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In this Supplementary Text, we describe the quantitative analysis of clonal data ob-

tained from serial transplantation experiments of human glioblastoma (GBM) xeno-

grafts involving lentiviral barcoding. Our strategy is to analyse the features of bar-

code frequency distributions to infer the underlying cell fate dynamics giving rise

to the heterogeneity of clonal behavior observed in experiments. This heterogeneity

could either be (i) a consequence of differential engrained or evolving fitness advan-

tages of cells or (ii) reflecting stochastic fate choices of equipotent progenitor pools

(Clayton et al., 2007; Blanpain and Simons, 2013). Here we show that the experi-

mental data is consistent with the latter scenario and that the key features of barcode

frequency distributions and correlations can be explained by a simple proliferative

hierarchy with glioblastoma stem-like cells at the apex.

In Section 1, we address statistical properties of lentiviral barcoding and give

estimates of the amount of uniquely labelled cells. In Section 2, we show that the ex-

perimentally obtained barcode frequencies follow a negative binomial distribution.

This behavior is characteristic of a specific class of proliferative hierarchies—in

Section 3, we show how such a distribution generically arises. Based on these ob-

servations, we develop a minimal model of tumor growth in Section 4 and study its

predictions on tumor expansion and composition. In Section 5, we use our model to

develop a simulation of the serial transplantation experiments which permits a direct

comparison of our model with experiments. In Section 6, we infer plausible param-

eter ranges for our model on biological grounds and compare the model results of

our theory with experiments. In Section 7, we use the experimentally obtained data

from exome deep sequencing to probe the mutational heterogeneity of the parent

tumour and as an independent window on the clonal dynamics of GBM cells.

1 Statistical properties of lentiviral barcoding
Lentiviral barcoding relies on the random infection of cells. While it entails the pos-

sibility to uniquely identify clone lineages, the randomness of the barcoding proce-

dure may lead to the same cell acquiring multiple barcodes or to the same barcode

being present in more than one cell. Since this can affect the statistical properties of

the derived barcode frequency distributions, we here give an estimate for the relative

amount of multiply labelled cells and barcodes present in multiple cells.

For a library consisting ofNB unique barcodes with a barcoding event occurring

with probability pB, the number nB of barcodes acquired by a single cell follows

the binomial distributionQ.nB/ D PBinomial.nBjNB; pB/, where PBinomial.njN;p/ D�
N

n

�
pn.1 � p/N �n. For large NB, the distribution Q can be approximated by a

Poisson distribution,

Q.nB/ '
�nB

nBŠ
e�� ; (1)
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Patient NC .10
4/ � Q0 Q1 Q>1 R0 R1 R>1 Q

GBM719 12:5 37:8% 62:2% 29:5% 8:3% 74:3% 22:1% 3:6% 69:6%
GBM729 12:5 21:6% 78:4% 19:1% 2:5% 85:9% 13:1% 1:0% 84:4%
GBM735 3 37:6% 62:4% 29:4% 8:2% 93:2% 6:6% 0:2% 91:6%
GBM742 2:4 28:7% 71:3% 24:1% 4:6% 96:0% 3:9% 0:1% 95:3%
GBM743 8 17:3% 82:7% 15:7% 1:6% 92:7% 7:0% 0:3% 92:0%
GBM754 12:5 33:2% 66:8% 27:0% 6:2% 77:7% 19:6% 2:7% 74:1%

Table S1 Probabilities characterising the statistical properties of lentiviral barcoding with

a library of NB D 2 � 105 barcodes (L. V. Nguyen, M. Makarem, et al., 2014).

where � D pBNB. Using Eq. (1), the relative amount of unlabelled cells, Q0 D

Q.0/, the relative amount of cells labelled with one barcode, Q1 D Q.1/, and the

relative amount of cells carrying more than one barcode,Q>1 D
P

nB>1Q.nB/, are

obtained as

Q0 D e�� ; Q1 D �e�� ; Q>1 D 1 � .1C �/e�� : (2)

The parameter � characterizing the distribution of barcodes can be obtained from the

labelling efficiency �, which denotes the relative amount of cells that bear at least

one barcode, by requiring 1 �Q0 D �. This yields

� D �ln.1 � �/ : (3)

Conversely, we can ask the question how likely it is that the same barcode ap-

pears in multiple cells. Out of a total of NC cells prepared for barcoding, the num-

ber nC of cells acquiring the same barcode is distributed according to R.nC/ D

PBinomial.nCjNC; pB/. Again, for a large number of cells NC, this can be approxi-

mated by a Poisson distribution,

R.nC/ '
�nC

nCŠ
e�� ; (4)

where � D pBNC D �NC=NB. Analogously to Eqs. (2), we obtain the relative

amount of barcodes that are present in no cell, R0 D R.0/ D e�� , the relative

amount of barcodes present in exactly one cell, R1 D R.1/ D �e�� and the rel-

ative amount of barcodes that have been acquired by more than one cell, R>1 DP
nC>1R.nC/ D 1 � .1C �/e�� .

Multiple barcoding of the same cell is unproblematic for the quantitative anal-

ysis of barcode frequency distributions—it generates copies of clones which are

however subject to the same distribution of barcode frequencies. On the other hand,

barcodes distributed to multiple cells lead to an effective merging of the sizes of
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derived clones and thus may alter the statistical properties of the barcode frequency

distribution. Among the labelled cells, the relative amount of uniquely labelled cells,

i.e., cells with a unique combination of one or more barcodes, is given by

Q D
1

1 �Q0

1X
nBD1

Q.nB/
�
.1 � pB/

NC�1
�nB

; (5)

which, for NC � 1 and pB � 1, can be approximated in terms of the probabilities

Q0 and R0 as

Q '
1 �Q

�R0

0

1 �Q�1
0

: (6)

Table S1 summarizes the respective probabilities for all xenografts used in this

study; a large majority of labelled cells carries a unique combination of barcodes

in all xenografts.

