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Supplementary Information

The supplementary information is organized as follows. We first outline
the models for the compartmentalized pathways that we examine. Follow-
ing this, we present a detailed analytical investigation of multiple aspects
discussed in the main text. We also present additional information related
to the plots shown, including the parameter values used. We note that the
analytical solutions in all relevant cases have been cross-validated against
numerical solutions of the PDE models.

1 Models

The di↵erent biochemical pathways examined here are described below (for
the two compartment scenario). Schematics for the various pathways are
presented in the main text and Figure S1.

1.1 Single modification cycle

This is a closed system consisting of a single enzymatic modification cycle in-
volving species X and X

⇤. Both species di↵use across the whole domain, and
may have di↵erent di↵usivites. E1, the enzyme catalyzing X ! X

⇤ is non-
di↵using and uniformly distributed in compartment 1 (see Figure 1(a)). E2,
the enzyme catalyzing X

⇤ ! X is non-di↵using and uniformly distributed
in compartment 2. The enzyme substrate complexes, XE1 and X

⇤
E2 (re-

ferred to as C1 and C2) are also non-di↵using. The total amount of substrate
within the whole domain, consisting of free substrate (X and X

⇤) and the
complexes, is conserved.
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PDE model: In compartment 1 (0  ✓  L1),

@[X]

@t

= �k1[X][E1] + k�1[C1] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= k2[C1] +D

X

⇤
@

2[X⇤]

@✓

2

@[C1]

@t

= k1[X][E1]� k�1[C1]� k2[C1]

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2

@[X⇤]

@t

= D

X

⇤
@

2[X⇤]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= k4[C2] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= �k3[X
⇤][E2] + k�3[C2] +D

X

⇤
@

2[X⇤]

@✓

2

@[C2]

@t

= k3[X
⇤][E2]� k�3[C2]� k4[C2]

With the conservation equations,

X

Total = (h[X]i+ h[X⇤]i)l + h[C1]i1L1 + h[C2]i2L2,

E

Total

1 = (h[E1]i1 + h[C1]i1)L1

E

Total

2 = (h[E2]i2 + h[C2]i2)L2

where h·i represents the spatial average over the whole domain, and h·i
i

represents the spatial average over the compartment i.
The corresponding compartmental model is as follows.
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Compartmental ODE model: In compartment 1,

L1
d[X1]

dt

= �k1[X1][E1]L1 + k�1[C1]L1 � tr

X

1!2[X1]L1 + tr

X

2!1[X2]L2

L1
d[X⇤

1 ]

dt

= k2[C1]L1 � tr

X

⇤

1!2[X
⇤
1 ]L1 + tr

X

⇤

2!1[X
⇤
2 ]L2

d[C1]

dt

= k1[X1][E1]� k�1[C1]� k2[C1]

In compartment 2,

L2
d[X2]

dt

= k4[C2]L2 � tr

X

2!1[X2]L2 + tr

X

1!2[X1]L1

L2
d[X⇤

2 ]

dt

= �k3[X
⇤
2 ][E2]L2 + k�3[C2]� tr

X

⇤

2!1[X
⇤
2 ]L2 + tr

X

⇤

1!2[X
⇤
1 ]L1

d[C2]

dt

= k3[X
⇤
2 ][E2]� k�3[C2]� k4[C2]

With corresponding conservation equations for the substrate and the en-
zymes. The form of the conservation equation for the di↵using substrate will
be examined as part of our analysis.

In the compartmental ODE equations, the variables [X
i

] and [X⇤
i

] repre-
sent the concentrations of species X and X

⇤ in compartment i.

1.2 Two-step cascade

This is a closed system consisting of two enzymatic modification cycles - the
first involving species X and X

⇤, and the second involving Y and Y

⇤ (See
Fig. S1(a)). As before, the X cycle involves enzymes E1 and E2. Both
of these are non-di↵using and uniformly distributed in compartments 1 and
2 respectively. X and X

⇤ di↵use over the whole domain, with X

⇤ acting
as the enzyme for Y ! Y

⇤. Y and Y

⇤ are non-di↵using and confined to
compartment 2. E3, the enzyme catalyzing Y

⇤ ! Y is also non-di↵using and
uniformly distributed in compartment 2. All enzyme-substrate complexes are
non-di↵using. The total amount of substrate over the whole domain, in each
of the cycles, is conserved.
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PDE model: In compartment 1 (0  ✓  L1),

@[X]

@t

= �k1[X][E1] + k�1[C1] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= k2[C1] +D

X

⇤
@

2[X⇤]

@✓

2

@[C1]

@t

= k1[X][E1]� k�1[C1]� k2[C1]

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2

@[X⇤]

@t

= D

X

⇤
@

2[X⇤]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= k4[C2] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= �k3[X
⇤][E2] + k�3[C2]� k5[X

⇤][Y ] + k�5[C3] + k6[C3] +D

X

@

2[X⇤]

@✓

2

@[Y ]

@t

= �k5[X
⇤][Y ] + k�5[C3] + k8[C4]

@[Y ⇤]

@t

= �k7[Y
⇤][E3] + k�7[C3] + k6[C4]

@[C2]

@t

= k3[X
⇤][E2]� k�3[C2]� k4[C2]

@[C3]

@t

= k5[X
⇤][Y ]� k�5[C3]� k6[C3]

@[C4]

@t

= k7[Y
⇤][E3]� k�7[C4]� k8[C4]

With the conservation equations,

X

Total = (h[X]i+ h[X⇤]i)l + h[C1]i1L1 + h[C2]i1L1 + h[C3]i1L2,

Y

Total = (h[Y ]i2 + h[Y ⇤]i2)L2 + h[C3]i2L2 + h[C4]i2L2,

E

Total

1 = (h[E1]i1 + h[C1]i1)L1

E

Total

2 = (h[E2]i2 + h[C2]i2)L2

E

Total

3 = (h[E3]i2 + h[C4]i2)L2

The corresponding compartmental model is as follows.

4



Compartmental ODE model: In compartment 1,

L1
d[X1]

dt

= �k1[X1][E1]L1 + k�1[C1]L1 � tr

X

1!2[X1]L1 + tr

X

2!1[X2]L2

L1
d[X⇤

1 ]

dt

= k2[C1]L1 � tr

X

⇤

1!2[X
⇤
1 ]L1 + tr

X

⇤

2!1[X
⇤
2 ]L2

d[C1]

dt

= k1[X1][E1]� k�1[C1]� k2[C1]

In compartment 2 (L1 + L  ✓  L1 + L+ L2),

L2
d[X2]

dt

= k4[C2]L2 � tr

X

2!1[X2]L2 + tr

X

1!2[X1]L1

L2
d[X⇤

2 ]

dt

= �k3[X
⇤
1 ][E2]L2 + k�3[C2]L2 � k5[X

⇤
2 ][Y ]L2 + k�5[C3]L2 + k6[C3]� tr

X

⇤

2!1[X
⇤
2 ]L2 + tr

X

⇤

1!2[X
⇤
1 ]L1

d[Y ]

dt

= �k5[X
⇤
2 ][Y ] + k�5[C3] + k8[C4]

d[Y ⇤]

dt

= �k7[Y
⇤][E3] + k�7[C3] + k6[C4]

d[C2]

dt

= k3[X
⇤
1 ][E2]� k�3[C2]� k4[C2]

d[C3]

dt

= k5[X
⇤
2 ][Y ]� k�5[C3]� k6[C3]

d[C4]

dt

= k7[Y
⇤][E3]� k�7[C4]� k8[C4]

With corresponding conservation equations for the substrates and the
enzymes.

