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APPENDIX A: TIGHT BINDING HAMILTONIAN ELEMENTS

The 2NTB Hamiltonian for stanene at the T’ point can be simplified as:
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Its eigenvalues can be calculated by applying a unitary transformation:

I = U{ru,
where:
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The resulting transformed Hamiltonian T’ can be represented as:
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with b= /(a2/3) + AZ.

The Hamiltonian Hg for the high symmetry K point can be expressed in the basis set {s%, p%, Dy, P s pl, pg, P} as:
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This Hamiltonian can be transferred to another basis set by performing the unitary transformation

Hyg = UlHgUy (S15)
where
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The analytical eigenvalues can be obtained evaluating the determinant of the matrices kg, k1, k2. The quadratic
expressions for each matrix can be written as:

N (K = N)(Ko —\) — 2K2(Ko — \) — 2K3(Ko — \) =0 (S21)
N (K = A)(Ko —\) — 2K2(Ko — \) — 2K3(Ko — \) =0 (S22)
N2 —4K2 =0 (S23)
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det(ke — NI) = (K,



The matrix elements at the K point can be expressed as:

KQ = €5 — 6880’2 (824)
3
Ky = € — 5 (ppm2 + ppo) (S25)
Ky = ¢, — 3ppmy (S26)
K3 — \/§a0 spo (827)
2b
ag
Ky = 35 (ppo — ppr) (528)
\/§Aza
K5 = To(ppa — ppr) (529)

After simplification, we get the polynomial equations:

N 2+ mA+n=0 (S30)
(A= K)? —4K? =0 (S31)
where:

no = 2K, K2 + 2Ko K2 — KoK K (S32)

m = KoK, + K1 Ky + KoKy — 2K7 — 2K2 (S33)

n2 = —(Ko + K1 + Ka) (S34)

&= (3m —n3)/9 (S35)

& = (9mma — 27ng — 2n3) /54 (S36)

=6 +& (S37)

The eigensolutions at the K point are:
do=-21{la+va+ila-va (38)
= A e e - e e (539)
d=-2 (e e - A Ve (540)

)\3’4 = Kl + 2K4 (841)

APPENDIX B: k-5 ANALYSIS

In Ref. [1] a general expression for the & - 7 dispersion relations of silicene and similar materials (such as stanene)
has already been obtained near the K’ point from nearest-neighbor tight-binding relations (see also Refs. [2-5]).
Here we will first develop an analogous treatment around K’ , including the additional parameter A, (the difference
between the on-site energy of the p, atomic orbital and that of the p, and p, orbitals) that we have considered in our
nearest-neighbor tight-binding analysis. Then we will adopt a similar procedure to find the k- P expressions around
the points K andT. Finally, once we have obtained the k- p analytical relations near these points, we will numerically
find the values of the k - p parameters which best fit the DFT dispersion relations in those regions of the reciprocal
space.

In order to maintain a close analogy with Ref. [1], we will consider a reference frame rotated by 30° in the clockwise
direction with respect to that adopted in the previous tight-binding calculations. With this choice, the three vectors
which connect each atom A to its nearest neighbor B atoms (in Fig. 1, atoms A and B are represented in blue and



in red, respectively) are:
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where 0 = arctan[(ag/v/3)/(—A)] is the angle between the z direction orthogonal to the plane and the bond between
an A atom and a nearest-neighbor B atom (in stanene 6 ~ 107.1°). In the reciprocal space, K’ = [47/(3aq), 0, 0]7,
K =[-47/(3a0), 0, 0]7, and T = [0, 0, 0]

Using the basis set Vi = {|s4), [p2), |p§l4>, Ip2y, [sB), |pB), Ip7), IpP)} and the nearest neighbor approach with the
A, parameter, the Hamiltonian in the absence of spin-orbit coupling can be written as:
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with k = [kz, ky, 0]7 the wave vector of the electrons in stanene. In analogy with Ref. [1], here we have taken as
zero energy the value of €, i.e. we have subtracted the value of €, (in our case, equal to 1.7747 eV: see Table 1) to
all the elements on the diagonal of the Hamiltonian. Therefore, A = €, — €, = —6.4042 — 1.7747 = —8.1789 eV. At
the end of the calculations, the value €, will be added back to the elements on the diagonal of the final Hamiltonians.