2 Barcode frequencies follow a negative binomial
distribution

To obtain a quantitative understanding of tumor growth, we analyze the distribution

of barcode frequencies obtained from serial transplantation experiments. Here, we

show that the distributions p.n/ of barcode frequencies above the detection thresh-

old for all passages and replicate experiments follow a negative binomial distribu-

tion,

p.n/ D
1

N0

e�n=n0

n
; (7)

where n0 is a characteristic barcode frequency of the respective population andN0 is

a normalisation constant. A robust method to detect negative binomial distributions

is to obtain the first incomplete moment of the distribution p, defined by

�.n/ D
1

hni

1X
n0Dn

n0p.n0/ ; (8)

where hni D
P

n np.n/ is the average barcode frequency. By definition,�.n/ is the

relative average barcode frequency of all barcode frequencies larger than n. If the

barcode frequency distribution p.n/ has the negative binomial form Eq. (7), the first

incomplete moment acquires an exponential dependence on the barcode frequency,

�.n/ D
1

N1

e�n=n0 ; (9)
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whereN1 is another normalization constant. Since the first incomplete moment, to-

gether with the average barcode frequency hni, carries the same information as the

original barcode frequency distribution1, an exponential dependence of � is com-

pletely equivalent to a negative binomial barcode frequency distribution.

Fig. 2b in the main text and Extended Data Figs. 5-6 show all first incom-

plete moments of the experimental barcode frequency distributions. They clearly

exhibit an exponential behavior (linear on a logarithmic scale) over many decades

of barcode frequencies, indicating negative binomial distributions across different

patients, xenografts, passages, and replicate experiments. By definition of the first

incomplete moment, data points with large barcode frequencies outside the negative

binomial distribution show up as a strong deviation from the exponential behavior

(see, e.g., red arrowhead in Fig. 2b). This is caused by the barcode frequency enter-

ing as a multiplicative term in the definition Eq. (8). Importantly, this does not affect

its ability to detect negative binomial distributions for small barcode frequencies.

3 Emergence of negative binomial distributions
What can the barcode frequency distribution tell us about the proliferative dynamics

underlying tumor growth? A generic mechanism giving rise to a negative binomial

distribution is a process long-known in population dynamics, termed ‘critical birth-

death process with immigration’ (Bailey, 1990; Simons, 2016). Translated into the

language of cell population dynamics, such a process can be realized by a popula-

tion of cells that stochastically divide (‘birth’) and differentiate (‘death’) with equal

probability (‘critical’), with a slow influx of cells from another cell compartment

(‘immigration’) through differentiation. In the tumor context, such a process could

naturally arise if there is (i) a slowly cycling glioblastoma stem cell (GSC) compart-

ment at the apex of a proliferative hierarchy that sporadically gives rise to progenitor

cells by asymmetric division and (ii) the resulting progenitor population undergoes

division and differentiation that are balanced on the population level. Schematically,

the dynamics of stem cells (S) and progenitors (P) can be expressed as

S S P P
P P prob. 1/2

prob. 1/2
; (10)

where � is the loss-and-replacement rate of the progenitors and ! is the asymmet-

ric division rate of the stem cells, also called ‘immigration rate’ since it describes

the rate at which cells enter the progenitor compartment. If the immigration rate

1The barcode frequency distribution can be retrieved from the first incomplete moment via the

relation p.n/ D hniŒ�.n/ � �.n � 1/�=n.
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! is small compared to the loss-and-replacement rate �, uniquely barcoded stem-

like cells produce clones with a negative binomial barcode frequency distribution,

Eq. (7). To show this, we describe the cell fate dynamics shown in scheme (10) as

independent Poisson processes with rates! and �, respectively. Formally, the corre-

sponding master equation that governs the dynamics of the probability P D P.n; t/

to find n progenitor cells in a clone derived from a single uniquely labelled S-type

cell,

@P

@t
D

²
!. OE�

� 1/C
�

2
.n � 1/ OE�

C
�

2
.nC 1/ OEC

� �n

³
P ; (11)

where we have introduced the ladder operators OE˙, defined by OE˙P.n; t/ D P.n˙

1; t/. The first term in brackets describes the asymmetric division of a single S-type

cell whereas the remaining three terms describe symmetric division and death of

P-type cells2. Note that asymmetric division of S-type cells leaves the number of

S-type cells unchanged so that it is sufficient to only describe the number n of P-type

cells.

The master equation (11) describes the dynamics of S-type and P-type cells

shown in the scheme (10) as independent Poisson processes. An analytical solution

can readily be obtained by standard methods (Walczak et al., 2012). For initially

no progenitor cells being labelled, P.n; 0/ D ın;0, the exact solution to the master

equation (11) is given by the negative binomial distribution

P.n; t/ D
1

nŠ

�.� C n/

�.�/

�
n0.t/

1C n0.t/

�n �
1 �

n0.t/

1C n0.t/

��

; (12)

where n0.t/ D �t=2, the dimensionless parameter � D 2!=� is the ratio of immi-

gration rate and progenitor loss-and-replacement rate, and �.x/ D
R 1

0
ux�1e�u du

is the Gamma function. On average, barcode frequencies grow linearly in time,

hn.t/i D 1C !t ; (13)

2The structure of the master equation (11) can be understood by considering, for instance, a

reduced dynamics that only describes asymmetric divisions of the S-type cell. This amounts to setting

� D 0 in Eq. (11) which yields the reduced equation @P=@t D !P.n � 1; t/ � !P.n; t/, where we

have used the definition of the ladder operator OE�. This equation describes the rate of change of the

probability P.n; t/ to find n P-type cells. A state with n P-type cells can only be reached if there are

already n� 1 P-type cells and an asymmetric division of an S-type cell occurs, giving rise to another

P-type cell. The corresponding contribution !P.n�1; t/ to the rate of change @P=@t is given by the

probability P.n � 1; t/ to find the system in the state n � 1 multiplied by the rate ! of asymmetric

divisions. Conversely, the state with n P-type cells is left if another asymmetric division of the S-

type cell occurs, raising the number of P-type cells to nC 1. The analogous contribution �!P.n; t/

enters with a negative sign as it describes the process of leaving the state n. The other terms in the full

master equation (11) follow the same logic. For more detailed reviews on general master equations

and birth-death processes, we refer the reader to standard textbooks (Gardiner, 2009; Bailey, 1990)
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where hn.t/i D 1C
P

n nP.n; t/ is the average barcode frequency with the first term

accounting for the stem cell. For small immigration rates !, the barcode frequency

distribution of cell populations with at least one progenitor cell, given byP�.n; t/ D

P.n; t/=.1 � P.0; t//, acquires the form Eq. (7),

P�.n; t/ D
1

ln.1C n0/

1

n

�
n0.t/

1C n0.t/

�n

C O.!/

�
1

N0.t/

e�n=n0.t/

n
;

(14)

where N0.t/ D ln n0.t/. For non-vanishing but small immigration rates !, the re-

sulting barcode frequency distribution is still well-approximated by Eq. (14). Thus,

the dynamics (10) generically give rise to negative binomial barcode frequency dis-

tributions and hence are the starting point for our quantitative analysis.