1.3 Two-site modification

This is a closed system involving interconversion between the species X and
its modified forms, X⇤ and X

⇤⇤, with the three forms belonging to a con-
served pool. As in the previous models, both enzymes and complexes are
non-di↵using. Enzyme E1, uniformly distributed in compartment 1, cat-
alyzes both the forward steps X ! X

⇤ and X

⇤ ! X

⇤⇤, while E2, uniformly
distributed in compartment 2, catalyzes both the reverse steps.
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PDE model: In compartment 1 (0  ✓  L1),

@[X]

@t

= �k1[X][E1] + k�1[C1] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= �k3[X
⇤][E1] + k�3[C2] + k2[C1] +D

X

⇤
@

2[X⇤]

@✓

2

@[X⇤⇤]

@t

= k4[C2] +D

X

⇤⇤
@

2[X⇤⇤]

@✓

2

@[C1]

@t

= k1[X][E1]� k�1[C1]� k2[C1]

@[C2]

@t

= k3[X
⇤][E1]� k�3[C2]� k4[C2]

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2

@[X⇤]

@t

= D

X

⇤
@

2[X⇤]

@✓

2

@[X⇤⇤]

@t

= D

X

⇤⇤
@

2[X⇤⇤]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= k8[C4] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= �k7[X
⇤][E2] + k�7[C4] + k6[C3] +D

X

⇤
@

2[X⇤]

@✓

2

@[X⇤⇤]

@t

= �k5[X
⇤⇤][E2] + k�5[C3] +D

X

⇤⇤
@

2[X⇤⇤]

@✓

2

@[C3]

@t

= k5[X
⇤⇤][E2]� k�5[C3]� k6[C3]

@[C4]

@t

= k7[X
⇤][E2]� k�7[C4]� k8[C4]

With the conservation equations,

X

Total = (h[X]i+ h[X⇤]i+ h[X⇤⇤]i)l + h[C1]i1L1 + h[C2]i1L1 + h[C3]i1L2 + h[C4]i1L2,

E

Total

1 = (h[E1]i1 + h[C1]i1 + h[C2]i1)L1

E

Total

2 = (h[E2]i1 + h[C3]i2 + h[C4]i2)L2

The corresponding compartmental model is as follows.
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Compartmental ODE model: In compartment 1,

L1
d[X]

dt

= �k1[X1][E1]L1 + k�1[C1]L1 � tr

X

1!2[X1]L1 + tr

X

2!1[X2]L2

L1
d[X⇤

1 ]

dt

= �k3[X
⇤
1 ][E1]L1 + k�3[C2]L1 + k2[C1]L1 � tr

X

⇤

1!2[X
⇤
1 ]L1 + tr

X

⇤

2!1[X
⇤
2 ]L2

L1
d[X⇤⇤

1 ]

dt

= k4[C2]L1 � tr

X

⇤⇤

1!2[X
⇤⇤
1 ]L1 + tr

X

⇤⇤

2!1[X
⇤⇤
2 ]L2

d[C1]

dt

= k1[X1][E1]� k�1[C1]� k2[C1]

d[C2]

dt

= k3[X
⇤
1 ][E1]� k�3[C2]� k4[C2]

In compartment 2,

L2
d[X2]

dt

= k8[C4]L2 � tr

X

2!1[X2]L2 + tr

X

1!2[X1]L1

L2
d[X⇤

2 ]

dt

= �k7[X
⇤
2 ][E2]L2 + k�7[C2]L2 + k6[C3]L2 � tr

X

⇤

2!1[X
⇤
2 ]L2 + tr

X

⇤

1!2[X
⇤
1 ]L1

L2
d[X⇤⇤

2 ]

dt

= �k5[X
⇤⇤
2 ][E2]L2 + k�5[C3]L2 � tr

X

⇤⇤

2!1[X
⇤⇤
2 ]L2 + tr

X

⇤⇤

1!2[X
⇤⇤
1 ]L1

d[C3]

dt

= k5[X
⇤⇤
2 ][E2]� k�5[C3]� k6[C3]

d[C4]

dt

= k7[X
⇤
2 ][E2]� k�7[C4]� k8[C4]

With corresponding conservation equations for the substrates and the en-
zymes.

1.4 Simple open system

This is an open system involving a single species X that is produced in
compartment 1 and degraded in compartment 2.

PDE model: In compartment 1 (0  ✓  L1),

@[X]

@t

= k0 +D

X

@

2[X]

@✓

2

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2
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In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= �k1[X] +D

X

@

2[X]

@✓

2

The corresponding compartmental model is as follows.

Compartmental ODE model: In compartment 1,

L1
d[X]

dt

= k0L1 � tr

X

1!2[X1]L1 + tr

X

2!1[X2]L2

In compartment 2,

L2
d[X2]

dt

= �k1[X2]L2 � tr

X

2!1[X2]L2 + tr

X

1!2[X1]L1

1.5 Metabolic pathway

This system consists of part of a metabolic pathway, involving two successive
enzymatic conversions of metabolites. The two enzymes, as well as the initial
metabolite R, are non-di↵usible, while the product of the first conversion X,
is di↵usible across the whole domain. R is present in compartment 1, with
the first enzyme P also confined to this compartment. The concentration
of R is assumed to be maintained at a fixed level in compartment 1. The
second enzyme E, that converts X to another metabolite Y , is distributed
between the two compartments (uniformly in each compartment), with a
possible di↵erence in its kinetics in compartments 1 and 2 . There are com-
peting reactions, consuming X, in the second compartment. The enzymatic
reactions are assumed to operate at the mass-action regime.

PDE model: In compartment 1 (0  ✓  L1),

@[X]

@t

= k1[P ][R]� k21[E][X] +D

X

@

2[X]

@✓

2

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= �k22[E][X]� k3[X] +D

X

@

2[X]

@✓

2

The total amount of the enzyme F is fixed,

E

Total = h[E]i1L1 + h[E]i2L2

The corresponding compartmental model is as follows.
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Compartmental ODE model: In compartment 1,

L1
d[X1]

@t

= k1[P ][R]L1 � k21[E1][X]L1 � tr

X

1!2[X1]L1 + tr

X

2!1[X2]L2

In compartment 2,

L2
d[X]

dt

= �k22[E2][X]L2 � k3[X]L2 � tr

X

1!2[X1]L1 + tr

X

2!1[X2]L2,

with the total amount of the enzyme E,

E

Total = [E1]L1 + [E2]L2

We also examine a variant of the above pathway, where the product
metabolite X negatively regulates the enzyme E. This type of negative
feedback by a metabolite on the upstream enzymes in a pathway may be
realised through allosteric regulation. In this case, the production term for
species X in compartment 1 is changed to k1[P ][R]

K+[X] in the PDE and k1[P ][R]
K+[X] L1

in the compartmental model.

