Supplementary Materials for

US Power Production at Risk from Water Stress in a Changing Climate

Poulomi Ganguli, Devashish Kumar, and Auroop R. Ganguly*

Sustainability and Data Sciences Laboratory (SDS Lab), Department of Civil and Environmental Engineering, Northeastern University, Boston, MA-02115, USA Email: <u>a.ganguly@neu.edu</u> Phone: 617-373-6005 **Table S1.** List of CMIP5 climate models along with their horizontal resolutions (Longitude x Latitude) and the number of initial condition runs used for historical and RCPs experiments

Table S2. List of CMIP5 models for which downscaled surface air temperature is available along with the number of initial conditions for historical and future experiments

Table S3. Regional thermoelectric power production capacity

Table S4. Regional annual power production capacity (Quad) under various water stress levels (WSL)

Fig S1. Current surface runoff. a,b, Spatial patterns of current (1991-2005) (a) low (10th percentile of all climate simulations) and (b) median (50th percentile) surface runoff. Figures are generated using MATLAB 2015a (Version 8.5, URL: http://www.mathworks.com).

Fig S2. Current stream temperature. a,b, Spatial patterns of current (1991-2005) (a) high (10th percentile of all climate simulations) and (b) median (50th percentile high stream temperature. Figures are generated using MATLAB 2015a (Version 8.5, URL: http://www.mathworks.com).

Fig S3. U.S. climate regions. Nine climatically homogeneous regions within the contiguous United States used in this study (see ref. 41 for details). ENC: East North Central, NE: Northeast, NW: Northwest, SE: Southeast, SW: Southwest, WNC: West North Central. Figure is generated using MATLAB 2015a (Version 8.5, URL: http://www.mathworks.com).

Fig S4. Current surface air temperature. a,b, Spatial patterns of current (1991-2005) **(a)** high (10th percentile of all climate simulations) and **(b)** median (50th percentile) surface air temperature. Figures are generated using MATLAB 2015a (Version 8.5, URL: http://www.mathworks.com).

Fig S5. Evaluation of performance of SVR models. Performance of SVR in predicting stream temperature at training phase (1991 – 2005) in few selected stream gauges over the nine climatologically homogeneous regions. Figures are generated using MATLAB 2015a (Version 8.5, URL: http://www.mathworks.com).

Fig S6. Evaluation of performance of SVR models. Performance of SVR in predicting stream temperature at validation phase (2006 - 2013) in few selected stream gauges over the nine climatologically homogeneous regions. Figures are generated using MATLAB 2015a (Version 8.5, URL: http://www.mathworks.com).

