Table S1. Strains and plasmids used in this study

Strain #	Strain name	Relevant genotype or features	Source/reference
C. diffic	cile strains – JIR8094		
11	JIR8094	erm-sensitive derivate of 630	(1)
282	JIR8094 spoVM ⁻	JIR8094 spoVM::ermB	This study
1135	JIR8094 CD25622 ⁻	JIR8094 CD25622::ermB	This study
C. diffic	cile strains – 630∆erm		
756	$630\Delta erm\Delta pyrE$	<i>erm</i> -sensitive derivate of 630 with a deletion in <i>pyrE</i>	(2)
803	$630\Delta erm\Delta pyrE\Delta IVA$	$630\Delta erm\Delta pyrE$ with <i>spoIVA</i> deleted	This study
846	630 <i>∆егт-</i> р	<i>erm</i> -sensitive derivate of 630 with <i>pyrE</i> restored	(3)
880	630∆ <i>erm∆IVA</i> -p	$630\Delta erm\Delta spoIVA$ with <i>pyrE</i> restored	This study
883	$630\Delta erm\Delta IVA/IVA$	$630\Delta erm\Delta spoIVA$ with spoIVA in the pyrE locus	This study
974	$630\Delta erm/IVA$	$630\Delta erm$ with spoIVA in the pyrE locus	This study
1123	$630\Delta erm\Delta IVA/N491G IVA$	$630\Delta erm\Delta spoIVA$ with N491G spoIVA in the pyrE locus	This study
1144	630∆erm/mCherry-IVA	$630\Delta erm$ with <i>mCherry-IVA</i> in the <i>pyrE</i> locus	This study
1147	$630\Delta erm\Delta IVA/mCherry-IVA$	$630\Delta erm\Delta spoIVA$ with <i>mCherry-spoIVA</i> in the <i>pyrE</i> locus	This study
1220	630∆erm∆pyrE VM [−]	630∆erm∆pyrE spoVM::ermB	This study
1222	630∆ <i>erm∆pyrE</i> 25622 [–]	$630\Delta erm\Delta pyrE\ CD25622::ermB$	This study
1269	630∆ <i>erm</i> 25622 [−] /C	$630\Delta erm \ CD25622::ermB$ with $CD25622$ -spoVM in the	
		<i>pyrE</i> locus	This study
1275	630∆ <i>erm VM</i> [−] /C	$630\Delta erm \ spoVM::ermB$ with CD25622-spoVM in the pyrE	
		locus	This study
1284	630∆ <i>erm</i> 25622 ⁻ -p	$630\Delta erm\ CD25622::ermB\ with\ pyrE\ locus\ restored$	This study
1286	630∆ <i>erm VM</i> [−] -p	$630\Delta erm \ spoVM::ermB$ with $pyrE$ locus restored	This study
E. coli s	strains		
		F– $Φ80lacZ\Delta$ M15 $Δ(lacZYA-argF)$ U169 recA1 endA1	
41	DH5a	$hsdR17 (rK^{-}, mK^{+}) phoA supE44 \lambda$ – thi-1 gyrA96 relA1	D. Cameron
195	pET22b-∆50CPD	pET22b- Δ 50CPD in DH5 α	(4)
531	HB101/pRK24	F-mcrB mrr hsdS20(rB ⁻ mB ⁻) recA13 leuB6 ara-13 proA2	C.
		lavYI galK2 xyl-6 mtl-1 rpsL20 carrying pRK24	Ellermeier
759	pET29a/HA- <i>spoIVA</i>	pET29a with HA- <i>spoIVA</i> from <i>C. difficile</i> in DH5α	(5)
957	pJS107/spoVM	pJS107-spoVM targeting 32 bp in HB101/pRK24	This study
1441	pET22b spoVM-CPD	pET22b Δ 50-CPD with <i>spoVM C. difficile</i> in BL21(DE3)	This study
1473	pET28a-HA- <i>spoIVA B.s.</i>	pET28a with HA-spoIVA from B. subtilis in HB101/pRK24	4 This study
1481	pUC57Kan- <i>spoVM-B.s</i> .	pUC57Kan with spoVM B.subtilis-CPD	This study
1485	pET22b spoVM B. subt-CPD	pET22b Δ 50-CPD with <i>spoVM B. subtilis</i> in BL21(DE3)	This study
1539	pMTL-YN3	pMTL-YN3 in DH5a	(3)
1576	pDSW1728	Tetracycline-inducible <i>mCherry</i>	(6)
1628	pMTL-YN3- ΔIVA	pMTL-YN3-Δ <i>spoIVA</i> in HB101/pRK24	This study
1662	pMTL-YNIC	pMTL-YNIC in HB101/pRK24	(3)
1684	pMTL-YN1C-IVA	pMTL-YN1C- <i>spoIVA</i> in HB101/pRK24	This study
1756	pMTL-YN1C-IVA N491G	pMTL-YN1C-spoIVA N491G in HB101/pRK24	This study
1768	pMTL-YN1C- <i>mCherry-IVA</i>	pMTL-YN1C- <i>mCherry spoIVA</i> in HB101/pRK24	This study
1770	pJS10//CD25622	pJS10/-CD25622 targeting 38 bp in HB101/pRK24	This study
1817	pMTL-YNIC-CD25622-VM	pMTL-YNIC-CD25622-VM in HB101/pRK24	This study

Table S2. Primers used in this study.