B.1: k- analysis at the point K’

Regarding the k- p analysis at the point K’ , it is very similar to that performed in Ref. [1] and thus here we report
only the main steps, describing the differences with respect to such reference; a detailed explanation can be found in
the Supplementary Information.



In K’ we have that eiX"d1 = ei2m/3, ek & = e~12m/3, el & = 1, and therefore the Hamiltonian (S43) becomes:

A 0 0 0 0 ivy =V 0
0 0 0 0 —ivy vy =iV] —iVy
0 0 0 0 vy —=ivy =V WV
~ =, 0 0 0 A, 0 —iV5 Vg 0
Ho(K) 0 WV W 0 A 0 0 0 (845)
—iVy V{ V) VY 0 0 0 0
-Vy vy =V Vi 0 0 0 0
0 V§ vV§ 0 0 0 0 AV
with
/ 3 2 / 3 : / 3 .
Vi = 7 Sin 0 Vopr — Vipe ), Vo = 3 sinf Vypy, Vi = 3 sin@ cos 0 (Vppr — Vipo) - (546)
This Hamiltonian can be diagonalized performing a basis change through the unitary matrix U
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With respect to Ref. [1], in our analysis we have included the further tight-binding parameter A,
here the energies ¢; (with ¢ = 1,2, 3, where €3 < €1 < €3) are the roots of the equation

& —(A+Ap) — (AL A+VE+ Ve + A VE+AVE=0,
(with Vi = 2V}, Vo = v/2V4, and V3 = v/2VY), while the quantities u are defined in this way:
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Substituting the values of the NNTB parameters of Table 1 into the expressions of Vi, Vo and V3 and solving Eq. (S49),

we obtain that e3 = —9.8374 ¢V (double degenerate), Vi =

—4.1959 eV, ¢ = —1.7430 eV (double degenerate),

€o = 2.4555 eV (double degenerate), —V; = 4.1959 eV. Therefore, the Fermi energy er (which leaves half of the



energy levels occupied, i.e. with values lower than e, and half unoccupied, i.e. with values higher than er) is located
at €1 and thus we have focused on the states corresponding to this eigenvalue.

In order to obtain the & - p Hamiltonian of stanene around I? . we have performed a first-order Taylor expansion
around K’ of all the elements of the tight-binding Hamiltonian of Eq. (S43) obtaining the matrix H (EXP)( R) (where

=k-K' represents the distance in the reciprocal space between K’ and k) Then, performing a basis change
through the unitary matrix U, we have obtained HO(eXp) (R) = (U)TH (EXP)( 7)U. The k - 7 Hamiltonian is obtained
prOJectlng this matrix onto the two states which have energy at K’ equal to €1, i.e. considering the 2 x 2 submatrix
of Hj CXP)( i) given by the intersection of its first two rows and of its first two columns. We obtain:

(2 — €1 ’)/(Haz +i’€y)
HK'(K) - ’Y(Hz _ iﬁy) €1 ’ (852)

where v (which coincides with hvg, with A the reduced Planck constant and vg the Fermi velocity) is equal to

3 1
y=— \Gao u%l(‘/;)p,r sin® 6 + Vopo cos? 6) — u%lVSS(, + 2uq1u21 cos 0V — 5 |us1 |2 sin® O(Vope — Vpr)| - (S53)

If we include the spin-orbit coupling (neglecting the Rashba term), the total Hamiltonian on the basis V; @{| 1), ] {)}
can be written as Ho(k) @ I + Hgo, where

70000 000 07
0000 000 0
0000 =0 0 1
- Aso 0 A 50 [000 0 0 i—10
HSO{O ﬁso}’ Hso==3"1004i 0 00 0 —i (854)
000 —i 00—i 0
000-10i 0 0
(0010 i 00 0

Repeating the previous treatment on this extended Hamiltonian, we have first performed a first-order Taylor expansion
in £ around K’ of its elements. Then we have changed our basis through the unitary matrix U & I3, obtaining