Comparison with clone size distributions emerging from engrained prolifera-
tive heterogeneity
Could a negative binomial barcode frequency distribution also be caused by en-

grained proliferative heterogeneity instead of equipotency? To address this ques-

tion, let us consider a large population of clones in which the cell of each clone i

undergoes loss and replacement with clone-specific probabilities. For concreteness,

we consider the following cell fate dynamics in which each cell undergoes loss and

replacement with different probabilities,

prob. 1/2 + δi

iprob. 1/2 – δ
: (15)

The parameter ıi determines whether cell i is primed for proliferation (ıi > 0) or

loss (ıi < 0). The average size of a clone derived from cell i evolves according to

hni.t/i D e2ıi �t and on average, clones will thus either grow exponentially (ıi > 0)

or die out (ıi < 0). In this picture, engrained proliferative heterogeneity is captured

by a broad distribution of the ıi , so that some clones expand faster than others while

some clones die. For a clone with a given ıi , the resulting surviving clone size

distribution at large times is exponential (Bailey, 1990),

p.nj˛i/ ' ˛ie
�˛i n : (16)

with an exponent ˛i that depends on the proliferative potential and on time. Hence,

a distribution in engrained proliferative advantages ıi entails a distribution in the

shape parameter ˛i of the clone size probabilities for the different clones. As an

8
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example, let us consider the distribution of ˛i at a fixed time t D t0. For simplicity,

we here consider a Gamma distribution3 for ˛, which ensures that ˛ > 0,

Np.˛/ D
˛m�1e�m˛=˛0

.˛0=m/m�.m/
: (17)

The clone size distribution resulting from this distribution of clone size scales is

given by

p.n/ D

Z 1

0

p.nj˛/ Np.˛/ d˛ D
˛0

.˛0n=mC 1/mC1
; (18)

which asymptotically has the power law behavior n�.mC1/ and is therefore distinctly

different from the negative binomial form e�n=n0=n. Which distribution of prolif-

erative potentials would be needed to generate a negative binomial clone size dis-

tribution under these circumstances? In fact, a negative binomial form can only be

obtained under very artificial conditions: the distribution for ˛ would have to take

the non-normalizable discontinuous form Np.˛/ / ˛�1‚.˛ � ˛0/ where ‚ is the

Heaviside step function; in this case, the clone size distribution would sensitively

depend on the position ˛0 of the step as it determines the characteristic scale of clone

sizes, p.n/ D e�˛0n=n. While being simplistic, this minimal model of engrained

proliferative heterogeneity illustrates that negative binomial clone size distributions

do not generically arise from a mere loss and replacement of clones—rather, the

cell fate dynamics has to display certain distinctive features, such as the minimal

hierarchy of the type (10), which robustly leads to such clone size distributions.

4 Theoretical model of tumor growth
In Section 3, we have shown how a negative binomical barcode frequency distri-

bution can arise from a single uniquely labelled stem cell at the apex of a criti-

cal birth-death process with immigration. However, there are several reasons why

growth of glioblastoma as observed in serial transplantation experiments warrant a

more comprehensive model: First, the model (10) only considers strictly asymetri-

cally dividing stem cells, leading to linear growth of barcode frequencies on aver-

age. However, there is no reason to a priori rule out symmetric stem cell divisions,

which potentially provide a considerable contribution to tumor growth. Second, in

the model (10), loss of the stem cell leads to a remaining progenitor cell popula-

tion that will not grow on average and will eventually die out (Clayton et al., 2007).

In the serial transplantation experiments, only small fractions of a harvested tumor

3The Gamma distribution as defined in Eq. (17) has mean ˛0 and variance ˛2
0=m; in the limit

of large m, it is approximately equal to a normal distribution with the same mean and variance. For

m D 1, the Gamma distribution reduces to an exponential distribution.
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(� 5%) are chosen for reinjection. If clones were indeed maintained by a single

stem cell, it would thus be likely that the stem cell is lost upon reinjection, giving

rise to a massive loss of barcodes across passages which is not observed in experi-

ments. Third, the model (10) neglects the potential presence of a non-proliferating

compartment undergoing apoptosis that may affect the tumor size and composition.

This non-proliferating compartment may be the differentiating progeny of the pro-

genitor population or a quiescent progenitor population.

Therefore, in this section, we now formulate a more comprehensive model of

glioblastoma growth and study its predictions on tumor growth and composition.

Our model makes falsifiable predictions and to compare it with experiments, we in-

troduce a simulation procedure that combines the clonal dynamics with harvesting

and reinjection scheme to mimic the experimental procedure (Section 5). Subse-

quently, we compare our model to experimental data and show that it captures the

key features of clonal dynamics (Section 6).

4.1 Stochastic dynamics of cell division and differentiation
Our model of tumor growth describes the dynamics of three cell compartments: a

stem-like cell compartment (S), a progenitor compartment (P), and a non-prolifera-

ting compartment that may account for differentiating progeny (D). In our model,

stem-like cells divide symmetrically with a probability " and asymmetrically with

probability 1 � ". Progenitor cells either divide symmetrically or differentiate into

their progeny, both with probability 1=2, so that division and differentiation are

balanced on the population level. The differentiating compartment has a finite life-

time and constitutes the lowest level of the differentiation hierarchy in our model.

