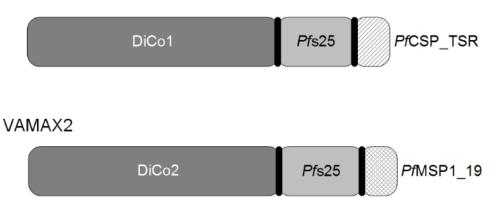
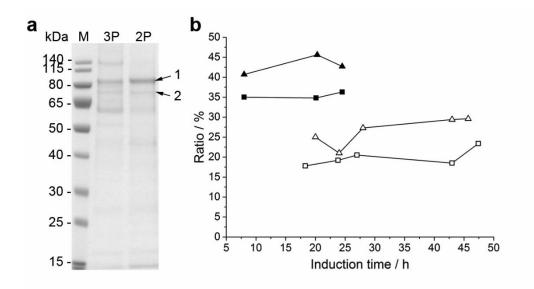
Title: Improvement of a fermentation process for the production of two *Pf*AMA1-DiCo-based malaria vaccine candidates in *Pichia pastoris*

Authors: Robin Kastilan¹, Alexander Boes¹, Holger Spiegel^{1,*}, Nadja Voepel¹, Ivana

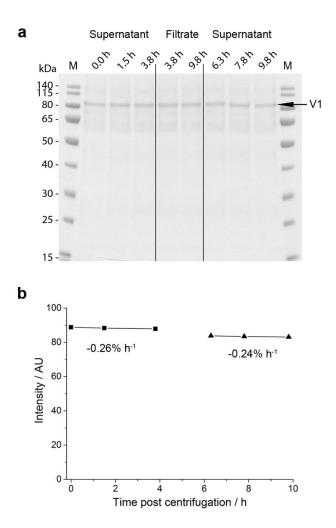

Chudobová¹, Stephan Hellwig¹, Johannes Felix Buyel^{1,2}, Andreas Reimann¹, Rainer Fischer^{2,3}

Supplementary Text S1 - Mass spectrometry

Proteins were reduced, alkylated and digested in the polyacrylamide gel using trypsin (Promega, Mannheim, Germany) as previously described¹. The resulting peptides were analyzed by nanoHPLC using an UltiMate 3000 HPLC system (LC PAcking, Dionex, Idstein, Germany) coupled to an amaZon ETD ion trap mass spectrometer (Bruker Daltonics, Bremen, Germany) with an ESI nanosprayer. The nanoHPLC system and the ion trap mass spectrometer were controlled using Bruker Compass HyStar v3.2 SR2 software. The liquid chromatography system comprised a reversed-phase pre-column (LC PAckings, Dionex) for sample desalting and a 15-cm PepMap 100 reversed-phase C18 column, 75 µm inner diameter (LC PAckings, Dionex), for peptide fractionation. The peptides were separated using a 45min linear gradient from 96% (v/v) solution A (2% (v/v) acetonitrile, 0.1% (v/v) formic acid in high-purity water) and 4% (v/v) solution B (98% (v/v) acetonitrile, 0.1% (v/v) formic acid in high-purity water) to 50% (v/v) solution A and 50% (v/v) solution B at a flow rate of 300 nL min⁻¹. The electrospray was operated in positive ion mode with a spray voltage of -4000 V and 10 psi gas pressure. The end plate offset of the mass spectrometer was set to -500 V and Proteomics AutoMSMS Alternating Spectra CID-ETD Bruker trapControl v7.0 was used for data acquisition. Raw data files were evaluated using Compass DataAnalysis v4.0 SR5 software with embedded search engine Mascot Search v2.3.01 (Matrix Science Ltd, London, UK). The spectra were searched against the NCBInr fungi database and the cRAP database (including VAMAX1 and VAMAX2 sequences) using the following parameters: enzyme = trypsin, up to one missed cleavage permitted, no fixed modifications, variable modifications allowed = carbamidomethyl (C), oxidation (M) and propionamide (C), mass tolerance for precursor ion ± 0.3 Da and fragment ion ± 0.3 Da.