No	Model Name	Resolution (lon x lat)	Historical	RCP2.6	RCP4.5	RCP6	RCP8.5
1	ACCESS1-0	192 x 145	2	-	1	-	1
2	ACCESS1-3	192 x 145	3	-	1	-	1
3	BCC-CSM1.1	128 x 64	3	1	1	1	1
4	BCC-CSM1.1(m)	320 x 160	-	1	1	1	1
5	BNU-ESM	128 x 64	1	1	1	-	1
6	CanESM2	128 x 64	5	5	5	-	5
7	CCSM4	128 x 64	8	5	6	6	5
8	CESM1-BGC	288 x 192	1	-	1	-	1
9	CESM1-CAM5	288 x 192	3	3	3	3	3
10	CESM1-FASTCHEM	288 x 192	3	-	-	-	-
11	CESM1-WACCM	144 x 96	7	3	3	-	-
12	CMCC-CESM	96 x 48	1	-	-	-	1
13	CMCC-CM	480 x 240	-	-	1	-	1
14	CNRM-CM5-2	256 x 128	1	-	-	-	-
15	CNRM-CM5	256 x 128	1	3	1	-	5
16	CSIRO-MK3-6-0	192 x 96	10	10	10	10	10
17	CSIRO-MK3L-1-2	64 x 56	3	-	-	-	-
18	EC-EARTH	320 x 160	1	-	2	-	2
19	FIO-ESM	128 x 64	-	3	3	3	2
20	FGOALS-g2	128 x 60	5	1	-	-	1
21	GFDL-CM2p1	144 x 90	2	-	10	-	-
22	GFDL-CM3	144 x 90	5	-	-	1	1
23	GFDL-ESM2G	144 x 90	1	-	1	1	1
24	GISS-E2-H-CC	144 x 90	1	-	1	-	1
25	GISS-E2-R-CC	144 x 90	1	-	1	-	1
26	GISS-E2-H	144 x 90	10	3	15	3	2
27	GISS-E2-R	144 x 90	22	3	13	3	5
28	HadCM3	96 x 73	10	-	10	-	-
29	HadGEM2-CC	192 x 145	8	-	1	-	3
30	HadGEM2-ES	192 x 145	-	4	4	4	4
31	INM-CM4	180 x 120	1	-	1	-	1
32	IPSL-CM5A-LR	96 x 96	6	4	4	1	4
33	IPSL-CM5A-MR	144 x 143	3	3	1	1	1
34	IPSL-CM5B-LR	96 x 96	1	-	1	-	1
35	MIROC4h	640 x 320	3	-	3	-	-
36	MIROC5	256 x 128	5	5	5	5	5
37	MIROC-ESM	128 x 64	3	1	1	1	1
38	MIROC-ESM-CHEM	128 x 64	1	1	2	1	1
39	MPI-ESM-LR	192 x 96	3	2	3	-	3
40	MPI-ESM-MR	192 x 96	3	1	3	-	1
41	MPI-ESM-P	192 x 96	2	-	-	-	-
42	MRI-CGCM3	320 x 160	5	1	1	1	1
43	MRI-ESM1	320 x 160	1	-	-	-	-
44	NorESM1-ME	144 x 96	1	1	1	1	-
45	NorESM1-M	144 x 96	3	1	1	1	1
		Total	159	66	123	48	79

Table S1. List of CMIP5 climate models along with their horizontal resolutions (Longitude x Latitude) and the number of initial condition runs used for historical and RCPs experiments

* The short hyphen ('-') indicates particular climate realization is not available for download.

No.	Model Name	Historical	RCP2.6	RCP4.5	RCP6	RCP8.5
1	ACCESS1-0	1	-	1	-	1
2	ACCESS1-3	1	-	1	-	1
3	BCC-CSM1.1	1	1	1	1	1
4	BCC-CSM1.1(m)	1	-	1	-	1
5	CanESM2	5	5	5	-	5
6	CCSM4	5	5	4	4	5
7	CESM1-BGC	1	-	1	-	1
8	CESM1-CAM5	3	3	3	2	3
9	CMCC-CM	1	-	1	-	1
10	CNRM-CM5	5	-	1	5	-
11	CSIRO-MK3-6-0	10	10	10	10	10
12	EC-EARTH	4	2	3	-	3
13	FGOALS-g2	3	1	2	-	3
14	FIO-ESM	3	3	3	3	3
15	GFDL-CM3	1	1	1	1	1
16	GFDL-ESM2G	1	1	1	1	1
17	GFDL-ESM2M	1	1	1	1	1
18	GISS-E2-H-CC	1	-	1	-	-
19	GISS-E2-R-CC	1	-	1	-	-
20	GISS-E2-R	5	1	1	1	1
21	HadCM3	4	-	4	-	-
22	HadGEM2-AO	1	1	1	1	1
23	HadGEM2-CC	1	-	1	-	1
24	HadGEM2-ES	4	4	4	4	4
25	INM-CM4	1	-	1	-	1
26	IPSL-CM5A-LR	4	3	4	1	4
27	IPSL-CM5A-MR	1	1	1	1	1
28	IPSL-CM5B-LR	1	-	1	-	1
29	MIROC4h	3	-	3	-	-
30	MIROC5	1	1	1	1	1
31	MIROC-ESM	1	1	1	1	1
32	MIROC-ESM-CHEM	1	1	1	1	1
33	MPI-ESM-LR	3	3	3	-	3
34	MPI-ESM-MR	1	1	1	-	1
35	MRI-CGCM3	1	1	1	-	1
36	NorESM1-ME	1	1	1	1	1
37	NorESM1-M	1	1	1	1	1
	Total	84	53	73	41	65