Schematically, the model can be expressed as

S
S S

S P
P

P P

D
D

1/2

1/2
; (19)

where ! and � are the division rates of stem cells and progenitors, respectively, and

� is the apoptosis rate of the differentiating progeny. Defining P.nS; nP; nD; t / as

the probability to find nS stem cells, nP progenitor cells, and nD differentiated cells

at time t within a clone, we write down a master equation governing the stochastic

dynamics in the same spirit as in the previous section,

@P

@t
D

²
"!

�
nS � 1

�
OE�
S C .1 � "/!nS OE�

P � !nS C
�

2

�
nP � 1

�
OE�
P

C
�

2
nP OEC

P
OE�
D � �nP C �

�
nD C 1

�
OEC
D � �nD

³
P ;

(20)

wherewe have again used ladder operators defined by OE˙
S P.n

S; nP; nD; t / D P.nS˙

1; nP; nD; t / and analogously for the other cell compartments P and D. Together with

10
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an initial condition P.nS; nP; nD; 0/ that characterizes the initially barcoded popu-

lation, Eq. (20) permits to compute the clone composition and barcode frequency

distribution of our model at any later time. The distribution p.n; t/ of total barcode

frequencies n D nS CnP CnD is obtained from the joint distribution P by summing

over all barcode frequency configurations that lead to a total size n,

p.n; t/ D

nX
n0D0

n�n0X
n00D0

P.n0; n00; n � n0
� n00; t / : (21)

While the full clonal dynamics of our model can only be explored by means of

numerical simulations, several important insights about growth and composition of

the tumor can be drawn from analytical arguments.

4.2 Composition of the tumor
Using the master equation (20), we can obtain insights into the composition of the

tumor in our model, i.e., its relative content of stem cells, progenitors and differen-

tiating progeny. The time evolution of the mean cell numbers is given by

h PnSi D "!hnSi ;

h PnPi D .1 � "/!hnSi ;

h PnDi D
1
2
�hnPi � �hnDi ;

(22)

where the dot denotes the time derivative. In particular, the evolving clone, while

steadily growing, acquires a steady-state composition characterized by a constant

relative amount of stem-like cells, progenitor cells, and differentiated cells: Defining

the relative cell contents �S D hnSi=hni, �P D hnPi=hni, and �D D hnDi=hniwhere

hni D hnSiChnPiChnDi is the total barcode frequency, this stationary composition

satisfies P�S D P�P D P�D D 0 and is given by

�S
D "��1 ; �P

D .1 � "/��1 ; �D
D 1 ���1 ; (23a,b,c)

with � being a dimensionless parameter given by

� D 1C
�

2

1 � "

� C "!
: (24)

Eqs. (23a–c) show that the probability " for symmetric stem cell division determines

the relative fraction of stem-like and progenitor cells while the composite parameter

� determines the relative fraction of the differentiating progeny and the remaining

two compartments. Note that in general the ratio of averages does not correspond

to the average of the ratio, hnXi=hni ¤ hnX=ni for X D S; P;D. However, simula-

tions show that Eqs. (23a–c) are excellent approximations for the averages hnX=ni

in the considered parameter ranges.

11
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4.3 Tumor expansion
The average growth of a clone (and thus the tumor) can be determined from Eqs. (22)

as well. Defining the fold-change in cell number compared to the initial barcode

frequency, .t/ D hn.t/i=hn.0/i, we obtain

.t/ D e"!t ; (25)

given that, from the outset, the tumor has the stationary composition given by Eqs. (23).

Hence, the tumor expands exponentially with the growth speed given by the rate "!

of symmetric stem cell divisions.

5 Simulation of transplantation experiments
To capture the dynamics of the serial transplantation experiments, we develop a

simulation of the clonal dynamics involving the repeated procedure of injection,

unperturbed growth, and harvesting of the tumor. To this end, we use a stochastic

simulation algorithm to compute many realizations of the clonal dynamics (Gille-

spie, 1977). The simulation consists of (i) the injection of a single uniquely labelled

cell, (ii) unperturbed clonal dynamics according to the process (19), and (iii) subse-

quent harvesting of cells for sequencing and reinjection. Key observables such as

barcode frequency distributions, numbers of surviving barcodes, and clonal growth

are then obtained by performing statistics over the computed realizations.

5.1 Primary injection
Tomimic the experimental procedure in our simulation, we start the primary passage

by injecting a single labelled S or P cell, each with a probability that reflects the

steady-state fractions given in Eqs. (23a,b). Differentiating progeny (represented

by the D compartment in our model) are unlikely to survive the process of serial

transplantation. The corresponding initial condition for the probability P is thus

given by

P.nS; nP; nD; 0/ D
�SınS;1ınP;0ınD;0 C �PınS;0ınP;1ınD;0

�S C �P
: (26)

5.2 Tumor growth
After the injection, the clone is subject to unperturbed growth according to Eq. (20)

for the duration �i of the corresponding passage i .

5.3 Harvesting and reinjection
After each passage, the next passage i is initiated by reinjecting cells harvested from

the previous passage i � 1. This amounts to setting a new initial condition for the

12
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probability P at the injection time t
inj

i , which coincides with the harvesting time

t harvi�1 D
Pi�1

j D1 �j of the previous passage, where �i is the passage duration of pas-

sage i . Again, assuming that it is unlikely for differentiating cells (D) to survive

the process of serial transplantation, only stem-like cells (S) and progenitors (P) are

reinjected, each such a cell with a probability p
inj

i . The probability p
inj

i is deter-

mined by requiring that on average, the number n
inj

i of injected cells matches the

number in the corresponding experiment. The probability p
inj

i can be calculated as

follows. From Eqs. (22), the average growth of a clone can be calculated for any

initial composition of the clone. If only S and P cells are injected, with cell num-

bers that reflect the stationary composition given by Eqs. (23a,b), the fold change

.t/ D hn.t/i=hn.0/i in cell number is given by

.t/ D �e"!t
� .� � 1/e��t : (27)

with � defined in Eq. (24). Hence, the total tumor size after passage i is given by

ninj.�/where ninj is the number of injected cells and � is the passage duration. Since

the composition of the tumor quickly acquires the stationary composition given by

Eqs. (23a,b,c) during the passage, the total number of S and P cells upon harvesting

is given by .�S C �P/ninj.�/. Therefore, to inject an average of n
inj

i cells at the

beginning of passage i , the probability p
inj

i must be chosen as

p
inj

i D
n
inj

i

.�S C �P/n
inj

i�1.�i�1/
: (28)

Then, the system again evolves according to Eq. (20) till t harviC1 and the same procedure

is repeated for the next passage.