2 Analytical Investigations

In this section, we present a series of investigations to consolidate and fur-
ther discuss points made in the main text. This includes solution of the rel-
evant PDEs, correspondence with the relevant compartmental models (and
obtaining relevant parameters therein, as well as other related discussions).
In all cases, analytical solutions to the PDE are cross-validated against nu-
merical solutions. Furthermore, parametrizing or modifying compartmen-
tal models to account for sequestration or changing transport parameters is
done through a correspondence between compartmental ODE models and
the PDE. This is subject to an additional level of cross-validation. Indeed,
as discussed in the main text, these changes have demonstrated a marked
improvement in matching the compartmental ODE model with the PDE in
many di↵erent parameter regimes and scenarios. Numerical evidence in the
text substantiates other analytical discussions.

2.1 Transport parameters in the thin compartment regime

For the kinds of compartmentalized reaction pathways examined in this
study, compartmental ODE models naturally correspond to the limit of well
mixed compartments connected by pure di↵usive transport. This limit is usu-
ally assumed when using compartmental ODE models. This limit may be
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realised in di↵erent ways - for the type of scenario examined here, this limit
corresponds to having compartment sizes much smaller than the intervening
space, i.e. the thin compartment regime.

Consider any 1-D, two compartment system (the following discussion is
equally applicable to systems with more compartments) of the kind examined
here (for example, see Figure 1). The net transport rate of a species X

j

out
of compartment 1 may be expressed as the product of the di↵usivity D

j

and
the concentration gradient of X

j

at the edge of the compartment. Since the
intervening space involves only di↵usion, this transport rate, at the limit of
well mixed compartments, is given by

D

j

X

j1 �X

j2

L

, (1)

where X

j1 and X

j2 are the concentrations of X
j

in compartments 1 and 2,
and L is the size of the space between compartments. Now, the net trans-
port rate of the same species X out of compartment 1, in the corresponding
compartmental ODE model is represented as

L1tr
X

1!2Xj1 � L2tr
X

2!1Xj2. (2)

From (1) and (2), we see that the transport parameters for X corresponding
to the limit of well mixed compartments is given by

tr

X

1!2 =
D

X

LL1

tr

X

2!1 =
D

X

LL2
.

In the following discussion, we use analytical solutions to the PDE (for
the simple closed and open systems) to obtain expressions for the transport
parameters, and show that the above values for the transport parameters are
attained in the limit of thin compartments.

2.2 Accounting for sequestration: Modified conserva-
tion condition

Consider the simple closed system, the compartmentalized single modifica-
tion cycle discussed in the text (see Figure 1(a)). In the thin compartment
regime, the total amount of substrate in the compartments depends on ki-
netics, while the transport parameters may be approximated by D/LL1. In
order for such a compartmental ODE model to completely capture the e↵ect
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of changing kinetics, it needs a way of accounting for the variation in total
amount of substrate (in the compartments).

Now, although the total amount in the compartments, i.e. X̃

Total, may
depend on kinetics, the total amount in the whole domain is still conserved
and remains invariant. That is,

X

Total = X̃

Total +X

Inter

is fixed independent of the kinetics, where XInter represents the total amount
of X and X

⇤ in the intermediate space. Note that the enzyme-substrate com-
plexes, being non-di↵usible, are not present in the intermediate space. Since
the concentration profiles of X and X

⇤ are linear in the intermediate space
(due to pure di↵usion in the intermediate space), XInter can be computed ex-
actly using the concentrations of X and X

⇤ at the edges of the compartments
(i.e. at ✓ = L1 and ✓ = L1 + L).

X

Inter =
X(L1) +X(L2)

2
L+

X

⇤(L1) +X

⇤(L2)

2
L

In the thin compartment regime, in the absence of significant gradients within
the compartments, these edge concentrations may be reasonably approxi-
mated by the compartmental averages. This means that, for the compart-
mental ODE, we can write a conservation condition for the whole domain:

X

Total = [X1]L1 + [X2]L2 + [X⇤
1 ]L1 + [X⇤

2 ]L2 + [C1]L1 + [C2]L2

+
[X1] + [X2]

2
L+

[X⇤
1 ] + [X⇤

2 ]

2
L

For the single modification cycle, there is only one enzyme-substrate complex
in each compartment - C1 in compartment 1 and C2 in compartment 2.

The above conservation condition involves only the compartmental vari-
ables, but still accounts for the sequestration of species in the intermediate
space. Note that we have explicitly used steady state conditions in obtaining
this conservation condition.

2.3 Accounting for sequestration: Using a third com-
partment for the intermediate space

The modified conservation condition described above approximates the total
amount in the intermediate space well, for a system in the thin compartment
regime. However, this approximation only describes the steady state. Away
from steady state conditions, the total amount in the intermediate space may
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not be equal to the average of the compartmental concentrations multiplied
by the size of the intermediate space. One way to overcome this limitation,
is to use a third compartment to describe the intermediate space.

Consider a general pathway involving two compartments in 1-D. In the
thin compartment regime, the basic (two) compartmental model is given by:

L1
dX

j1

dt

= L1fj1(X11, X21, ..., Xn1)� L1tr
j

1!2Xj1 + L2tr
j

2!1Xj2

L2
dX

j2

dt

= L2fj2(X12, X22, ..., Xn2)� L2tr
j

2!1Xj2 + L1tr
j

1!2Xj1 (3)

where j = 1, 2, ..., n

where the variables X
ji

represent the (average) concentration of species j in
compartment i. The reaction kinetic terms are represented by the functions
f

ji

(X1i, X2i, ..., Xni

). Each species j has a pair of transport parameters as-
sociated with it - trj1!2 and tr

j

1!2. As seen above, in the thin compartment
regime, these are well approximated by Dj

LL1
and Dj

LL2
respectively, where D

j

is the di↵usivity of species j. Thus, the transport rate of X
j

out of compart-
ment 1 (into compartment 2) has the form (1).

Now, instead of just using a modified conservation condition for each
di↵using species that is conserved, we introduce a third compartment rep-
resenting the intermediate space. The compartmental model is now given
by

L1
dX

j1

dt

= L1fj1(X11, X21, ..., Xn1)� L1tr
j

1!m

X

j1 + Ltr

j

m!1Xjm

L

dX

jm

dt

= L1tr
j

1!m

X

j1 � Ltr

j

m!1Xjm

+ L2tr
j

2!m

X

j2 � Ltr

j

m!2Xjm

L2
dX

j2

dt

= L2fj2(X12, X22, ..., Xn2)� L2tr
j

2!m

X

j2 + Ltr

j

m!2Xjm

(4)

where j = 1, 2, ..., n

Here, X
jm

represents the (average) concentration of species j in the inter-
mediate space denoted by m. Suppose that transport parameters are chosen

12



in the following way:

tr

j

1!m

=
2D

j

LL1
,

tr

j

2!m

=
2D

j

LL2
,

tr

j

m!1 = tr

j

m!2 =
2D

j

L

2
.