(U@ L) (HS"(R) @ L+ Hso)(U @ L) = Hy' "P(R) 9 L + (U © L) Hso (U © I) . (S55)

Finally, we have considered the 4 x 4 submatrix given by the intersection of its first 4 rows and of its first 4 columns
(which corresponds to projecting the Hamiltonian onto the two basis states with energy €; at K’ in the absence of
spin-orbit, taken with spin up and spin down). We have obtained this k - p Hamiltonian:

‘ 0 (K + ify) 0 ~100 0
T e I F R A
0 V(ke — iKy) 0 €1 0 00 -1
with
S = 55 ()

Following the method described in the Appendix B of Ref. [1], we have then partially recovered the effect, on the
4 bands that we have considered in our projection, of the 12 bands that we have instead discarded, through a term
—H,(Hs; — €1 I12)~ HJL, where [15 is the 12 x 12 identity matrix, H,, is given by the intersection of the first 4 rows
and of the 5th-to-16th columns of (U @ I)  Hso(U & I1), and H, is the intersection of the 5th-to-16th rows and of
the 5th-to-16th columns of H(’)(I? ") ® I,. We obtain the following quantity (which represents an effective second-order

spin-orbit interaction):

by 0 0 O

ond _ | 0 b2 0 0
Hso - 0 O b2 O ) (858)
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with
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2uislugi|* + duriuasuziugs + 2udy Juss|? + |usi|?|uss|?
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Adding Eq. (S58) to Eq. (S56), we obtain the Hamiltonian

d 0 0 0
He@®eb+| o ¢ 0l (S60)
00 0 d
where
dy =by — A5, dy=by + A5 (S61)

B.2: k- P analysis at the point K

The k- p analysis around Kis very similar to that around K'. Here we summarize it, reporting a detailed explanation

in the Supplementary Information. o o
In K we have that et d1 = ¢=i27/3 giK-d2 — gi2n/3 piK-ds — 1 and therefore the Hamiltonian (S43) becomes:
i 0 0 0 0 —iVy =V5 0
0 0 0 Vg Vi oav) iy
0 0 I A A Z I
0 0 0 vy V§ 0
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0
0
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ViV =iV =iV 0 0 0
—V} —iV] -V] Vi 0 0 0
0 —iV{ Vi 0 0 0 A

pz

This hermitian matrix is the complex conjugate of Eq. (S45) and thus can be diagonalized by the complex conjugate

of the unitary matrix U, that we call W:

_wgl 0 w22 0 w23 0 0 0 ]

w w w 1 1

0 = 0 - 0 —E e o2

- 0 0 0 0 0

W= w11 w12 w13 ’ (863)

0 — W21 0 — W22 0 —W23 0 0

)31 w: W3 1
B0 W 0 E 0

u\t}%l 0 21\1}352 0 21\1}%3 0 % %
L 0 w11 0 w12 0 w13 0 0 ]




where w;; = uj;. We have that (W) Ho(K)W = H})(K), with

[e2 00 OO O O 0 T
0 e OO0 00O O
0 0ea OO O O O

vy | 00 0 e 00 0 O

BE)=10000e0 0 o (864)
0 000 0e€e 0 O
000 0O0O0WWV O
(0000000 —1|

The energies ¢; (with i = 1,2,3, where €3 < €; < €3) are still the roots of Eq. (S49) and have the same values as in
K’ Therefore, also in this case we have focused our analysis on the states corresponding to the energy e;.

The k - p Hamiltonian around K has been obtained in a way similar to what we have done near K'. We have
performed a first-order Taylor expansion around K of all the elements of the tight-binding Hamiltonian of Eq. (S43),
obtaining the matrix ﬁIO(CXp) (K), with § = k — K. Then we have performed a basis change through the unitary matrix
W, obtaining Hé(exm(/_{) = (W)Tflo(e’(p)(/%’) W. Projecting this matrix onto the two states corresponding to ey, i.e.
considering the 2 x 2 submatrix of H(/)(exp) (R) given by the intersection of its first two rows and of its first two columus,
we have finally obtained the k- p Hamiltonian around K:

= €1 —Y (kg — iKy)
Hg(F) = (K + i) € ) (S65)
where ~ is still given by Eq. (S53).
If we include the spin-orbit interaction (neglecting the Rashba term), the total Hamiltonian on the basis V; ® {| 1
H1d}is Ho(k) ® I + Hgo, where Hgo is given by Eq. (S54). We have first performed a first-order Taylor expansion

—

in 7 around K of its elements. Then we have changed our basis through the unitary matrix W ® I, obtaining
(W @ L) (A (R) @ I + Hso)(W @ I) = H\"P(7) @ I + (W @ L) Hso(W & I) . (S66)

Finally, we have considered the 4 x 4 submatrix given by the intersection of its first 4 rows and of its first 4 columns.
At the end, we have obtained this k - p’ Hamiltonian:

€1 0 —Y (ke — iky) 0 10 00
0 €1 0 —Y(Kp — iKy) 15610 —=1 0 0
(K + iriy) 0 & 0 A6 10 0 10 (S67)
0 —Y (kg + iky) 0 €1 00 01
with
A
D = = s (568)

(which coincides with Eq. (S57)).
Also in this case, we can improve our effective Hamiltonian adopting the method described in the Appendix B of
Ref. [1]. We obtain the following effective second-order spin-orbit interaction:

b 0 0 O
ond _ | 0 b1 0 O
Hso - 00 bl 0 ’ (869)
0 0 0 be
where by and be are defined in Eq. (S59). Adding Eq. (S69) to Eq. (S67), we derive the Hamiltonian

d 0 0 0

., d 0 0

0 0 0 da

where d; and dg are defined in Eq. (S61).



B.3: k- P analysis at the point r

Let us now describe in more detail the derivation of the k - p Hamiltonian around r.

10

We first diagonalize the tight-binding Hamiltonian exactly at the point [= [0,0,0]T. In T we have that e/T"d1 = 1,

ef'd2 = 1 ¢Td = 1 and therefore the Hamiltonian (S43) reads:

A0 0 0 V, 00 Vi
000 0 0 Vo 0
000 0 0 0V 0
o oo oA, Vo0 W
H@O=1v 0 0 1. A 0 0 0
0Vs 0 0 0 00 0
00V, 0 0 00 0
V0 0 V, 0 0 0 A, |
with
Vi=3Viso, Vs =3cos0 Vo,

3 3
Vo =3 sin® 0 Vi,po + (32 sin29> Vipr s Vi =3cos?0Vypo + 3 8in? 0 Vppr -

Let us now move from the basis set V; to the basis set My = {|v1), [v2), |v3), |va), |Us), |vs), [v7), |Us)), where

L a B 1 A B L oa B 1 A B
v1)=—7(s7)+|s7)), |v2)=—7=(DP.)—IP>)); v3) = —F—=(|s")—1s7)), |va)=—F7(p.)+ D,
|v1) ﬂ(l )+ 1s7)),  Jva) ﬂ(lp ) —1p2) |vs) \@(I )= 157)),  Jva) ﬂ(lp )+ 1p2))

1 1 1 1
|vs) = ﬁ(lpﬁ +1p7))s lve) = ﬁ(lp{,‘) +py)), )= \ﬁ(lpﬁ —lpz)), lvs) = \ﬁ(lp;ﬁ —[py))

through the unitary transformation
(1 0 1 000 0 O]
00 00101 O
00 0001 0 1
O, = 1101 0100 0 O
1= v2|11 0 -1000 0 O
00 0010-10
00 0001 0 -1
L0 -1 0 100 0 O |
The Hamiltonian becomes
[A+V, V5 0 0 0 0 O 0 7
Vs A, —V7 0 0 0 0 O 0
0 0 A-V, Vs 0 0 O 0
B AN TN A 0 0 Vs Ap+Ve 0 0 0 0
0 0 0 0 0V O 0
0 0 0 0 0 0 =V 0O
L O 0 0 0 0 0 0 -V
This Hamiltonian is a block diagonal matrix with the following blocks on the diagonal:
r_|A+Ve -V F_|A=-V, Vs
HA - —V5 Apz _ V7 ) HB - V5 Apz +V7 ’ V67 V67 _VG, _V6-