Supplementary Figure S1

VAMAX1


Figure S1 Schematic representation of the VAMAX1 and VAMAX2 fusion antigens. DiCo1 and DiCo2 = diversitycovering variants of *Pf*AMA1 (dark gray); *Pf*s25 = *Plasmodium falciparum* D7 sexual-stage surface antigen *Pf*s25 (light gray); *Pf*CSP_TSR = thrombospondin-related region from *P. falciparum* 3D7 circumsporozoite protein *Pf*CSP (hatched); *Pf*MSP1_19 = C-terminal 19 kDa fragment of the merozoite surface protein 1 from *P. falciparum* strain FUP (cross-hatched).

Supplementary Figure S2

Figure S2 Investigation of potential proteolytic activity in the fermentation broth during the course of induction. (a) Samples of the supernatant during the induction phase of both strategies (three-phase = 3P, two-phase = 2P) were analyzed by LDS-PAGE and Coomassie-staining followed by the assessment of the background-corrected intensity of protein band 1 (VAMAX1) and protein band 2 (degradation product of VAMAX1) using AIDA Image Analyzer software (Raytest). Representative samples shown here from the end of the fermentation runs. M: marker. (b) To detect potential proteolytic activity in the fermentation broth the intensity ratio of band 1 to band 2 was plotted during the induction phase. Filled symbols: three-phase strategy. Open symbols: two-phase strategy. Squares: VAMAX1 fermentations. Triangles: VAMAX2 fermentations.

Supplementary Figure S3

Figure S3 Stability of VAMAX1 (V1) in the supernatant after solid–liquid separation by centrifugation. At the end of the two-phase process, the cells were semi-continuously separated from the fermentation broth by centrifugation with a CARR Powerfuge P6 at 5,500 × *g* and a feed rate of 0.75 kg min⁻¹. The cell density was considerably reduced to an OD₆₀₀ of 2.48 \pm 0.01 (n = 3) in the supernatant. **(a)** The stability testing of VAMAX1 was performed during two consecutive filtration experiments starting directly (0.0 h) and 6.3 h after centrifugation, respectively, at room temperature. Samples of the supernatant were taken at the indicated times post-centrifugation and were analyzed by LDS-PAGE and Coomassie-staining. **(b)** The Coomassie-stained bands of VAMAX1 were evaluated by densitometric analysis using AIDA Image Analyzer software. The background-corrected integral of each band was plotted over time post-centrifugation. During the first filtration experiment, the apparent decrease in band intensity (representing product loss) was –0.26% per hour, calculated using a linear regression function (R² = 0.97). For the second filtration experiment, the decrease in band intensity was –0.24% per hour (R² = 0.97).

Candidate / Protein band	Accession	Protein	Score	Peptides	Sequence coverage
VAMAX1					
Band 1	VAMAX1_Dico1_ pfs25FKO_CSP_TSR	VAMAX1	103.1	4	5.9%
	gi 328352741	Endochitinase [<i>Komagataella phaffii</i> CBS 7435]	137.0	2	8.0%
Band 2	VAMAX1_Dico1_ pfs25FKO_CSP_TSR	VAMAX1	396.1	8	12.9%
VAMAX2					
Band 1	VAMAX2_Dico2_ pfs25FKO_MSP1_19	VAMAX2	313.2	8	12.4%
	gi 328352741	Endochitinase [<i>K. phaffii</i> CBS 7435]	273.0	3	10.0%
	gi 254564921	Cell wall protein with similarity to glucanases [<i>K. phaffii</i> GS115]	237.0	4	15.0%
	gi 254570078	Protein of the SUN family (Sim1p, Uth1p, Nca3p, Sun4p) that may participate in DNA replication [<i>K. phaffii</i> GS115]	193.0	2	9.0%
Band 2	VAMAX2_Dico2_ pfs25FKO_MSP1_19	VAMAX2	539.1	12	21.5%
	gi 254564921	Cell wall protein with similarity to glucanases [<i>K. phaffii</i> GS115]	196.0	3	11.0%
	gi 254570078	Protein of the SUN family (Sim1p, Uth1p, Nca3p, Sun4p) that may participate in DNA replication [<i>K. phaffii</i> GS115]	171.0	2	9.0%

Supplementary Table S1 – Mass spectrometry data

Supplementary Data S1

Sequences of the putative host cell proteins identified by mass spectrometry (Supplementary Table S1) were used as BLAST queries against the UniProtKB database with the following parameters:

- Threshold e-value: 0.001 _
- Matrix: auto -
- Filtering: none
- Gapped: yes 100
- Hits: _

Alignment with an endochitinase from Saccharomyces cerevisiae (UniProtKB entry P29029)

found by using gi|328352741 (endochitinase [Komagataella phaffii CBS 7435]) as a BLAST

query:

29029 C	HIT_YEAST - End	dochitinase Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's	s yeas
-value: 6.8e-133 core: 1067 Jent.: 48.0% ositives : 66.1% uery Length: 68 atch Length: 56	6		
2QUR1 F2QUR1_K	OMPC 18	AFDNSAKNNVALYWGQNSAGSQERLSYYCQSDSVDIVLLSFLYIFPANPLGLDFSNACGD AFD SA N+A+YWGQNSAG+QE L+ YC+S DI LLSFL FP LGL+F+NAC D	7
29029 CHIT_YEAS	ST 20	AFDRSANTNIAVYWGQNSAGTQESLATYCESSDADIFLLSFLNQFPTLGLNFANACSD	7
QUR1 F2QUR1_K	OMPC 78	QFPSGLLKCDTIAEDIQTCQSLGKKVLLSLGGATGTYGFSSDSEAEDFAEVLWDTF-LGG F GLL C IAEDI+TCQSLGKKVLLSLGGA+G+Y FS DS+AE FA+ LWDTF G	13
9029 CHIT_YEAS	ST 78	TFSDGLLHCTQIAEDIETCQSLGKKVLLSLGGASGSYLFSDDSQAETFAQTLWDTFGEGT	13
QUR1 F2QUR1_K	OMPC 137	STDERPFGDSILDGIDYDAENNNPTGYTALSAKLREFYASDPSRTYYIAAAPQCPYPDAS ERPF +++DG D+D ENNN GY+AL+ KLR +A + ++ YY++AAPQCPYPDAS	19
9029 CHIT_YEAS	ST 138	GASERPFDSAVVDGFDFDIENNNEVGYSALATKLRTLFA-EGTKQYYLSAAPQCPYPDAS	19
QUR1 F2QUR1_K	OMPC 197	VGDVLANADVDFVFIQFYNNYCALASTSFNWATWLDYAQNTSPNPNVKLYVGLPGGPTGA VGD+L NAD+DF FIQFYNNYC++ S FNW TWL YAQ SPN N+KL++GLPG + A	25
9029 CHIT_YEAS	ST 197	VGDLLENADIDFAFIQFYNNYCSV-SGQFNWDTWLTYAQTVSPNKNIKLFLGLPGSASAA	25
QUR1 F2QUR1_K		SSGYVG-TDVVKQRIDEIGASSSLGGIMLWDASQGFSNQVDGGNYVDAMKSILNGLGSVD SGY+ T +++ I +I +SSS GGI LWDASQ FSN+++G YV+ +K++L	31
9029 CHIT_YEAS	ST 256	GSGYISDTSLLESTIADIASSSSFGGIALWDASQAFSNELNGEPYVEILKNLL	30
QUR1 F2QUR1_K	OMPC 316	ASTTSSSQAAATSQTTSTLATSISSTPGSSSTVSSSSSLSSSSSSSSSSSTTIWWTPDT TS+S0 A T T +T TS +ST +S++ +S+S ++ S +S+ S + + +P	37
9029 CHIT_YEAS	ST 309	TSASQTATTTVATSKTSAASTSSASTSSASTSQKKTTQSTTSTQSKSKVTLSP	36
QUR1 F2QUR1_K	OMPC 376	PQSSSSSVAAVSSETSSVLTSSVSTTQNSHGEVDSEGTTLTGTSTIWWTPSEAQSYETSS ++SS++ ++T+ LTSS + T++S G +E T + T T +0 +S	43
9029 CHIT_YEAS	ST 362	TASSAIKTSITQTTKTLTSS-TKTKSSLGTTTTESTLNSVAITSMKTTLSSQITS	41
QUR1 F2QUR1_K	OMPC 436	LSSVSSIPTGNKDVSSILVITDVTDSLT-STKESSDSALTISTSLSSSPSLADSSRDGET + V+ T VSS + T +T +L+ +TK SS +L +T+ + SP+ +S G T	49
9029 CHIT_YEAS	ST 416	AALVTPQTTTTSIVSSAPIQTAITSTLSPATKSSSVVSLQTATTSTLSPTTTSTS-SGST	47
	OMPC 495	STVVOVTSST	50
QUR1 F2QUR1_K	OMPC 495	S+ + ST	

