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Appendix

A. Solving numerically mean-field equations

To solve numerically the mean-field equations, we introduce ODEs whose fixed points satisfy
Eqs. (6-9),

τE ν̇E(t) = −νE(t) + Φ (µE(t), σE(t)) (1)

τI ν̇I(t) = −νI(t) + Φ (µI(t), σI(t)) (2)

where µas and σas are functions of νa(t)s through Eqs. (8-9). To get convergence to fixed
points, we can use τI � τE. Typically we use τI = 0.1τE.

We emphasize that these equations do not describe the real dynamics of the system (which
are given by the full system of Fokker-Planck equations, Eq. (12); it is only a numerically
convenient tool to find the fixed points of the mean-field equations.

B. Agreement between spiking simulations and mean field theory

While all the features described by the mean-field approach are reproduced qualitatively
by numerical simulations, there are significant quantitative discrepancies between both, as
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Figure 1: Average excitatory and inhibitory population firing frequency as a function of νX ,
for two values of the E to I synaptic efficacies: JIE = 0.34mV (A.); JIE = 0.32mV (B.);
for both panels, JEE = 0.2mV, g = 3, DEE = 20ms, DII = 10ms. Each simulation point
is obtained by averaging the population firing frequency over T = 10s. C., D. Average
excitatory and inhibitory population firing frequency as a function of g for two values of the
synaptic efficacies: JIE = 0.34mV (C.); JIE = 0.32mV (D.); for both panels, JEE = 0.2mV,
νX = 3.8 (i.e. νX = 0.76νθ), DEE = 20ms, DII = 10ms. The error bars indicate the standard
error of the temporal mean.
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Figure 2: Average excitatory and inhibitory population firing frequency as a function of νX ;
for both panels JEE = 0.2mV, JIE = 0.32mV, g = 3. Each simulation point is obtained by
averaging the population firing frequency over T = 10s. A. DEE = 10ms, DII = 5ms. B.
DEE = 20ms, DII = 10ms. The error bars indicate the standard error over the temporal
mean.

shown in Fig. 1. We therefore investigated the source of this discrepancy. A candidate
for this discrepancy is the finite amplitude of the synaptic couplings, that potentially lead
to deviations from the diffusion approximation, which allows to treat synaptic currents as
Gaussian noise (Eq. 3). To understand whether deviations from the diffusion approximation
are the source of the observed discrepancies, we replaced the classic Siegert-Ricciardi transfer
function (Eq. 7) with the recently obtained transfer function of LIF neurons receiving a
combination of excitatory and inhibitory shot noise processes with exponentially distributed
amplitudes (Richardson and Swarbrick 2010).

Richardson and Swarbrick (2010) computed the firing rate of a neuron receiving shot
noise from pre-synaptic E and I afferents with exponentially distributed amplitudes JaE
and JaI ,

νa = ΦSN,a(νE, νI) =

(
τm,a

∫ 1/JaE

0

dc

c

1

Za(c, νE, νI)

[
ecVθ

1− JaEc
− ecVR

])−1
,

Za(c, νE, νI) =
1

(1− JaEc)τm,aCE(νE+νX)(1− jaIc)τm,aCIνI
,

where a = E, I.
The modified theory is then compared to numerical simulations of a network which is

identical to the one described in the section “Spiking network model” except for two elements:
first, an exponential distribution of synaptic efficacies is implemented; second, the external
synaptic current received by a neuron i is no longer given by Eq. 3 as in the standard diffusion
approximation, but is rather generated through a Poisson process, in which Cext excitatory
neurons send to neuron i synaptic pulses at rate νX and with exponentially distributed EPSP
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amplitudes. Fig. 2 shows the much better agreement between theory and simulations that
can be obtained with such modifications, for the same set of parameters in Fig. 1. This shows
that the main factor explaining the discrepancies between theory and simulations in Fig. 1
are the deviations from the diffusion approximation due to the finite size of post-synaptic
potentials.

C. Linear stability analysis of the UP-state

Linear stability analysis of networks of LIF neurons with white noise inputs have been
described in multiple previous studies of sparsely connected (Brunel and Hakim 1999; Brunel
2000) as well as fully connected networks (Brunel and Hansel 2006; Ledoux and Brunel 2011;
Barbieri et al. 2014). Here, we briefly recapitulate the general formalism, and re-express the
eigenvalue equation that originally appeared in (Brunel 2000) in terms of neuronal linear
response functions. This leads to equations similar to (Ledoux and Brunel 2011), but with
an additional contribution of the linear response functions to changes in variance (Lindner
and Schimansky-Geier 2001).