(S71)

(S72)

(S73)

(S74)

(S75)

(S76)

The eigenvalues €, (with ¢ = 1,2, where €, < €]) of HE are the roots of the equation det(HY — ely) = 0 (where I is

the 2 x 2 identity matrix), i.e. of

62+6[_(A+V4)_(Apz_V7)]+[(A+V4)(Apz_v7)_v52] =0,

(S77)



11

while the corresponding orthonormalized eigenvectors are

B q1i
) Bi Ve = (S78)
_E 6:;_A17z"!“/7 q2i
where
Vi 2
=/ 1 0 S79
A \/ +(62Apz+v7> (879)
(with i =1, 2).
The matrix of the eigenvectors Q4 diagonalizes HY, i.e. QLH};QA = Ay, with
Q= | I @2 A — € 0 (80)
g1 g2 | A 0 e |-

In a similar way, the eigenvalues €; (with ¢ = 3,4, where €} < €4) of Hg are the roots of the equation det(Hg —ely) =0,
ie. of

Ete[—(A—Vy)— (Ap: + Vo) |+ [(A = Vi) (A, + V7)) = VE] =0, (S81)

while the corresponding orthonormalized eigenvectors are

1 qsi
) /%V i = (S82)
B €—Dp.—Va q4i
where
Vs 2
i =1/1 - S83
5 \/*(6;_%_%) (559)
(with i = 3,4).
The matrix of the eigenvectors Qp diagonalizes HE, i.e. QE,HEQB = A5, with
Qp = | 13 1 A — eg 0 (S84)
Q3 qua |’ B 0 €|

Therefore, (Q4)"Hy (I')Q} = Ho(T), where

Tgii ;2 0 0 0000 ¢ 00000 0 0
@21 22 0 0 0000 0e, 000 0 0 0
0 0 ¢33 g« 0000 00e& 00 0 0 0
, 0 0 qu3 qaa 0000 - 000¢ 00 0 0
@=19 0 0 01000 H=]9 90 Svﬁo 0 0 (585)
0 0 0 00100 00000V 0 0
0 0 0 00010 000000 -Vg 0
L0 0 0 0 0001 | L0000 0 0 0 -V

In this way, we have moved from the basis set My to the basis set M3 = {|m1), |72), |73), |74), |75), [T6), |77), |78) },
where |11) = qu1fv1) + ga1]ve), [T2) = qualv1) + g22|va), |T3) = g33lvs) + quslva), |Ta) = gzalvs) + qualva), [75) = |vs),
|76) = |ve), |77) = |v7), and |75) = |vs).

Substituting the values of the NNTB parameters of Table 1 into the expressions of Vy, Vs, Vs and V7, and solving
Egs. (S77) and (S81), we obtain that €, = —12.0655 eV, € = —5.4436 eV, —V5 = —2.1652 eV (double degenerate),
eh = —1.2715 eV, €] = 0.5309 eV, V5 = 2.1652 eV (double degenerate). Therefore, the Fermi energy e (which leaves
half of the energy levels occupied, i.e. with values lower than er, and half unoccupied, i.e. with values higher than
er) is located between —Vg and €. In our analysis around I’ we have focused on the states nearest to the Fermi

energy, and in particular, as we will discuss in the following, on the three states with energy in r equal to —Vs (double
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degenerate) and €. It is therefore useful to permute the position of the basis states in such a way as to put these 3
states in the first positions, through a final change of basis (Q4)"Ho(T)QYy = H}(T), where

[00010000] e, 0 0 000 0 0
00001000 0 <V 0 000 0 0
10000000 0 0 -V, 000 0 0
, looooot1oo0 < o 0 0 €& o000 0
@=190000010| HO=1g o o 0e¢o o o0]" (586)
00000001 0 0 0 00¢ 0 0
01000000 0 0 0 000Vs0
(00100000] 000 0 000 0 Vil

in this way moving from the basis set M3 to the basis set My = {|73), |77), [78), |T1), |72), |T4), |75), |76) }-

The overall unitary matrix @ corresponding to the basis change from V; to My, i.e. such that (Q)THO(f)Q = H{)(f),
is