5.4 Example
Fig. S1 and Fig. 2d in the main text show numerical examples of the simulation.

The upper panel displays different trajectories of barcode frequencies across three

passages. Because of stochastic cell fate decisions, clones stochastically grow or

shrink during a passage. Therefore, individual trajectories may emerge above and

drop below a detection threshold (shaded area in Fig. S1) several times over the

course of time (see yellow trajectory in Fig. S1 for an example). While the majority

of clones is lost, a few clones grow very large by chance, acquiring several hundreds

of cells. After each passage, all barcode frequencies abruptly drop due to harvesting

and reinjection of a small sample of the tumor (� 5%). From many realizations

of the system, statistical properties of the clones such as barcode frequency distri-

butions and correlations can be obtained: the lower panel of Fig. S1 shows, e.g.,

the average barcode frequency. Note that the average barcode frequency is strongly

affected by the majority of clones becoming extinct very quickly while only a few
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Figure S1 Numerical examples of barcode frequency trajectories across three serial pas-

sages on a logarithmic scale. The shaded area indicates an example detection threshold. The

yellow curve shows a clone that emerges above and drops below the detection threshold sev-

eral times. The lower plot shows the average over all trajectories. Parameters are given in

Table S3.

clones become large. Fig. 2e in the main text shows the first incomplete moment of

the barcode frequency distribution, revealing a negative binomial distribution over

many decades as discussed in Section 2. We now use these simulations to system-

atically compare experimental data with our theory.

6 Comparison of theory and experiments
We now compare our theory with experiments. First, we discuss biologically sen-

sible parameter ranges for our model. We then compare barcode frequency distri-

butions and number of barcodes that survive the serial transplantations with exper-

iments, highlighting that many qualitative key features of our theory are actually

independent of the specific choice of parameters.

14
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6.1 Parameter estimates
Can all experiments be characterized by the same set of parameters? Experimental

data show a considerable degree of variation in the growth of different xenografts:

for instance, referring to Table S4, the tertiary xenograft of the transplantation se-

ries labelled .1; 2; 1/719 grows by 42-fold over a duration of 55 days, while the ter-

tiary xenograft of .1; 2; 3/719 grows by only 26-fold over the longer duration of 78

days, with both xenografts having been derived from the same secondary xenograft

.1; 2/719. While there are many potential sources for these variations among repli-

cate experiments, this example already indicates that it is not possible to characterize

all experiments with a single set of parameters. Rather, it suggests a corresponding

degree of variation for the proliferation and differentiation rates of stem-like cells

and progenitors as well as the apoptosis rate of the differentiating progeny. Here we

aim at constraining plausible parameter ranges using experimental data.

An estimate for the apoptosis rate � of the differentiating progeny can be in-

ferred from the steady-state composition of the tumor: we used Ki67 staining of

xenograft samples to determine the relative amount of proliferating cells as 50% on

average, see Extended Data Fig. 3d. Based on this estimate we fixed the relative

amount of progenitor cells among the progenitor population,  D nP=.nD CnP/, as

 � 0:5. Using Eqs. (23) and (24), the apoptosis rate � can be expressed in terms

of  and the other parameters as

� D
�

2

1

 �1 � 1
� "! : (29)

Hence, given numerical values for the other parameters !, ", and �, this fixes the

value of � . For the loss-and-replacement rate � of the progenitors, we choose an

upper bound of � D 1:5=day, motivated by the fact that in mammalian cells, the

typical S phase duration is already 5 to 6 hours which constrains the cell cycle speed.

In Section 3, we have seen that progenitors have to divide much faster than stem-

like cells (� � !) in order to generate the characteristic negative binomial form

of the barcode frequency distribution. Therefore, we restrict the stem cell division

rate ! to values of at least an order of magnitude less, ! ≲ 0:3=day. In our model,

overall growth of the tumor crucially depends on the rate "! of symmetric stem cell

divisions (see Sections 4.3 and 5.3). Considering fast death of the differentiating

progeny (� � "!) and a small ratio of symmetric divisions (" � 1), Eq. (27)

enables to estimate the symmetric division rate of the stem cells as "! � ��1 ln  ,

where � is the passage duration,  is the fold-change in cell number from injection

to harvesting and  is the amount of proliferating cells introduced above. Given the

range of values for  and � given in Table S4, we obtain an estimate for the range

of "! of 0:02 : : : 0:06=day. Since " < 1 this automatically yields the lower bound

! ≳ 0:02=day for the stem cell division rate. In our model, the ratio " of symmetric
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Param. Range Description

! 0:02 : : : 0:3 d�1 stem cell division rate

" < 1 : : : 20% probability of symmetric stem cell division

� 0:5 : : : 1:5 d�1 progenitor loss-and-replacement rate

� 0:2 : : : 1:5 d�1 death rate of the differentiating progeny

Table S2 Parameter ranges for the model of tumor growth, Eq. (19).

stem cell divisions sets the relative size of the stem cell pool and the progenitor pool,

see Eq. (23). Assuming that the stem-like cells form a minority population, we here

restrict " ≲ 20%.

A summary of the thus inferred parameter ranges is given in Table S2. To show

that these estimates for the parameter ranges are consistent with the clonal behavior

observed in experiments, we now compare numerical solutions of the model with

experimental data.

6.2 Barcode frequency distributions
A direct quantitative comparison of barcode frequency distributions is currently not

possible because of limitations in experimentally determining absolute barcode fre-

quencies. However, the characteristic functional shape of the barcode frequency

distributions is independent of absolute barcode frequencies and can be compared

with experiments. To assess the barcode frequency distributions generated by our

model, we obtain their first incomplete moment� as defined in Eq. (8) fromEq. (21).

Fig. 2e in the main text shows examples for � for each passage, obtained from a nu-

merical simulation of 2 � 106 realizations of the system. The linear behavior over

many decades of barcode frequencies indicates a negative binomial size distribu-

tion as discussed in Section 2. In fact, we find these negative binomial distributions

within a large range of parameters. This linear behavior is preceded by a short non-

linear transient behavior for very small barcode frequencies that are likely below the

experimental detection threshold.