At steady state, this gives X
jm

= Xj1+Xj2

2 , and the transport rate of X
j

out of
compartment 1 (into compartment 2) continues to have the form (1). Now,
the conservation condition for a conserved, di↵using species may be correctly
approximated by incorporating the corresponding amount in the third com-
partment, when computing the total amount of substrate. Note, that the
above model fails completely if any reactions involving net production or re-
moval of X

j

are present in the intermediate space, even if the corresponding
kinetic terms are incorporated into (4). This is because the resulting system
would no longer correspond to the limit of thin compartments.

Now we discuss analytical solutions to the PDE models for the single
modification cycle and the simple open system discussed in the main text.

2.4 Solutions to PDE models

Case 1: Single modification cycle(mass-action)

1-D PDE model:

We assume that both phosphorylation and dephosphorylation occure through
mass action kinetics. Note that this can be formally obtained from the model
in the previous section by making the catalytic constants high. The kinase
and phosphatase are uniformly distributed in the regions 0  ✓ < L1 and
L1 + L  ✓ < l < L1 + L + L2 respectively (see Figure 1(a)). We assume
that both the phosphorylation and dephosphorylation involve mass action
kinetics. We first consider the case where X and X

⇤ are equally di↵usible.
In compartment 1 (0  ✓  L1),

@[X]

@t

= �k1[X] +D

@

2[X]

@✓

2

@[X⇤]

@t

= k1[X] +D

@

2[X⇤]

@✓

2

13



Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

@

2[X]

@✓

2

@[X⇤]

@t

= D

@

2[X⇤]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= k2[X
⇤] +D

@

2[X]

@✓

2

@[X⇤]

@t

= �k2[X
⇤] +D

@

2[X⇤]

@✓

2

With the conservation condition,

X

Total = (h[X]i+ h[X⇤]i)l,

where h·i represents the spatial average over the whole domain. In the above,
k1 represents the product of the phosphorylation rate constant and the total
kinase concentration, while k2 represents the product of the dephosphoryla-
tion rate constant and the total phosphatase concentration

Since X and X

⇤ are equally di↵usible, the PDE model implies that the
quantity [X]+[X⇤] must be constant throughout the domain at steady state.
That is, [X] + [X⇤] = X

T

, where X

T

= X

Total

/l. This also means that the
total amount of substrate sequestered in the middle is independent of the
kinetic parameters in the compartments. Also note that the equations for X
and X

⇤ are linear. Combined with the above condition, this means that [X]
and [X⇤] are linearly proportional to X

T

(and hence to X

Total).

1-D PDE Solution

Implementing no-flux boundary conditions we find:

For 0  ✓ < L1 : [X] = c1XT

(e!1✓ + e

�!1✓)

[X⇤] = X

T

(1� c1(e
!1✓ + e

�!1✓))

For L1  ✓ < L1 + L : [X] = X

T

(c2✓ + c3)

[X⇤] = X

T

(1� c2✓ � c3)

For L1 + L  ✓ < l : [X] = c4XT

(e!2✓ + e

!2(2l�✓))

[X⇤] = X

T

(1� c4(e
!2✓ + e

!2(2l�✓)))

where l = L1 + L+ L2; !
2
1 =

k1

D

; !2
2 =

k2

D

14



c1 =
1

(e!1L1 + e

�!1L1) + !1L(e!1✓ � e

�!1✓)� !1(e!1✓�e

�!1✓)(e!2(L1+L)+e

!2(2l�L1�L))
!2(e!2(L1+L)�e

!2(2l�L1�L))

c2 = c1!1(e
!1✓ � e

�!1✓)

c3 = c1(e
!1L1 + e

�!1L1)� c2L

c4 =
�c2

!2(e!2(L1+L) � e

!2(2l�L1�L))

Compartmental averages

hXi1 =
c1XT

!1L1
(e!1L1 � e

�!1L1)

hX⇤i2 =
c4XT

!2L2
(e!2(L1+L) � e

!2(2l�L1�L)) (5)

Since the di↵usivities of X and X

⇤ are equal, the compartmental averages
must also satisfy the equations

hXi1 + hX⇤i1 = X

T

hXi2 + hX⇤i2 = X

T

(6)

We now consider the corresponding compartmental ODE model for the
case where the volumes of the two compartments are equal, i.e. L1 = L2.
The case where L1 6= L2 is essentially no di↵erent. Since the volumes are
equal, we have a single transport parameter associated with each species -
tr

X for X and tr

X

⇤
for X⇤. The model is as follows.

In compartment 1,

d[X1]

dt

= �k1[X1]� tr

X [X1] + tr

X [X2]

d[X⇤
1 ]

dt

= k1[X1]� tr

X

⇤
[X⇤

1 ] + tr

X

⇤
[X⇤

2 ]

In compartment 2,

d[X2]

dt

= k2[X
⇤
2 ]� tr

X [X2] + tr

X [X1]

d[X⇤
2 ]

dt

= �k3[X
⇤
2 ]� tr

X

⇤
[X⇤

2 ] + tr

X

⇤
[X⇤

1 ] (7)
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Transport parameter

The values of the transport parameters that make the steady state of the
compartmental model exactly match the PDE averages may then be com-
puted as follows:

tr

X =
k1hXi1

hXi2 � hXi1

tr

X

⇤
=

�k1hXi1
hX⇤i2 � hX⇤i1

As we show below, the two transport parameters must be in the same ratio
as the di↵usivities of X and X

⇤. Thus, for the case of equal di↵usivities, we
have a single transport parameter tr. Using equations (5) and (6), we have

tr =
k1

c1
!1L1

(e!1L1 � e

�!1L1)

1� (1 + k1
k2
) c1
!1L1

(e!1L1 � e

�!1L1)
(8)

Taking the limit L ! 1, keeping D

L

constant, we find that

lim
L!1

hXi1 = lim
L!1

2c1XT

=
X

T⇣
1 + k1

k2
+ k1LL1

D

⌘

=) lim
L!1

tr =
D

L1L

This shows how the expression D/LL1 can be reached naturally from the
expression for the transport parameter.

We now examine the case where X and X

⇤ have di↵erent di↵usivities, D
X

and D

X

⇤ . To find the steady state solution to this system, we use a change
of variables: [ eX] = D

X

[X] and [ eX⇤] = D

X

⇤ [X⇤]. At steady state, this gives
us a system of the same form as the equal di↵usivity case (with D = 1),
in the new variables [ eX] and [ eX⇤]. Note that, in the new system, the rate
constants multiplying [ eX] and [ eX⇤] are k1

DX
and k2

DX⇤ respectively. Now, we
can use the solution previously obtained in the equal di↵usivity case, with
these rate constants, and setting D = 1, to compute the profiles of the new

variables [ eX] and [ eX⇤]. The actual profiles are then given by [X] = [ eX]
DX

and

[X⇤] = [ eX⇤]
DX⇤ .