Primer	Name	Sequence
532	3' Universal EBS	CGAAATTAGAAACTTGCGTTCAGTAAAC
1086	5' NdeI spoVM	AGAAGACATATGAAAGTAGTAACAATAAAATTACCAAAATGG
1087	3' XhoI spoVM	AGAAGACATATGAAAGTAGTAACAATAAAATTACCAAAATGG
1094	3' HindIII IBS spoVM 32	AAA <u>AAGCTT</u> ATAATTATCCTTAATTACCAAAATGGTGCGCCCAGATAGGGTG
1095	5' BsrGI EBS1∂ spoVM 32	CAGAT <u>TGTACA</u> AATGTGGTGATAACAGATAAGTCAAAATGGATAACTTACCTTTCTTT
1096	5' EBS2 spoVM 32	TGAACGCAAGTTTCTAATTTCGGTTGTAATCCGATAGAGGAAAGTGTCT
1235	3' spoVM sequencing 102 bp	GCGATTATAGATGGAGCTCC
1237	3' XhoI spoIVA+TAA subtilis	AAAT <u>CTCGAG</u> TTACAGGATGATGGCGATTAAGCCGC
1318	5' NheI HA spoIVA subtilis	ATG <u>GCTAGC</u> TACCCGTACGACGTCCCGGATTATGCCTTGGAAAAGGTCGATATTTTCAAG
1609	3' Sall <i>spoVM</i> no stop	AAT <u>GTCGAC</u> ATCATTTTTACTCTTTCTCATAAATTTTAGG
1743	5' ∆ <i>spoIVA</i> flanking 1109 bp	GATTGTAAGGTAATAGTTTTAGCAGTTCC
1744	3' ∆ <i>spoIVA</i> flanking 1039 bp	CTAGATGTTTCTAATACCATATATTTGG
1746	5' ΔspoIVA SOE	GGAGGAATAATATGAATAATAACATATACGTAAATGAAGGAAG
1747	3' Δ <i>spoIVA</i> rev	GTTATAATATTAGAACTTCCTTCATTTACGTATATGTTATTATTCATATTATTCCTCC
2036	5' NotI spoIVA Gibson	ttagggatgtaataagcggccgcCAATTAGCATTGTAGTTTACTAGTTTTTGTATATAGG
2037	3' XhoI spoIVA Gibson	caagcttgcatgtctgcaggc <u>ctcgag</u> CTTTGAAACAATCCTGTCGAAACATATAC
2148	5' NotI CD25622 Gibson	ggaattagggatgtaataagcggccgcGGTCTAAAATGGAAAACTGTCGC
2149	3' XhoI spoVM Gibson	gccaagcttgcatgtctgcaggc <u>ctcgag</u> GTTTAAAAGCCTACTTCCGTAAGTAGG
2177	5' spoIVA N491G SOE	CAAAAAATTGTAAATGAAGGAAGTTCTGGTATTATAACTATTTTGTTATAAAAATATAGC
2178	3' spoIVA N491G rev eos	GCTATATTTTATAACAAAATAGTTATAATACCAGAACTTCCTTC
2186	5' IBS1 CD25622 38	AAAAAAGCTTATAATTATCCTTAGTTGCCAGACAAGTGCGCCCAGATAGGGTG
2187	3' EBS1∂ <i>CD25622</i> 38	CAGATTGTACAAATGTGGTGATAACAGATAAGTCAGACAAAGTAACTTACCTTTCTTT
2188	5' EBS2 CD225622 38	TGAACGCAAGTTTCTAATTTCGATTGCAACTCGATAGAGGAAAGTGTCT
2202	5' PspoIVA-mCherry SOE	CCCTTAACTCTAAATATAAATTTAATAAGATTAGATGGTATCTAAAGGAGAAGAAGAAGAAA
2203	3' PspoIVA-mCherry rev eos	ATTATCTTCTTCTCCTTTAGATACCATCTAATCTTATTAAATTATATTTAGAGTTAAGGG
2204	5' mCherry-spoIVA SOE	GGAGGTATGGATGAATTATATAAAGTCGACATGTATAGGAGGAATAATATGAATAATAAC
2205	5' mCherry-spoIVA rev eos	GTTATTATTCATATTATTCCTCCTATACATGTCGACTTTATATAATTCATCCATACCTCC
2272	5' AscI ∆spoIVA Gibson-YN3	tcaattgttcaaaaaaataatggc <u>GGCGCGCC</u> CCATTTATAAAAGAAGGACAAGTTATTG
2273	3' SbfI ∆spoIVA Gibson	agcaaggcaagaccgatcgggccc <u>CCTGCAGG</u> GACCTTTTATTTCATCACTAAATACACC

Restriction sites are underlined.

