .196
TG(52:2) 6 PAF C16:0 165.12 SPH C18:1 .360 LPA C16 .189
PC(34:1) 6 TG(50:1) 103.00 LPA C16 .348 PC(34:1) .178
PC(38:6) 6 SM(d18:1/16:0) 102.00 LPA C20:4 .348 LPA C20:4 .167
SPH C18:1 6 LPA C18:1 78.31 PC(38:6) .342 PC(38:6) .161
LPA C16 6 SPH C18:1 77.82 Tyrosine .339 S1P C18:1 .158

Table S2.16. Centrality measures for the AD group with at least
1 APOE ε4 allele.

Degree Betweenness Closeness Eigenvalue
LPA C18:2 13 LPA C18:2 682.98 LPA C18:2 .452 LPA C18:2 .473
Glycylglycine 9 TG(52:2) 537.91 Glycylglycine .399 LPA C20:4 .336
Tyrosine 7 Glycylglycine 388.77 TG(52:2) .398 Glycylglycine .279
TG(52:2) 7 TG(50:1) 232.91 LPA C20:4 .385 PC(36:4) .236
PC(34:1) 7 PC(34:1) 231.83 Tyrosine .363 PC(36:2) .230
LPA C20:4 7 Tyrosine 231.23 PC(34:1) .354 LPA C18:1 .218
PC(36:4) 6 PC(36:4) 217.96 PC(36:4) .354 Tyrosine .211
PAF C16:0 6 PC(34:2) 179.58 Valine .349 Valine .206
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Figure S2.24. Target plots [S2.18] depicting k-core decompositions. The
upper-left panel contains the network for the SCD group with no APOE ε4

allele. The upper-right panel contains the network for the SCD group with at

least 1 APOE ε4 allele. The lower-left panel represents the network for the AD
group with no APOE ε4 allele. The lower-right panel represents the network

for the AD group with at least 1 APOE ε4 allele. Note that the respective
topologies are now plotted to represent coreness. The features in the middle of
the radial layouts then represent features in the graph-core while features that

are plotted further from the center then represent the peripheral features. The

metabolite compounds are again colored according to metabolite family: Blue
for amines, yellow for lipids, orange for organic acids, and purple for oxidative

stress. Solid edges represent positive partial correlations while dashed edges
represent negative partial correlations.
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Figure S2.25. Class-specific semi-pruned networks visualized with their community structure. The left-hand panel contains the
network for the SCD group with no APOE ε4 allele. The right-hand panel contains the network for the SCD group with at least 1 APOE

ε4 allele. Solid edges represent positive partial correlations while dashed edges represent negative partial correlations.
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Figure S2.26. Class-specific semi-pruned networks visualized with their community structure. The left-hand panel contains the
network for the AD group with no APOE ε4 allele. The right-hand panel contains the network for the AD group with at least 1 APOE ε4
allele. Solid edges represent positive partial correlations while dashed edges represent negative partial correlations.
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Figure S2.27. Common and differential networks for the SCD group with no APOE ε4 allele versus the AD group with at least 1
APOE ε4 allele. The left-hand panel contains the network consisting of the edges (solid and colored blue) that are shared between these

groups. The right-hand panel contains the network consisting of the edges that are unique for either of the groups. Red edges represent
connections that are present in the AD group with at least 1 APOE ε4 allele only. Green edges represent connections that are present

in the SCD group with no APOE ε4 allele only. Solid edges represent positive partial correlations while dashed edges represent negative
partial correlations. The metabolite compounds are colored according to metabolite family: Blue for amines, yellow for lipids, orange for
organic acids, and purple for oxidative stress. Note that the nodes in these networks have coordinates concordant with the node-placing of

Figure S2.16. Appears as Figure 4 in the main text.
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