The compartmental model for the system is given by (7). The values
of the transport parameters that produce an exact match with the PDE

16



averages at steady state are computed as follows:

tr

X =
k1hXi1

hXi2 � hXi1
=

k1
h eXi1
DX

1
DX

⇣
h eXi2 � h eXi1

⌘ =
k1h eXi1

h eXi2 � h eXi1
(9)

tr

X

⇤
=

�k1hXi1
hX⇤i2 � hX⇤i1

=
�k1

h eXi1
DX

1
DX⇤

⇣
h eX⇤i2 � h eX⇤i1

⌘ =
k1h eXi1

h eXi2 � h eXi1

✓
D

X

⇤

D

X

◆
,

(10)

where we have also used the fact that h eXi and h eX⇤i satisfy equations of
the form (6). From (9) and (10), we see that the transport parameters are
in the same ratio as the di↵usivities.

Case 2: Simple open system

This is an open system involving a single species X that is produced in
compartment 1 (rate constant k0) and degraded/consumed in compartment
2 (rate constant k1).

1-D PDE Model

In compartment 1 (0  ✓  L1),

@[X]

@t

= k0 +D

X

@

2[X]

@✓

2

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= �k1[X] +D

X

@

2[X]

@✓

2
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1-D PDE Solution

The solution is as follows:

For 0  ✓ < L1 : X = k0

✓
�✓

2

2D
+ c2

◆

For L1  ✓ < L1 + L : X = k0(c3✓ + c4)

For L1 + L  ✓ < l : X = k0c5(e
!1✓ + e

!1(2l�✓))

where l = L1 + L+ L2; !
2
1 =

k1

D

;

c2 =

✓
L

2
1

2D
+

k0L1L

D

� k0L1(e!1(L1+L) + e

!1(2l�L1�L))

!1D(e!1(L1+L) � e

!1(2l�L1�L))

◆

c3 =
�L1

D

c4 =
L

2
1

D

+
L1L

D

� L1(e!1(L1+L) + e

!1(2l�L1�L))

!1D(e!1(L1+L) � e

!1(2l�L1�L))

c5 =
�L1

!1D(e!1(L1+L) � e

!1(2l�L1�L))

Compartmental averages

hXi1 = k0

✓
�L

2
1

6D
+ c2

◆

hXi2 = k0

✓
�c5(e!1(L1+L) � e

!1(2l�L1�L))

!1L2

◆
=

k0L1

k1L2
(11)

We now consider the corresponding compartmental model for the case where
the volumes of the two compartments are equal, i.e. L1 = L2. The case
where L1 6= L2 is essentially no di↵erent. Since the volumes are equal, we
have a single transport parameter associated the species X. The model is
given by:
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Compartmental ODE model: In compartment 1,

d[X]

dt

= k0 � tr

X [X1] + tr

X [X2]

In compartment 2,

d[X2]

dt

= �k1[X2]� tr

X [X2] + tr

X [X1]

Transport parameter

The values of the transport parameters that make the steady state of the
compartmental model exactly match the PDE averages may then be com-
puted as follows:

tr

X =
k0

hXi1 � hXi2
, (12)

where hXi1 and hXi2 are given by (11). Substituting for hXi1 and hXi2 and
taking the limit L ! 1, keeping D

L

constant, we find that

lim
L!1

hXi1 = lim
L!1

k0c2 = k0L1

✓
1

k1L2
+

L

D

◆

=) lim
L!1

tr

X =
D

L1L

Case 3: Simple open system (with degradation in both
compartments)

This is an open system involving a single species X that is produced in com-
partment 1 (rate constant k0) and degraded/consumed in both compartment
1 (rate constant k1) and compartment 2 (rate constant k2).

1-D PDE Model

In compartment 1 (0  ✓  L1),

@[X]

@t

= k0 � k1[X] +D

X

@

2[X]

@✓

2

Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2
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In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= �k2[X] +D

X

@

2[X]

@✓

2

1-D PDE Solution

The solution is as follows:

For 0  ✓ < L1 : X = k0

✓
c1(e

!1✓ + e

�!1✓) +
1

k1

◆

For L1  ✓ < L1 + L : X = k0(c3✓ + c4)

For L1 + L  ✓ < l : X = k0c5(e
!2✓ + e

!2(2l�✓))

where l = L1 + L+ L2; !
2
1 =

k1

D

; !2
2 =

k2

D

;

c3 =
1

k1

⇣
(e!2(L1+L)+e

!2(2l�L1�L))
!2(e!2(L1+L)�e

!2(2l�L1�L))
� (e!1L1+e

�!1L1 )
!1(e!1L1�e

�!1L1 )
� L

⌘

c1 =
c3

!1(e!1L1 � e

�!1L1)

c4 = c1(e
!1L1 + e

�!1L1) +
1

k1
� c3L1

c5 =
c3

!2(e!2(L1+L) � e

!2(2l�L1�L))

Compartmental averages

hXi1 = k0

✓
c1

!1L1
(e!1L1 � e

�!1L1) +
1

k1

◆

hXi2 = k0

✓
c5

!2L2
(e!2(L1+L) � e

!2(2l�L1�L))

◆

We now consider the corresponding compartmental model for the case
where the volumes of the two compartments are equal, i.e. L1 = L2. The
case where L1 6= L2 is essentially no di↵erent. Since the volumes are equal,
we have a single transport parameter associated the species X. The model
is given by:
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Compartmental ODE model: In compartment 1,

d[X]

dt

= k0 � k1[X1]� tr

X [X1] + tr

X [X2]

In compartment 2,

d[X2]

dt

= �k2[X2]� tr

X [X2] + tr

X [X1]

Transport parameter

The values of the transport parameters that make the steady state of the
compartmental model exactly match the PDE averages may then be com-
puted as follows:

tr

X =
k0 � k1hXi1
hXi1 � hXi2

,

Case 4: Compartmentalized two-site modification (Mass-
action)

We consider the system involving interconversion between the species X and
its modified forms, X⇤ and X

⇤⇤, with the three forms belonging to a con-
served pool. The phosphorylation reactions are assumed to be in the mass
action regime, with kinases restricted to compartment 1 and phosphatases
in compartment 2. All species are assumed to be equally di↵usible.

1-D PDE Model

In compartment 1 (0  ✓  L1),

@[X]

@t

= �k1[X] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= k1[X]� k2[X
⇤] +D

X

@

2[X⇤]

@✓

2

@[X⇤⇤]

@t

= k2[X
⇤] +D

X

@

2[X⇤⇤]

@✓

2
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Between the compartments (L1  ✓  L1 + L),

@[X]

@t

= D

X

@

2[X]

@✓

2

@[X⇤]

@t

= D

X

@

2[X⇤]

@✓

2

@[X⇤⇤]

@t

= D

X

@

2[X⇤⇤]

@✓

2

In compartment 2 (L1 + L  ✓  L1 + L+ L2 = l),

@[X]

@t

= k4[X
⇤] +D

X

@

2[X]

@✓

2

@[X⇤]

@t

= k3[X
⇤⇤]� k4[X

⇤] +D

X

@

2[X⇤]

@✓

2

@[X⇤⇤]

@t

= �k3[X
⇤⇤] +D

X

@

2[X⇤⇤]

@✓

2

With the concentration profiles satisfying a conservation condition of the
form,

X

Total

l

= [X] + [X⇤] + [X⇤⇤] for 0  ✓  l

1-D PDE Solution

For 0  ✓ < L1 : [X] = X

T

c1 cosh(!1✓)

[X⇤] = X

T

✓
c2 cosh(!2✓)�

k1c1

k1 � k2
cosh(!1✓))

◆

[X⇤⇤] = X

T

� [X]� [X⇤]

For L1  ✓ < L1 + L : [X] = X

T

(c3✓ + c4)

[X⇤] = X

T

(c5✓ + c6)

[X⇤⇤] = X

T

� [X]� [X⇤]

For L1 + L  ✓ < l : [X] = X

T

� [X⇤]� [X⇤⇤]

[X⇤] = X

T

✓
c8 cosh(!4(l � ✓))� k3c7

k3 � k4
cosh(!3(l � ✓))

◆

[X⇤⇤] = X

T

c7 cosh(!3(l � ✓))

where l = L1 + L+ L2;

!