Table S2. List of CMIP5 models for which downscaled surface air temperature is available along with the number of initial conditions for historical and future experiments

Regions	Number of	Annual Production	
	Power Plants	Capacity (Quad)	
Central	140	2.487	
East North Central (ENC)	78	0.802	
Northeast (NE)	128	1.594	
Northwest (NW)	16	0.138	
Southeast (SE)	140	2.416	
South	193	2.138	
Southwest (SW)	51	0.728	
West	44	0.397	
West North Central (WNC)	25	0.373	
Total	815	11.073	

 Table S3. Regional thermoelectric power production capacity

Table S4. Regional annual power production capacity (Quad) under various water stress levels (WSL)

WSL1: $-0.50 \le WSI \le 0$ WSL2: $-0.75 \le WSI \le -0.50$ WSL3: $-1.0 \le WSI \le -0.75$

WSL4: $-1.5 \le WSI \le -1.0$ WSL5: WSI \leq -1.5

Year	1996-2005					
Regions	WSL1	WSL2	WSL3	WSL4	WSL5	
Central	0	2.444	0.043	0	0	
ENC	0	0.492	0.244	0.065	0	
NE	0	0.662	0.932	0	0	
NW	0	0.138	0	0	0	
SE	0.401	1.719	0.297	0	0	
South	0	2.053	0.085	0	0	
SW	0.074	0.653	0.000	0	0	
West	0.011	0.194	0	0.146	0.043	
WNC	0	0.355	0.002	0	0	
Total	0.486	8.710	1.603	0.211	0.043	
% Total	4.39%	78.80%	14.51%	1.91%	0.39%	

2006-2015							
WSL1	WSL2	WSL3	WSL4	WSL5	Total		
0	2.330	0.157	0	0	2.487		
0.136	0.504	0.162	0	0	0.802		
0.002	1.296	0.295	0	0	1.594		
0	0.122	0.016	0	0	0.138		
0.106	1.900	0.410	0	0	2.416		
0.337	1.696	0.105	0	0	2.138		
0	0.728	0	0	0	0.728		
0.004	0.350	0.038	0.005	0	0.397		
0	0.373	0	0	0	0.373		
0.584	9.299	1.184	0.005	0.000	11.073		
5.28%	83.98%	10.70%	0.05%	0.00%	100.00%		

Year	2016-2025						
Regions	WSL1	WSL2	WSL3	WSL4	WSL5		
Central	0.122	0.067	2.298	0	0		
ENC	0	0.091	0.711	0	0		
NE	0.040	0.238	1.317	0	0		
NW	0	0	0.138	0	0		
SE	0	0.266	1.613	0.537	0		
South	0	0.056	2.045	0.037	0		
SW	0	0.039	0.689	0	0		
West	0	0	0.397	0	0		
WNC	0	0	0.373	0	0		
Total	0.161	0.758	9.580	0.574	0.000		
% Total	1.46%	6.84%	86.52%	5.18%	0.00%		

2026-2035								
WSL1	WSL2	WSL3	WSL4	WSL5	Total			
0	0	2.357	0.130	0	2.487			
0	0	0.727	0.075	0	0.802			
0	0	1.272	0.322	0	1.594			
0.043	0.010	0.068	0.016	0	0.138			
0	0	2.162	0.255	0	2.416			
0.006	0.014	0.694	1.424	0	2.138			
0.002	0.098	0.298	0.285	0.045	0.728			
0	0.091	0.118	0.188	0	0.397			
0	0	0.011	0.332	0.030	0.373			
0.051	0.214	7.706	3.026	0.075	11.073			
0.46%	1.93%	69.59%	27.33%	0.68%	100 00%			