Name	Spo0A			σ^{F}		σ			spoIIID⁻			σ ^κ			
		log ₂	adj P		log ₂	adj P		log ₂	adj P		log ₂	adj		log ₂	adj
	BM	FC		BM	FC		BM	FC		BM	FC	Р	BM	FC	Р
spoVM	11	-5.0	2.8×10^{-5}	13	-2.4	0.01	13	-3.0	0.006	24	0.26	0.67	20	0.003	1
spoIVA	1147	-10.2	2.7×10^{-51}	1278	-3.8	1.4×10^{-18}	1266	-8.6	9.7x10 ⁻⁵³	1971	-0.59	0.09	1558	-1.3	0.26
sipL	655	-6.4	2.1×10^{-45}	746	-3.2	2.8×10^{-18}	730	-5.5	2.7×10^{-47}	1218	-0.28	0.42	902	-1.2	0.37

Table S3. Expression levels of select sporulation genes as measured by RNA-Seq.

BM (base mean) represents the mean of read counts after they were divided by size factors to adjust for different sequencing depths. This value is the mean of the sample relative to wild type. log_2FC denotes log_2 fold-change. A negative value indicates that the gene was reduced in expression relative to wild type. adj P represents that adjusted p-value associated with the fold change determined. The RNA-Seq data in the indicated strains has been previously published (7).

Table S4. Sporulation efficiency as measured by chloroform resistance.

Strain	Sporulation efficiency
630∆ <i>erm</i>	1 ± 0.34
$\Delta spoOA$	<10 ⁻⁶
VM ⁻	0.21 ± 0.15
25622-	$\textbf{0.18} \pm \textbf{0.05}$
<i>VM</i> ^{-/} C	1.2 ± 1.0
25622 ⁻ /C	1.3 ± 1.1

Statistical significance relative to wild type $630\Delta erm$ based on a minimum of three biological replicates was determined using an unpaired t-test of the *VM* mutant strains relative to wild type. Bolded text represents p < 0.005. Analyzing the data using a one-way ANOVA and Tukey's test did not detect a statistically significant difference between the *VM* mutant strains and wild type.

 Table S5. Frequency of forespore morphological abnormalities detected by phase contrast

 microscopy.

		Sporulating	Phase-bright	Phase-dark		Misshapen
	Free spores	cells	forespores	forespores	Bearding	forespores
WT	23% (95)	77% (316)	56% (178)	44% (138)	4% (13)	1% (4)
VM-	17% (74)	83% (349)	32% (113)	68% (236)	15% (52)	13% (44)
CD25622-	33% (178)	67% (359)	15% (55)	85% (304)	14% (50)	12% (43)
VM-C	17% (74)	83% (358)	46% (163)	54% (195)	4% (13)	2% (8)
CD25622-C	38% (257)	62% (426)	52% (222)	48% (204)	8% (32)	4% (17)

The percentage of free spores was determined by dividing the number of free spores (shown in parentheses) by the sum of free spores and sporulating cells (shown in parentheses) counted; the percentage of sporulating cells was determined accordingly. Sporulating cells include cells with phase-dark and phase-bright forespores but do not include cells that have completed asymmetric division, since these are indistinguishable from vegetative cells using phase-contrast microscopy. The percentage of phase-bright and phase-dark forespores, phase-dark extensions (bearding), and misshapen forespores was determined by dividing the number of cells with this phenotype (shown in parentheses) by the number of sporulating cells.

Supplemental References

- 1. Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL. 2007. Repression of *Clostridium difficile* toxin gene expression by CodY. Mol Microbiol 66:206-19.
- 2. Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP. 2013. Expanding the repertoire of gene tools for precise manipulation of the *Clostridium difficile* genome: allelic exchange using *pyrE* alleles. PLoS One 8:e56051.
- 3. Donnelly ML, Li W, Li YQ, Hinkel L, Setlow P, Shen A. 2017. A *Clostridium difficile*-Specific, Gel-Forming Protein Required for Optimal Spore Germination. MBio 8.
- 4. Shen A, Lupardus PJ, Morell M, Ponder EL, Sadaghiani AM, Garcia KC, Bogyo M. 2009. Simplified, enhanced protein purification using an inducible, autoprocessing enzyme tag. PLoS One 4:e8119.
- 5. Putnam EE, Nock AM, Lawley TD, Shen A. 2013. SpoIVA and SipL are *Clostridium difficile* spore morphogenetic proteins. J Bacteriol 195:1214-25.
- 6. Ransom EM, Ellermeier CD, Weiss DS. 2015. Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in *Clostridium difficile*. Appl Environ Microbiol 81:1652-60.
- 7. Pishdadian K, Fimlaid KA, Shen A. 2015. SpoIIID-mediated regulation of sigma(K) function during *Clostridium difficile* sporulation. Mol Microbiol 95:189-208.