2
1 =

k1

D

X

; !2
2 =

k2

D

X

; !2
3 =

k3

D

X

; !2
4 =

k4

D

X
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The constants c

i

(i = 1, ..., 8) that determine the solution, are obtained
by using the boundary conditions - no-flux conditions at the outer bound-
aries of the domain, and continuity of the concentration profiles and their
first derivatives, at the compartment boundaries. This yields eight linear
equations in the variables c

i

, which are then solved by symbolic computation
using Maple. The expressions thus obtained for the steady state concentra-
tion profiles of [X], [X⇤], and [X⇤⇤] are then validated by comparison with
the steady state profiles obtained by numerical solution of the PDE system.

2.5 Thin compartment regime in a 2-D system

We have seen that a compartmental model, with fixed transport parameters
of the form D/LL

i

, is a good approximation for a 1-D system in the thin
compartment regime, at steady state. Here we show how a similar ODE
model may be obtained for the same kind of system in a general 2-D case, with
smooth boundaries for the compartments and the spatial domain. Consider
the 2-D system shown in Fig. S1(b). Since the kinetics play no role in
representing transport in the thin compartment regime, we can focus on
a single species X to get the general picture. At steady state, let X(~r)
denote the concentration of species X outside the compartments. Within
the compartments, and on the compartment boundaries (�1 and �2), the
concentrations are given by the compartmental averages - X1 and X2.

Since the intermediate space involves only di↵usion of X, at steady state
we have

r2
X(~r) = 0

with the boundary conditions

rX(~r) = 0 on the outer boundary � (no - flux)

X(~r) = X1 on the boundary �1

X(~r) = X2 on the boundary �2

The solution to this boundary value problem may be expressed as

X(~r) = X1f1(~r) +X2f2(~r)

where the functions f1(~r) and f2(~r) are solutions to the above boundary
problem for the basal casesX1 = 1, X2 = 0 andX1 = 0, X2 = 1 respectively.
As long as the geometry of the system remains unchanged, these functions
only need to be solved for once (perhaps numerically), and can be used in the
following way to obtain a compartmental description in the thin compartment
regime. Note that the gradient of X(~r) is given by

rX(~r) = X1rf1(~r) +X2rf2(~r) (13)
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At steady state, the net transport of X out of compartment 1 is given by
averaging the flux over the boundary �1:

Net Transport = �D

X

Z

�1

rX(~r).n̂ds,

where n̂ is the unit outward normal to �1. This can be rewritten as:

Net Transport = �D

X

✓Z

�1

rf1(~r).n̂ds

◆
X1 �D

X

✓Z

�1

rf2(~r).n̂ds

◆
X2,

(14)

In the compartmental model for this 2-D system, the net transport of X out
of compartment 1 is represented by:

Net Transport = A1tr
X

1!2X1 � A2tr
X

2!1X2 (15)

where X

i

are the compartmental (average) concentrations and A

i

are the
volumes (areas) of the compartments. Comparing (14) and (15), we see that
the two transport parameters associated with the species X in the compart-
mental model are given by:

tr

X

1!2 = �D

X

A1

✓Z

�1

rf1(~r).n̂ds

◆
,

tr

X

2!1 =
D

X

A2

✓Z

�1

rf2(~r).n̂ds

◆

2.6 Finding a compartmental ODE description to match
the PDE

1-D PDE at steady state

Consider a general pathway with first-order mass-action kinetics and possible
zeroth order production, distributed between two equally sized compartments
(L1 = L2), in a 1-D domain (see Figure 1 for the geometry). At steady state,
the PDE model in vector form gives:

A1u+ b1 +D

@

2
u

@✓

2
= 0 in compartment 1

D

@

2
u

@✓

2
= 0 in the intermediate space

A2u+ b2 +D

@

2
u

@✓

2
= 0 in compartment 2 (16)
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Here, u is the vector of species concentrations at a point in the domain,
and A1 and A2 are square matrices containing the rate constants correspond-
ing to the mass-action reactions in compartments 1 and 2 respectively. The
vectors b1 and b2 represent possible zeroth order production terms, and D

is a diagonal matrix containing the di↵usivities of the di↵erent species. For
example, for the single modification cycle discussed in the main text, with
kinetics at the mass-action regime,

A1 =


�k1 0
k1 0

�
; A2 =


0 k2

0 �k2

�

b1 = b2 =


0
0

�

D =


D

X

0
0 D

X

⇤

�

No-flux boundaries are present at the ends of the domain. Averaging over
compartments 1 and 2 at steady state, we have

A1hui1 + b1 +
1

L1
D

✓
@u

@✓

◆

L1

= 0 (17)

A2hui2 + b2 �
1

L1
D

✓
@u

@✓

◆

L1+L

= 0 (18)

Here, hui1 and hui2 are vectors of compartmental averages for compartments
1 and 2. Since no reactions occur in the intermediate space, we also have
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@u
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◆

L1

=
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@u
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◆

L1+L

(19)

This also means that

A1hui1 + b1 = �A2hui2 � b2 (20)

Compartmental ODE

For the system described by (16), we consider a compartmental ODE model
where each species has a single transport parameter associated with it. The
compartmental model has the form:

dū1

dt

= A1ū1 + b1 +��

dū2

dt

= A2ū2 + b2 ��� (21)
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Here, ū1 and ū2 denote vectors of species concentrations corresponding to
compartments 1 and 2 respectively. � is a vector containing the transport
parameters, and � is a diagonal matrix having the components of the vector
ū2 � ū1 as its diagonal.

Since we want the compartmental model to match the PDE compartmen-
tal averages at steady state, the steady state equations for the compartmental
model must satisfy the equations:

A1hui1 + b1 +�
u

� = 0

A2hui2 + b2 ��
u

� = 0

where �
u

is a diagonal matrix having the vector hui2 � hui1 as its diagonal.
Thus, the matrix �

u

is non-singular, assuming that the system corresponds
to a case where all di↵using species exhibit gradients between compartments.
This fact, along with (20), allows us to compute the unique vector of trans-
port parameters- �

ss

, that produces an exact match between the compart-
mental model and the PDE averages at steady state.

�

ss

= ���1
u

(A1hui1 + b1) (22)

Note that there are exceptional cases where the compartmental averages
may be equal for certain species (i.e. certain components of the vector hui2�
hui1 may be zero), even when there is a non-zero concentration gradient for
this species between compartments. In such cases, the transport parameter
associated with this species diverges (See main text).