The Fokker-Planck equations in the interval (−∞, θ) are

τa
∂Pa(V, t)

∂t
=
σ2
a(t)

2

∂2Pa(V, t)

∂V 2
+

∂

∂V
[(V − µa(t))Pa(V, t)] , (3)

with

µa(t) = CEJaEτm,a [νX + 〈νE(t−D)〉DaE − γga〈νI(t−D)〉DaI ] , (4)

σ2
a(t) = CEJ

2
aEτm,a

[
νX + 〈νE(t−D)〉DaE + γg2a〈νI(t−D)〉DaI

]
, (5)

where averages are taken over an exponential distribution of synaptic times

〈νb(t−D)〉Dab =

∫ ∞
0

dD
e
− D
Dab

Dab

νb(t−D), (6)

and a, b ∈ {E, I} for excitatory and inhibitory neurons.
The boundary conditions are

∂Pa
∂V

(θ, t) = −2νa(t)τa
σ2
a(t)

,

∂Pa
∂V

(V +
r , t)−

∂Pa
∂V

(V −r , t) = −2νa(t− τrp)τa
σ2
a(t)

, (7)

lim
V→−∞

Pa(V, t) = 0, lim
V→−∞

V Pa(V, t) = 0,

and the normalization∫ θ

−∞
Pa(V, t)dV + pra = 1, pra =

∫ t

t−τrp
du νa(u). (8)
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The stationary solutions Pa0(V ) are given by

Pa0(V ) =
2νa0τa
σa0

exp

[
−(V − µa0)2

σ2
a0

] ∫ θ−µa0
σa0

V−µa0
σa0

duΘ(u− Vr)eu
2

, (9)

pra0 = νa0τrp, (10)

with

µa0 = CEJaEτa [νX + νE0 − γgaνI0] , (11)

σ2
a0 = CEJ

2
aEτa

[
νX + νE0 + γg2aνI0

]
, (12)

and

1

νa0
= τrp + 2τa

∫ θ−µa0
σa0

V−µa0
σa0

dueu
2

∫ u

−∞
dve−v

2

. (13)

It is convenient to use reduced variables for the potential

ya =
V − µa0
σa0

, yaθ =
θ − µa0
σa0

, yar =
Vr − µa0
σa0

, (14)

for the probability distribution

Pa =
2τaνa0
σa0

Qa, (15)

for the rates

1

νa0
= τrp + 2τa

∫ yaθ

yar

dueu
2

∫ u

−∞
dve−v

2

, (16)

νa = νa0(1 + na(t)), (17)

and for various constants

Gab =
CbJabτm,aνb0

σa0
, Hab =

CbJ
2
abτm,aνb0
σ2
a0

. (18)

The next step is to expand the Fokker-Planck equations about the stationary solutions
Qa0(ya)

Qa(ya, t) = Qa0(ya) +Qa1(ya, t) + ... (19)

na(t) = na1(t) + ... (20)

and looking for separable variables solutions

Qa1(ya, t) =
na1(t)

na1(0)
Q̃a(ya), (21)
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one gets the equations for na1(t)

na1(t) = na1(0)eλt = ña(λ)eλt, (22)

and for Q̃a(ya), depending on the eigenvalues λ.
The general solution of the eigenfunctions equations can be written as a linear combina-

tion of two independent solutions of the homogeneous equation, φ1 and φ2,

φ1(ya, λ) = M

[
1− λτa

2
,
1

2
,−y2a

]
, (23)

φ2(ya, λ) =

√
π

Γ(1+λτa
2

)
M

[
1− λτa

2
,
1

2
,−y2a

]
+

2
√
πya

Γ(λτa
2

)
M

[
1− λτa

2
,
3

2
,−y2a

]
,

with M [a, b, z] the confluent hypergeometric function, plus a particular solution of the inho-
mogeneous one

Q̃p
a(ya, λ) =

∑
b=E,I

Q̃p
ab(ya, λ)ñb(λ), (24)

Q̃p
ab(ya, λ) =

1

1 + λDab

(
sbGab

1 + λτa

dQa0

dya
+

Hab

2(2 + λτa)

d2Qa0

dy2a

)
. (25)

Explicitely

Q̃a(ya > yar, λ) = α+
a (λ)φ1(ya, λ) + β+

a (λ)φ2(ya, λ) + Q̃p
a(ya, λ), (26)

Q̃a(ya < yar, λ) = α−a (λ)φ1(ya, λ) + β−a (λ)φ2(ya, λ) + Q̃p
a(ya, λ). (27)

The boundary conditions are eight linear equations that determine the eight coefficients
α+
a , α

−
a , β

+
a , β

−
a .

Further conditions α−a = 0 are needed in order to obtain an integrable Q̃a(ya, λ), and can
be derived from the solution of the system of the boundary conditions.

Eventually, one finds that the eigenvalues λ are solutions of the equation

AEE(λ)AII(λ)− AIE(λ)AEI(λ) = 0, (28)

where

Aab(λ) = [1 +Rrp,a(λ)] δab +
Cb

1 + λDab

[
sbJabRµ,a(λ)− J2

abRσ2,a(λ)
]
, (29)

describes the net effect of the instantaneous firing rate of population b on population a. The
variable sb is defined as sE = −1, sI = 1. The first term relates to the refractory period τrp

Rrp,a(λ) =
U(yar, λτm,a)(1− e−λτrp)

U(yaθ, λτm,a)− U(yar, λτm,a)
. (30)

The second term in the r.h.s. of Eq. (29) describes the effect of this instantaneous firing
rate through the mean synaptic inputs; it is proportional to the linear firing rate response
function

Rµ,a(λ) =
τm,aνb0

σa0(1 + λτm,a)

[
∂U
∂y

(yaθ, λτm,a)− ∂U
∂y

(yar, λτm,a)

U(yaθ, λτm,a)− U(yar, λτm,a)

]
, (31)
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where U(y, λ) = ey
2
φ2(y, λ).