6.3 Barcode survival
The survival of barcodes is reflected by the number of detected barcodes across pas-

sages. In experiments, the number of detected barcodes depends on the detection

threshold and the fraction of sequenced cells. To obtain a measure for clone sur-

vival that is independent of these experimental constraints, we make use of the fact

that barcode frequency distributions have the negative binomial form Eq. (7), which

entails a characteristic barcode frequency n0. This enables to define the number of

16



Lan et al. Supplemental Information

clones that exceed a specified fraction � of the characteristic barcode frequency n0

as
P

n>�n0
h.n/, where h.n/ is the number of clones with size n. The ratio of clones

derived from initially injected barcoded cells that exceed the size �n0 at a given

passage therefore serves as a measure for barcode survival,

ˇ� D
1

NB

X
n>�n0

h.n/ ; (30)

whereNB is the number of uniquely barcoded cells injected before the first passage,

given by NB D �n
inj

1 with � being the labelling efficiency and n
inj

1 being the number

of cells injected.

Fig. S2 shows the results from simulations4 covering the parameter ranges

indicated in Table S2, along with the corresponding experimental data5. Density

bars show the distribution of values for ˇ1=2, dots show experimental data points6.

Clearly, most of the values obtained in the biologically plausible parameter range

also capture the experimentally obtained values. Moreover, simulations show a sys-

tematic decline of the growth probability with increasing passage number.

6.4 Correlations of barcode frequencies across passages
Wenowmake use of the fact that unique barcoding enables to identify clones through-

out different passages and replicate experiments. A characteristic feature of the

clonal dynamics that includes this longitudinal data is the correlation of the size of a

uniquely labelled clone across passages, see Extended Data Fig. 4f and Fig. 2h in the

main text. To quantify these correlations, we define the normalized cross correlation

4A total of 108 parameter sets equally distributed in the parameter ranges for!, ", and � indicated

in Table S2 have been used to sample the parameter space. The parameter � was fixed according

to Eq. (29). Each simulation consists of 100 000 realizations of clones using the passage times and

number of injected cells reported in Table S4.
5We obtain ˇ� from experimental data as follows. Barcode frequency distributions h.x/ with x

being the relative barcode frequency are generated by binning the experimentally obtained barcode

frequencies with a bin size of .xmax�xmin/=100where xmax and xmin are the largest and smallest rela-

tive barcode frequencyies, respectively. We then fitted the resulting barcode frequency distributions

using the negative binomial form p.x/ D N�1
0 e�x=x0=x with n0 and the normalisation constantN0

as fit parameters. Since the detection threshold from sequencing may distort the distributions for

small barcode frequencies, we truncate the barcode frequency distributions from below (within the

first 20 data points) such that the coefficient of determination R2 of the fit is maximized. This yields

the characteristic barcode frequency x0 and ˇ� is readily obtained as ˇ� D N�1
B

P
x>�x0

h.x/. The

standard error �x0
on x0 obtained from the fit is used to calculate positive and negative errors for ˇ�

as �˙
ˇ

D N�1
B

P
x>�.x0˙�x0

/ h.x/.
6The value � D 1=2 was chosen because the corresponding threshold n0=2 lies well above the

detection threshold from sequencing and at the same time takes into account most of the acquired

data.
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Figure S2 Fraction ˇ1=2 of initially injected barcodes growing above half of the character-

istic barcode frequency n0=2 as defined in Eq. (30) for all experimental trajectories given in

Table S4. Density bars show the distribution of simulation results pooled over the parame-

ter ranges indicated in Table S2. Dots show experimental data. The plot titles indicate the

experimental trajectory as given in the first column of Table S4.

of the barcode frequency for passages i and j as

Cij D
hninj i � hniihnj iq

hn2
i i � hnii

2

q
hn2

j i � hnj i2

; (31)
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! " � � '

Figs. 2d,e,h and S1, S4 0:15 d�1 15% 1 d�1 0:48 d�1 0%
Figs. 3e,f 0:1 d�1 10% 1:5 d�1 0:74 d�1 0:5%

Table S3 Parameter values used for the numerical examples in Figs. S1 and S4 and Figs. 2

and 3 in the main text. The parameters !, ", �, and � are introduced in Sec. 4.1; the pa-

rameter ' is introduced in Sec. 6.5. These parameter sets are used to illustrate the model

behavior and have therefore been chosen to be located in the center of the biologically plau-

sible parameter ranges indicated in Table S2.

where ni D n.t harvi / is the barcode frequency after passage i . The normalized cross

correlation Cij takes values between �1 and 1, where Cij D 1 indicates perfect

correlation of barcode frequencies (i.e., small/large clones in passage i correspond

to small/large clones in passage j ), Cij D 0 indicates that barcode frequencies are

completely uncorrelated, and Cij D �1 indicates perfect anticorrelation (i.e., large

clones in passage i correspond to small clones in passage j and vice versa).

Fig. S3 shows a comparison of the correlations for the same simulations and

experimental data sets as in Fig. S2. Density bars show the distribution of values for

the cross correlations Cij , dots show experimental data points. Without a fine tun-

ing of the parameters, the theoretically computed cross correlations not only cover

the experimentally obtained values in most cases but also clearly capture the correct

trend between different pairwise comparisons within a particular injection series. In

the case of the GBM754 experiment, deviations from experimental results is likely

due to the comparably small number of detected clones which makes the cross cor-

relation a less reliable measure; nevertheless, that the trend of correlations is largest

between the secondary and tertiary passage is correctly captured.