Alignment with a putative family 17 glucosidase SCW10 from *S. cerevisiae* (UniProtKB entry Q04951) found by using gi|254564921 (cell wall protein with similarity to glucanases [*K. phaffii* GS115]) as a BLAST query:

204951 SCW10_YE	AST - Prol	bable family 17 glucosidase SCW10 Saccharomyces cerevisiae (strain ATCC	204508 / S288c) (Baker's yeas
-value: 3.5e-124 Score: 961 dent.: 55.5% Positives : 67.8% Query Length: 348 Match Length: 389			
4QVL7 C4QVL7_PICPG	26	HQHDKRGVVVVTKTIVVDGSTVEATAA H+H+KR VV T T+VV G ST+E T +	52
04951 SCW10_YEAST	24	HKHEKRDVVTATVHAQVTVVVSGNSGETIVPVNENAVVATTSSTAVASQATTSTLEPTTS	83
4QVL7 C4QVL7_PICPG	53	AQVQEHAETFAESTPSAVVSSSSAPSSASSASAPASSGSFSAGTKGVTYSP A V Q+ T S ++ V S+SS+PSS+SS S+ ASS + S+ G KG+TYSP	103
04951 SCW10_YEAST	84	ANVVTSQQQTSTLQSSEAASTVGSSTSSSPSSSSSTSSSASSSASSSISASGAKGITYSP	143
4QVL7 C4QVL7_PICPG	104	YQAGGGCKTAEEVASDLSQLTGYEIIRLYGVDCNQVENVFKAKAPGQKLFLGIFFVDAIE Y G CK+ +VASDL QLTG++ IRLYGVDC+QVENV +AK QKLFLGI++VD I+	163
04951 SCW10_YEAST	144	YNDDGSCKSTAQVASDLEQLTGFDNIRLYGVDCSQVENVLQAKTSSQKLFLGIYYVDKIQ	203
4QVL7 C4QVL7_PICPG	164	SGVSAIASAVKSYGSWDDVHTVSVGNELVNNGEATVSQIGQYVSTAKSALRSAGFTGPVL V I SAV+SYGSWDD+ TVSVGNELVN G AT +Q+G+YVSTAKSAL SAG+TG V+	223
04951 SCW10_YEAST	204	$\texttt{DAVDTIKSAVESYGSWDDITTVSVGNELVNGGSATTT} \widetilde{\texttt{Q}} \texttt{VGEYVSTAKSALTSAGYTGSVV}$	263
4QVL7 C4QVL7_PICPG	224	SVDTFIAVINNPGLCDFADEYVAVNAHAFFDGGIAASGAGDWAAEQIQRVSSACGG-KDV SVDTFIAVINNP LC+++D Y+AVNAHA+FD AA AG W E0I+RV +ACGG KDV	282
04951 SCW10_YEAST	264	SVDTFIAVINAL LCHTP TRVNALATE AR AC W EQITEVIACGEKKDV	322
4QVL7 C4QVL7_PICPG	283	LIVESGWPSKGDTNGAAVPSKSNQQAAVQSLGQKIGSSCIAFNAFNDYWKADGPFNAEKY +I E+GWPSKGDT G AVPSK+NQ+AA+ S+ GSS F AFND WK DG + EKY	342
04951 SCW10_YEAST	323	VITETGWPSKGDTYGEAVPSKANQEAAISSIKSSCGSSAYLFTAFNDLWKDDGQYGVEKY	382
4QVL7 C4QVL7 PICPG	343	WGILDS	348
····		WGIL S	

Alignment with a probable secreted β -glucosidase SUN4 from *S. cerevisiae* (UniProtKB entry P53616) found by using gi|254570078 (Protein of the SUN family [K. phaffii GS115]) as a BLAST query:

E-value: 3.3e-	163		
core: 1231	100		
dent.: 56.4%			
ositives : 69.9	9%		
Query Length:			
datch Length:			
futen tengen.	120		
1			
4R2Z5 C4R2Z5	PICPG 1	MKISALTACAVTLAGLA-IAAPAPKPEDCTTTVQKRHQHKRAVAYDYVYVTVTING	55
		MK+SA T A +L G + I + P D CTTT HQHKRAVA YVY TVT++	
53616 SUN4_Y	EAST 1	MKLSATTLTAASLIGYSTIVSALPYAADIDTGCTTTAHGSHQHKRAVAVTYVYETVTVDK	60
4R2Z5 C4R2Z5	_PICPG 56	QGETISPTVVAELETVSTPATSSSAVATSSAPATTSSIPETTSAQVTTSSVAESTSAQ	113
53616 SUN4 Y	EAST 61	G+T++PT TV++ T S S+V SS+ +SS E+T TTSS A++T	118
22010 20N4_1	LASI OI	NGQTVTPTSTEASSTVASTTTLISESSVTKSSSKVASSSESTEQIATTSSSAQTTLTS	118
4R2Z5 C4R2Z5	_PICPG 114	FTSSTEEASSSVEQTTQSSSSSSSSSSSSSSSSSSSSSSSSGSSSGIDGDLSWYSGPGNKFQ	173
53616 SUN4 Y	EAST 119	+ST E+S + S+S S+S +S++ S++G I GDL+ +SGP KF+ SETSTSESSVPISTSGSASTSSAASSATGSIYGDLADFSGPYEKFE	164
booto boni_i	115 IIS		101
4R2Z5 C4R2Z5	_PICPG 174	DGTIKCSEFPSGNGVVALDHLGFGGWSGLYHPSDTSTGGICEPDTYCSYACQSGMSKTQW	233
53616 SUN4 Y	EAST 165	DGTI C +FPSG GV+ + L GGWSG+ + +DTSTGG C+ +YCSYACQ GMSKTQW DGTIPCGQFPSGQGVIPISWLDEGGWSGVEN-TDTSTGGSCKEGSYCSYACQPGMSKTQW	223
_			
4R2Z5 C4R2Z5	_PICPG 234	PSEQPDNGVSVGGLYCDSDGYLYRSKKDTDYLCEWGIDVAYVVSEIGKTAAICRTDYPGT PS+QP +G S+GGL C DGYLYRS DTDYLCEWG+D AYVVSE+ AICRTDYPGT	293
53616 SUN4 Y	EAST 224	PSTQF TG STGGL C DGILLRS DIDILEWGTD AIVVSET AICKIDIPGI PSDQPSDGRSIGGLLC-KDGYLYRSNTDTDYLCEWGVDAAYVVSELSNDVAICRTDYPGT	282
	PICPG 294	ENMVI PTVVS PGGEL PLTTVDOSSYYTWRGMKT SAOYYVNDAGVDWTTGCTWGDYGTDYG	353
4R2Z5 C4R2Z5	294	ENMVIPIVVSPGELPLIIVDQSSYYWKGMKISAQYYVNDAGVDWIIGCIWGDIGIDYG ENMVIPI V G LPLT VDQ +YYTW+G+KTSAQYYVN+AG+ C WG + G	333
53616 SUN4_Y	EAST 283	ENMVIPTYVQAGDSLPLTVVDQDTYYTWQGLKTSAQYYVNNAGISVEDACVWGSSSSGVG	342
4R2Z5 C4R2Z5	PICPG 354	NWAPLNFGAGYDNGISYLSLIPNPNNKDSLNYNVKIVAYDDSSVVIGECKYENGSYNGNG	413
INEED CIREED		NWAPLNFGAGISHSSIISLIFNFNNKESSLANVKIVAIDESSVIGECKIENGSINGNG NWAPLNFGAG +G++YLSLIPNPNN ++LN+NVKIVA DDSS V GEC YENGS++G G	110
53616 SUN4_Y	EAST 343	NWAPLNFGAGSSDGVAYLSLIPNPNNGNALNFNVKIVAADDSSTVNGECIYENGSFSG-G	401
	PICPG 414	SDGCTVAVNSGKAKFVLY	431
4R2Z5 C4R2Z5			
4R2Z5 C4R2Z5		SDGCTV+V +GKAKFVLY	

Supplementary Reference:

1. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-60, doi:10.1038/nprot.2006.468 (2006).