The third term in the r.h.s. of Eq. (29) describes the effect of this instantaneous firing
rate through the variance of synaptic inputs; it is proportional to another linear response
function,

Rσ2,a(λ) =
τm,aνb0

σ2
a0(2 + λτm,a)

[
λτm,a +

yaθ
∂U
∂y

(yaθ, λτm,a)− yar ∂U∂y (yar, λτm,a)

U(yaθ, λτm,a)− U(yar, λτm,a)

]
. (32)

Note that this term disappears in networks in which the synaptic couplings scale as 1/C, in
the large C limit. To investigate the effect of variance dynamics on the instabilities of the
asynchronous state, we set Rσ2,a = 0 in Eq. (29).

Note that in the strong noise, low firing rate regime investigated in this paper Rµ(f)
is a monotonically decreasing function of f , which is essentially constant below a cut-off
frequency which is of order 1/τm at low frequencies (Ostojic and Brunel 2011), and then
decay asymptotically to zero as 1/

√
f (Brunel and Hakim 1999; Lindner and Schimansky-

Geier 2001; Brunel et al. 2001). On the other hand, Rσ2 has a finite limit when f goes to
infinity (Lindner and Schimansky-Geier 2001).

D. Treatment of firing rate adaptation

Following La Camera et al. (2004), we replace adaptation currents by their mean value βνE0.
The mean-field equations (6-9) are unaffected, except that the equation for µE0 is replaced
by

µE0 = τmECEJEE(νX + νE0 − γgEνI0)− βνE0

E. Spiking Network Model with exponentially decaying synaptic
currents

As before, the total current arriving to a postsynaptic neuron is due to the activity of its
local (pre-synaptic) afferents and to the current elicited by external inputs.

Ii(t) = Iexti (t) + Ireci (t) (33)

where Iexti (t) is the external input current and Ireci (t) is the total recurrent synaptic current.
We now model the recurrent contribution to the post-synaptic current as the sum of

contribution that are mediated by NMDA, AMPA and GABA receptors with distinct time
constants. The total recurrent currents become

Ireci (t) = INi (t) + IAMi (t)− IGi (t) (34)

where each of the synaptic currents is described by a separate differential equation

τN İ
N
i,a(t) = −INi,a + xE,II

E
i,a(t) (35)

τAM İ
AM
i,a (t) = −IAMi,a + (1− xE,I)IEi,a(t) (36)

τGİ
G
i,a(t) = −IGi,a + IIi,a(t) (37)
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where

IEi,a(t) = τm,a

NE∑
j=1

cij,aEJaE
∑
k

δ(t− tkj,E −Dij,aE) (38)

IIi,a(t) = τm,a

NI∑
j=1

cij,aIJaI
∑
k

δ(t− tkj,I −Dij,aI), (39)

xE,I is the fraction of the charge coming from excitatory afferents which is mediated by
NMDA receptors, which mediates a slow post-synaptic current. The remaining fraction of
the charge (1 − xE,I) is mediated by AMPA receptors and elicits a faster current. The
current coming from inhibitory afferents is mediated by GABA receptors. Upon arrival of
a pre-synaptic spike at time tk, the postsynaptic current instantaneously receives a “kick”
proportional to the synaptic efficiency J (in mV), followed by an exponential decay with
time constant τsyn, where τsyn = τAM,N,G. In what follows we set xI , as well as the synaptic
delays to zero.

F. Spiking Network Model with conductance-based synaptic cur-
rents

We simulated a network with conductance-based synapses in which the recurrent synaptic
currents of neuron i in population a (= E, I) are given by

Ireci,a (t) = (VE − V )sEi,a(t) + (VI − V )sIi,a(t) (40)

where VE = 70mV is the excitatory reversal potential, VI = 0mV is the inhibitory reversal
potential, and sE,Ii,a (t) represent excitatory and inhibitory synaptic conductances (normalized
by the leak conductance), which evolve in time according to:

τbṡ
b
ia(t) = −sbia + τm,a

Nb∑
j=1

cij,abgab
∑
k

δ(t− tkj,b) (41)

where τb (b = E, I) is the decay time constant of E/I synaptic currents, and gab is the
(normalized) conductance of b synapses onto a neurons. The conductances were obtained
by dividing the synaptic efficacies in the current-based network by the driving force at
threshold, i.e. (VE − θ) for E synapses, (VI − θ) for I synapses, and by rescaling E synapses
by an additional factor γ. Excitatory neurons were also endowed with an adaptation current
described by Eqs. (10,11) in the main text.

G. Identification of transitions between up and down states in sim-
ulations

Up and down state transitions were identified using the same method described in Neske et al.
(2015). In particular, both a fast and a slow exponential moving average were calculated over
the excitatory population firing rate. The intersection points of the two moving averages
determined onset and offset of a state transition.
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