Of course, in addition to using these transport parameters, the ability of
the compartmental model to match the PDE at steady state also relies on
correctly describing the conservation conditions for any conserved species, as
seen previously.

Compartmental ODEs: Nonlinear kinetics

We now examine the case similar to (16), but where the kinetics can have
arbitrary form, i.e. possibly including nonlinear terms such as second-order
mass action steps or Michaelis-Menten kinetics. At steady state we have:

f1(u) +D

@

2
u

@✓

2
= 0 in compartment 1

D

@

2
u

@✓

2
= 0 in the intermediate space

f2(u) +D

@

2
u

@✓

2
= 0 in compartment 2 (23)
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where f1(u) and f2(u) are nonlinear, vector valued functions of u representing
the sum of the kinetic terms in compartments 1 and 2. Averaging over the
compartments, we find

hf1(u)i1 +
1

L1
D

✓
@u

@✓

◆

L1

= 0

hf2(u)i2 �
1

L1
D

✓
@u

@✓

◆

L1+L

= 0

As before, we have

hf1(u)i1 = �hf2(u)i2
Note however, that these are spatial averages of f1(u) and f2(u), and not
functions of the average of u, i.e. f1(hui1) and f2(hui2). In general, these are
not equal, and therefore,

f1(hui1) 6= �f2(hui2) (24)

Now consider the compartmental model for the system (23), given by

dū1

dt

= f1(ū1) +��

dū2

dt

= f2(ū2)��� (25)

At steady state, the vectors of compartmental concentrations, ū1 and ū2

must satisfy

f1(ū1) = �f2(ū2) (26)

From (24) and (26), we can conclude that the compartmental model can-
not exactly match the PDE averages at steady state, when nonlinear kinetic
terms are involved. The best that can be done in this case is to choose the
vector of transport parameters such that the mismatch is minimized in some
sense. In the present study, we choose to minimize the sum-squared error
k(ū1�hui1)k2+k(ū2�hui2)k2. For the compartmental model (10), this gives
us a nonlinear optimization problem with a quadratic objective function and
nonlinear equality constraints:

min
�

k(ū1 � hui1)k2 + k(ū2 � hui2)k2

s.t. f1(ū1) +�� = 0

f2(ū2)��� = 0 (27)

Any conservation conditions would form additional equality constraints in
(27).
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Transport Parameters and Di↵usivities

We now examine the possibility that, for the first-order mass-action system
in (16), the transport parameters for the di↵erent species, that produce an
exact steady state match, are in the same ratio as the di↵usivities of the
corresponding species. For this to be true, at steady state we need the
vectors of compartmental averages, hui1 and hui2 to satisfy an equation of
the form:

A1hui1 + b1 + �D(hui2 � hui1) = 0 (28)

for some positive �. Thus, from equations (17) and (28), we need

1

L1

✓
@ū
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◆

L1

= �(hūi2 � hūi1) (29)

Single modification cycle (X to X*). Since the kinetics in each com-
partment conserves the total amount of species, the species concentrations
satisfy

D

X

X +D

X

⇤
X

⇤ = X

T

(30)

at all points in the domain. X
T

is constant within the domain but its value
depends on both kinetic and spatial parameters (including compartment size,
compartment separation, and di↵usivities). Thus, the compartmental aver-
ages satisfy,
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Rewriting this,

D

X

(hXi1 � hXi2) +D

X

⇤ (hX⇤i1 � hX⇤i2) = 0 (31)

Now, the steady state mass balance for compartment 1 implies
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i.e. the net flux out of the compartment is zero.
Equations (31) and (32) imply that the di↵erences in compartmental

averages are related to the concentration gradients in the intervening space,
as follows
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Thus, the compartmental fluxes and compartmental averages satisfy an equa-
tion of the form (29). This means that a compartmental ODE model that
exactly matches the PDE compartmental averages at steady state, must have
transport parameters in the same ratio as the di↵usivites. For a given set of
kinetic and spatial parameters, these transport parameters would be uniquely
determined.

Two-site modification cycle (X to X* to X**). Since the kinetics in
each compartment only results in an interconversion between species, adding
the equations for X, X⇤, and X

⇤⇤ at steady state results in:

D

X

X +D

X

⇤
X

⇤ +D

X

⇤⇤
X

⇤⇤ = X

T

(34)

at all points in the domain, where X
T

is constant across the domain As in the
previous case, the compartmental averages for the di↵erent species satisfy
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⇤ (hX⇤i1 � hX⇤i2) +D

X

⇤⇤ (hX⇤⇤i1 � hX⇤⇤i2) = 0
(35)

Considering the steady state mass balance for compartment 1, we have

D

X

✓
@X

@✓

◆

L1

+D

⇤
X

✓
@X

⇤

@✓

◆

L1

+D

⇤⇤
X

✓
@X

⇤⇤

@✓

◆

L1

= 0 (36)

However, unlike the case of the single modification cycle, equations (35) and
(36) do not su�ce to give us a relationship of the form
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(37)

This means that a compartmental ODE, which matches the PDE compart-
mental averages at steady state, need not have transport parameters in the
same ratio as the di↵usivities. However, the transport parameter associated
with each species would still be uniquely determined. The transport pa-
rameters for the exact match, obtained numerically (solving the PDE and
computing compartmental averages) for a sample case, are shown in Fig.
5(b).
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3 Additional Information

3.1 Adding a third compartment

We examine the case of adding a third compartment to an existing two
compartment open pathway (see schematic in Fig. 4(c)). The three com-
partments are of the same size, and are equally spaced. The species X is
produced at a constant rate (zeroth order kinetics) in compartment 1, and
di↵uses across the domain. X is consumed by reactions in compartments
1, 2 and 3 (represented by first order reactions). We obtain the analytical
solution to this three compartment system at steady state (not shown), and
use the steady state concentration profile of X to compute spatial averages
within each compartment. We use these averages to calculate the two trans-
port parameters trX12 and tr

X

23 representing transport between compartments
1 and 2 and between 2 and 3 respectively, as shown in (22) for the general
case. Each of these transport parameters depend on the di↵usivity, compart-
ment sizes, compartment separation, and all the kinetic parameters. We fix
the di↵usivity, compartment sizes, compartment separation, and the kinetic
parameters in compartments 1 and 2 (see table below for parameter values),
and examine the e↵ect of varying the rate constant of X consumption in
compartment 3. The result is shown in Fig. 4(d). Note that the analytical
solution to the three compartment system was cross-validated by comparison
to the numerical solution of the PDE.