6.5 Effects of chemotherapy
In the main text, we observed that the clonal behavior after chemotherapeutical treat-

ment of xenografts with temozolomide (TMZ) can be characterized by two distinc-

tive groups of small and large clones (termed Group A and Group B, respectively),

see Fig. 3a–d. There we hypothesized that such a behavior is consistent with a subset

of clones exhibiting a resistance to apoptosis. To assess whether our theory supports

this scenario, we modified the simulation such that with a certain probability ', a

clone’s differentiating progeny does not die off during the second passage (� D 0 for

the respective clones). Fig. 3e,f in the main text shows the resulting correlations of

barcode frequencies for the clones resisting apoptosis (blue dots, � D 0) and clones

following the unperturbed dynamics (green dots, � ¤ 0) for an example simula-

tion with parameters given in Table S3. Indeed, the resulting behavior recapitulates
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Figure S3 Barcode frequency cross correlationsCij as defined in Eq. (31) for all experimen-

tal trajectories given in Table S4. Density bars show the distribution of simulation results

pooled over the parameter ranges indicated in Table S2. Dots show experimental data. The

plot titles indicate the experimental trajectory as given in the first column of Table S4.

the experimental findings: two clusters of small and large clones, respectively, with

the size of large clones being positively correlated between subsequent passages,

see Figs. 3a,b in the main text. These qualitative features of these correlations ro-

bustly appear without fine-tuning and within a large range of parameters, supporting

that resistance to apoptosis of a subset of clones generically leads to the observed

behavior.
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7 Exome deep sequencing as a window on the mutational
heterogeneity and clonal dynamics of GBM cells

To probe the mutational heterogeneity of the parent tumour and its evolution over

time, we applied exome deep sequencing to xenografts fromGBM719, focusing first

on passage (p)2 and 3 of the untreated system. This analysis identified 546 muta-

tions at p2 with variable allele frequencies (VAFs) that were above the threshold of

detection, and 112 at p3. Analysis of the distribution of VAFs revealed a wide varia-

tion, with the majority clustered around the threshold value while some appeared to

be clonally fixed within the population with VAFs of 0.5 or more. (Note that copy

number variation can amplify VAFs above the value of 0.5, the value expected for

a heterozygous point mutation that has become clonally fixed across of the popu-

lation). Comparison of the mutational signature between p2 and p3 identified 68

mutant clones that were shared by both groups and therefore likely to be present in

the parental tumour, emphasizing the mutational heterogeneity of both the parent

tumour sample, and its conservation in the xenograft model.

As well as indicating the mutational heterogeneity of the tumour sample, the

VAF also carries quantitative information on the relative abundance of point muta-

tions within a sample and therefore carries information about the relative size of host

mutant clones. Indeed, such data sets can often be used to identify cancer drivers

and, in some cases, the phylogeny of mutations that drive non-neutral transforma-

tion (Williams et al., 2016; Eirew et al., 2015). However, in the present context, the

current barcoding study indicates “neutral” competition between growing mutant

clones suggesting that the vast majority of heterozygous point mutations, even when

they occur in cancer genes, may leave the fate behaviour of tumour cells largely un-

perturbed. In this case, we can instead use point mutations as a surrogate clonal

mark from which information on clonal dynamics of tumour cells can be inferred

from the statistics of the ensemble of mutations. However, in contrast to cellular

barcoding, where the clonal mark is created at a given instant in time, mutations

occur sporadically leading to modified “clonal” distributions. As a result, the VAFs

obtained from exome sequencing represent a product of both the underlying fate dy-

namics of the mutant cells within the sample and the mutational dynamics (Simons,

2016), involving the ongoing acquisition of new point mutations and copy number

variations. Nevertheless, when copy number variation is low, such approaches can

be used to quantify cell fate behaviour, as exemplified by a recent study of stem cell

dynamics in physiological normal human epidermis obtained from punch biopsies

of eyelid epidermis (Martincorena et al., 2015; Simons, 2016).

To develop a similar approach here, we reasoned that biopsies from primary

tumours are likely to contain geographically restricted mutations (Johnson et al.,

2014), further compounding the potential complexity of the VAF distribution. How-
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ever, since normal cells are unlikely to survive passaging through the xenograft, we

reasoned that VAFs obtained at p2 and p3 were likely to be rooted in the tumour-

maintaining population. To address this data, we first considered the qualitative

behaviour of the raw VAF distributions in both control (untreated) samples from

p2 and p3. If, for a given locus, mutations of both alleles occur at a negligible

rate, a VAF of 0.5 indicates a mutation present in the entire cell population and is

therefore fixed across the population. Indeed, the VAF distributions in both samples

(Extended Data Fig. 6d) exhibit an abundance of small clones as well as a smaller

peak at VAFs of around 0.5, which likely corresponds to mutations that have already

become fixed in the population after the respective passage.

Examining the correlations of VAFs between passages in xenografts (Extended

Data Fig. 6e), we found a population of larger clones that are present after both pas-

sages, as expected for mutations that have become fixed (or almost fixed) at the end

of p2. Alongside these clones, we also found both (i) clones that became extinct

(or, more accurately, fell below the threshold of the deep sequencing) during repop-

ulation and expansion in p3 as well as (ii) new clones that emerge during p3. If we

assume that these new mutant clones arise from new mutations acquired during p3

(rather than from pre-existing clones that grew above the detection threshold), we

can use the dynamics inferred from the barcoding to derive expected features of the

VAF distribution of these newly-generated clones.

To predict the large-scale dependence of the VAF distribution, we adapted our

simulation to take into account random “induction” of clones throughmutations dur-

ing the tertiary passage7. Model simulations suggested that the resulting VAF dis-

tribution again approximates a negative binomial form, or, equivalently, acquires

an approximately exponential first incomplete moment consistent with experiment

(Extended Data Fig. 6f, Fig. S4). Remarkably, focusing on the first incomplete mo-

ment of the 44 clones that emerge during the tertiary passage, we find that the first

incompletemoment of the VAF distribution again reveals an exponential distribution

(Extended Data Fig. 6g), in accordance with expectations from the barcoding study.

By comparison, the TMZ-treated samples show (i) a much larger number of newly

acquired mutations during p3 (Extended Data Fig. 6d) and (ii) a broad distribution

7Considering a constant mutation rate for each locus in each cell (Simons, 2016), the probability

for a mutation to occur is proportional to the instantaneous number of cells in the tumour. Therefore,

knowing that in our model specified by Eq. (20), the time-dependent fold-change in cell number is

given by .t/ D e"!t , see Eq. (25), we reasoned that the time-dependent probability distribution for

a mutation to have occured during the tertiary passage is given by pind.t/ D .t/=
R �3

0
.t/ dt with

0 � t � �3 where t D 0 refers to the start of the passage and where �3 is the passage duration of the

tertiary passage. Hence, for each clone, we drew a time tind from the distribution pind and simulated

the respective clone for the time �3 � tind, i.e., the remaining time from induction during the tertiary

passage to the end of the passage. We then obtained the clone size distribution and first incomplete

moment from the resulting clone population.
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Figure S4 First incomplete moment of the clone size distribution obtained from a simulation

of 105 clones with random induction times during the tertiary passage7. Parameters are

given in the first row of Table S3. The red dashed line shows an exponential fit of the first

incomplete moment.

of VAFs after p3 with a considerable subset of clones displaying VAFs larger than

0.5 (Extended Data Fig. 6d), both pointing at a treatment-induced higher genomic

variability.

Although the agreement between the theoretical prediction based on the bar-

coding data and experiment is encouraging, we must also exercise some caution.

While correction of VAFs to account for copy number variation (CNV) is already

challenging in the parent tumour, with new mutations, the challenge is even greater.

When CNV occurs before the mutation, the VAF provides a faithful read-out of

clone size; where it occurs afterwards, the VAF is corrupted by the amplification.

The correlation between VAFs associated with shared mutations between p2 and

p3 of the control xenograft suggests that CNV may be rather infrequent as com-

pared to the clonal dynamics, consistent with the systematic behaviour of the mea-

sured clone size distribution as predicted by a conserved proliferative hierarchy. In

addition, we repeated the same analysis only taking genomic regions that are pre-

dicted to be diploid within each sample based on exome sequencing. After filtering,

the VAF distributions continue to conform to the negative binomial (Extended Data

Fig. 6h-i). However, a more detailed quantitative analysis would require a compre-

hensive investigation and understanding of the interplay between tumour growth,

mutational dynamics and, indeed, chemotherapy-induced mutation (Johnson et al.,

2014), which are beyond the scope of the current study.
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8 Remarks
Here we have introduced a theoretical model of human glioblastoma (GBM) growth

based on a critical birth-death process with immigration, describing the stochastic

cell fate dynamics of a proliferative hierarchy with glioblastoma stem cells (GSCs)

at the apex. Our model is able to robustly capture key features of the clonal dy-

namics assessed experimentally: importantly, it explains the characteristic negative

binomial barcode frequency distributions across all serial passages observed in ex-

periments. Moreover, comparison of (i) the number of surviving barcodes across

serial passages and (ii) correlations of barcode frequencies between serial passages

show that the inferred parameter range covers the observed behavior in the over-

whelming majority of cases.

Note that the model presented here is still a minimal model in the sense that

more complex alterations and refinements are conceivable. These may include a

slight imbalance between loss and replacement of progenitors as well as multiple

progeny compartments. Also, small amounts of cell death may occur in the stem cell

and progenitor compartments. However, if the death rate was of comparable size

(or larger) than the rate of symmetric proliferation, we would expect a massive loss

of clones. If, on the contrary, cell death only represents a small contribution relative

to the symmetric proliferation rate, it could be accounted for by an effective adjust-

ment of the other model parameters that, e.g., determine the net growth of tumor and

would only be visible in subtle changes of the barcode frequency distributions that

are impossible to detect in the experimentally given distributions. However, these

alterations do not change the basic characteristics of our model. Moreover, we have

neglected the spatial aspect of tumor growth and potential ongoing driver gene mu-

tations (Michor et al., 2006; Waclaw et al., 2015), assuming that cell division and

loss-and-replacement occur at constant rates as the tumor expands within the brain.

The fact that, despite its simplicity, our model is able to capture the main features of

the clonal dynamics indicates a remarkably simple proliferative behavior of human

GBM despite the genomic variability of GBM cells.
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ID Passage inj. cells ninj � surv. prob. ˇ1=2 growth 

GBM719

.1/719 Primary 1:25 � 105 79 d 1:44C0:
�0:26% 40

.1; 1/719 — Secondary 3 � 105 64 d 0:32C0:06
�0:07% 7.7

.1; 2/719 — Secondary 3 � 105 68 d 0:31C0:08
�0:07% 18

.1; 2; 1/719 —— Tertiary 3 � 105 55 d 0:13C0:07
�0:03% 42

.1; 2; 2/719 —— Tertiary 3 � 105 70 d 0:25C0:04
�0:03% 43.3

.1; 2; 3/719 —— Tertiary 3 � 105 78 d 0:18C0:04
�0:03% 26

.1; 3/719 — Secondary 3 � 105 89 d 0:03C0:05
�0:01% 16.3

.1; 3; 1/719 —— Tertiary 3 � 105 66 d 0:13C0:03
�0: % 15.1

.1; 3; 2/719 —— Tertiary 3 � 105 62 d 0:07C0:03
�0:01% 47.7

GBM754

.1/754 Primary 1:25 � 105 99 d 0:26C0:
�0:% 26

.1; 1/754 — Secondary 6 � 104 79 d 0:19C0:
�0:% 42.7

.1; 2/754 — Secondary 6 � 104 86 d 0:1C0:
�0:% 98.3

.1; 2; 1/754 —— Tertiary 6 � 104 72 d 0:24C0:
�0:% 56

.1; 2; 2/754 —— Tertiary 6 � 104 73 d 0:11C0:
�0:% 31.7

GBM742

.1/742 Primary 2:4 � 104 78 d 0:78C0:
�0:% 530

.1; 1/742 — Secondary 3 � 105 43 d 0:13C0:06
�0: % 5.7

.1; 2/742 — Secondary 3 � 105 47 d 0:01C0:78
�0:01% 1.8

.1; 3/742 — Secondary 3 � 105 50 d 0:12C0:22
�0:03% 8.5

Table S4 Experimental data sets used to compare with theory. Here, ninj is the number

of injected cells, � is the passage duration, s is the fraction of cells sequenced, ˇ1=2 is

the fraction of initially injected barcodes growing above half of the characteristic barcode

frequency n0=2, as defined in Eq. (30), and  is the estimated fold-change in cell number

between injection and harvesting, which quantifies tumor growth. In all cases, cells were

harvested and injected from the ipsilateral side.
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