3.2 Bistable two-site modification

As discussed in the text, we consider a compartmentalized two-site modi-
fication pathway (see Fig. 5(a)), in a kinetic regime where it exhibits two
stable steady states, over a range of values of ETotal

1 - the total amount of
kinase in compartment 1. We consider this system in the thin compartment
regime (L/L1 = 18). The concentration profiles for the two steady states
are obtained by numerical solution of the PDE model, with a fixed total
amount of substrate X

Total = 10 and enzymes ETotal

1 = 0.6; ETotal

2 = 5. We
note that the total amount of substrate (free substrate + complexes) in the
compartments is di↵erent for the two steady states. Now, for a given steady
state, there are two ways of calibrating the compartmental model with the
correct total amount of substrate in the compartment. One way is to obtain
this total amount from the concentration profiles of the given steady state.
However, since this amount is di↵erent for the two steady states, the result-
ing compartmental description can only capture one of these accurately (i.e.
the steady state used for the calibration). As shown in Fig. 5(f) this may not
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even capture the second steady state. The other way is to use the modified
conservation condition discussed previously, which accounts for substrate in
intermediate space as well. This is a good approximation because the system
is in the thin compartment regime. By using this conservation condition, the
compartmental model is able to accurately capture both steady states.
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 Parameter values 

Figure 1 (b) Total_amount of substrate = 2 
𝑘1 = 1 
𝑘2 = 2 

𝐷𝑋 = 0.05 
𝐷𝑋∗ = 0.1 

L/L1 = 18 
Domain size = 1 
 

Figure 1(c)  Total_amount of substrate = 2 
𝑘1 = 1 
𝑘2 = 2 

𝐷𝑋 = 0.05 
𝐷𝑋∗ = 0.1 

L/L1 = 18 
Domain size = 1 
 
 
 

 Figure 1(d) Total_amount of substrate = 10 
𝑘1 = 10 

𝑘−1 = 0.1 
𝑘2 = 1.5 
𝑘3 = 2 

𝑘−3 = 0.2 
𝑘4 = 0.4 

𝐸1𝑇𝑜𝑡𝑎𝑙 = 10 
𝐸2𝑇𝑜𝑡𝑎𝑙 = 1 (𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑡𝑜 10) 

𝐷𝑋 = 𝐷𝑋∗ = 0.1 
L/L1 = 18 
Domain size = 1 
Note: The sequestration in the intermediate 
space is accounted for exactly, in both the basal 
and perturbed cases, using the numerical 
solution of the PDE. 
 

Figure 2(a), (b) Total_amount of substrate = 2 
𝑘1 = 1 (basal); 𝑘1 = 100 (perturbed) 

𝑘2 = 2 
𝐷𝑋 = 0.05 
𝐷𝑋∗ = 0.1 

L/L1 = 0.5 
Domain size = 1 
Note: The sequestration in the intermediate 
space is accounted for exactly, in both the basal 
and perturbed cases, using the analytical 
solution. 

Figure 2(c) Total_amount of substrate = 10 
𝑘1 = 1 (basal); 𝑘1 = 100 (perturbed) 

𝑘−1 = 0.1 
𝑘2 = 300 



𝑘3 = 2 
𝑘−3 = 0.2 
𝑘4 = 400 

𝐸1𝑇𝑜𝑡𝑎𝑙 = 1 
𝐸2𝑇𝑜𝑡𝑎𝑙 = 1 

𝐷𝑋 = 𝐷𝑋∗ = 0.1 
 
L/L1 = 0.5 
Domain size = 1 
 
D/(L1*L) = 1.25 
Transport parameter = 0.54 (basal); 0.68 
(perturbed) 
(Computed by minimizing error) 
Note: The sequestration in the intermediate 
space is accounted for exactly, in both the basal 
and perturbed cases, using the numerical 
solution of the PDE. 
 

Figure 3(a) Total amount of substrate = 2 
𝑘2 = 2 

𝐷𝑋 = 0.1 
𝐷𝑋∗ = 0.1 

L/L1 = 1, 0.1 
Domain size = 1 
 

Figure 3(b) Total amount of substrate = 2 
𝑘1 = 10 
𝑘2 = 2 

𝐷𝑋 = 0.1 
𝐷𝑋∗ = 0.1 

L/L1 = 18 
Domain size = 1 
 

Figure 3(c) and Figure 3(d) Total amount of substrate = 2 
𝑘1 = 10 
𝑘2 = 2 

𝐷𝑋 = 0.1 
𝐷𝑋∗ = 0.1 

Vary L, keeping D/L constant 
Domain size = 1 
 

Figure 4(b) (Simple open pathway) 𝑘0 = 1 
𝐷𝑋 = 0.1 

L/L1 = 1, 0.1 
Domain size = 1 
 

Figure 4(d) (Three compartment open system) 𝑘0 = 1 (Compartment 1) 
𝑘1 = 1 (Compartment 1) 
𝑘2 = 0.1 (Compartment 2) 

𝐷𝑋 = 0.1 
Equal sized compartments, L1=L2=L3=1/3 



Equally spaced, separation = 1/15 
 

Figure 5(b) (Two-site modification)  Mass action limit 
𝑘1 = 1.5 

𝑘2 = 0.02 
𝑘3 = 0.1 
𝑘4 = 2 

𝐷𝑋 = 𝐷𝑋∗ = 𝐷𝑋∗∗ = 0.01 
Domain size = 1 
L/L1 = 0.5 

Figure 5(c) (Two-site modification) Mass action limit 
𝑘1 = 1.5 
𝑘2 = 2 

𝑘3 = 0.05 
𝑘4 = 1 

𝐷𝑋 = 𝐷𝑋∗ = 𝐷𝑋∗∗ = 0.01 
Domain size = 1 
L/L1 = 0.5 
 

Figure 5(d) (Two-site modification) Mass action limit 
𝑘1 = 1.5 
𝑘2 = 2 

𝑘3 = 0.05 
𝐷𝑋 = 𝐷𝑋∗ = 𝐷𝑋∗∗ = 0.01 

Domain size = 1 
L/L1 = 0.5 
 

Figure 5 (e) and (f) Total amount in whole domain = 10 
𝑘1 = 45 

𝑘−1 = 0.5 
𝑘2 = 4 

𝑘3 = 125 
𝑘−3 = 0.5 
𝑘4 = 80 
𝑘5 = 15 

𝑘−5 = 0.05 
𝑘6 = 1 

𝑘7 = 25 
𝑘−7 = 0.05 

𝑘8 = 3.5 
 

𝐸1𝑇𝑜𝑡𝑎𝑙 = 0.6 (𝑏𝑎𝑠𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) 
𝐸2𝑇𝑜𝑡𝑎𝑙 = 5 

 
𝐷𝑋 = 𝐷𝑋∗ = 𝐷𝑋∗∗ = 0.1 

L/L1 = 18 
Domain size = 1 
 

Figure 6(b) 𝑘1 = 0.02 
𝑘21 = 0.1 
𝑘22 = 1 
𝑘3 = 0.5 



𝐸𝑇𝑜𝑡𝑎𝑙 = 1 

𝐹𝑇𝑜𝑡𝑎𝑙 = 1 
𝐷𝑋 = 0.05 

 
L1=L2=2 
L=0.1 
 

Figure 6(c) 
 

𝑘1 = 0.02 
𝐾 = 0.01 
𝑘21 = 0.1 
𝑘22 = 10 

𝑘3 = 0.001 

𝐸𝑇𝑜𝑡𝑎𝑙 = 1 

𝐹𝑇𝑜𝑡𝑎𝑙 = 2 
𝐷𝑋 = 0.1 

L1=L2=9/20 
L=0.1; 
 
 

 