[ g3 0 0 g qi2 gz 00

0 1 0 0 0 0 10

0 0 1 0 0 0 01

~ = 1 q 0 0 ¢ q q 00

e 43 21 22 44

= = — S87
@ =100 V2 -3 0 0 qu g2 —g3a 00 (S87)

0 -1 0 0 0 0 10

0 0O -1 0 0 0 01

. @13 0 0 —g21 —q22 qaua 0 O]

In analogy with Ref. [1], we have obtained the k- p Hamiltonian of stanene around r performing a low-order expansion
around T’ of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the
subset of states we are mainly interested in (i.e., those with energy nearest to the Fermi energy).

More in detail, in H,(k) (see Eq. (S43)) we have substituted each occurrence of k with T' + & (where @ = k — T
represents the distance in the reciprocal space between T and E), then we have performed a Taylor expansion around
R =0 (which corresponds to k= f) of all the elements of the matrix. Since we are interested only in the behavior
of the dispersion relations near T (i.e. for small values of K) and from the DFT and tight-binding results it appears
that the dispersion relations around [’ are non linear, this time we have not stopped the expansion to the first-order
terms, but we have kept also its second-order terms. The dependence on k appears in the elements of ﬁO(E) (see

Eq. (S44)) only through the complex exponentials ei’g'@; therefore, the second-order Taylor expansion ﬁéeXp)(R’) of

the Hamiltonian INJO(I;:') can be simply performed substituting in all the elements of the matrix (see Eq. (S44)) to the

exponentials e*% the following quantities:
eifdi — gildigifedy _ pifdi oy q iR - dy + i .2(51)2 B :1 - % <C2LI% + 2\CL/§K3’)2 o [21% * Q?/?;Ky] ’
(iF s _ D iwds _ il ) . 4, 4 OF 2(52)2 _ :1 ) % (_gﬂx N ﬁﬁy)z N [ . ngﬁy} . (S88)
e7E s — elf [f&em fs _ e'F ds 1 + ik - ds + (i 23)2 = :1 — Cgmz} i%my

(where we have substituted the coordinates of f, (fl, d;, and d?,) In order to project the expanded Hamiltonian
I:IO(eXp)(/%’) onto the subset of states corresponding to the bands nearest to the Fermi energy, we have first changed
the basis from V; to My (the basis set which diagonalizes the tight-binding Hamiltonian exactly in f, ie. for R =0),
obtaining the matrix Hé(eXp)(E) = (Q)Tﬁo(exp)(,g) Q. Then, the projection of the Hamiltonian onto a subset of the
overall basis My is directly obtained considering the submatrix of H{)(exp) (R) which corresponds to the basis elements
we are interested in. We have first tried to separately project the Hamiltonian onto the two subset of states {|77), |7s)}
(which are degenerate in f) and {|73)} (these states would correspond to the highest valence bands and to the lowest
conduction band, respectively). However, computing the eigenvalues of the two Hamiltonians that we have obtained
in this way, we have found energy dispersion relations that completely miss the main features (including the sign of
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the concavity) of the tight-binding energy bands. We have seen that, in order to obtain an accurate approximation,
it is necessary to include in our calculation also the interaction between these bands, and thus at least consider the

basis set {|73),|7m7), |7s)}. Therefore, we have projected the Hamiltonian Hé(eXp)(E) onto the subset of basis states
{|7s), |77), |7s)}, obtaining (if the spin is not included) a 3-band k - 7 description of stanene around the T' point (in
addition, in the Supplementary Information we report the extended k - p Hamiltonian obtained including in the basis

set also the state |r1), which corresponds to the second lowest conduction band in f) Since we have previously
ordered the basis elements of M, in such a way as to have these three states in the first positions, the projection of

Hé(eXp) (R) onto the set {|73), |77), |7s)} is the 3 X 3 submatrix obtained from the intersection of its first 3 rows and of
its first 3 columns. At the end of this analytical procedure, we obtain the following 3 x 3 matrix:

s+ ca(k2 + ni) —iC4ky —iCyky
Hgz(R) = iCakiy —Vs + csk3 + cokl —Crhigky (S89)
1C4Ky —CrRg Ky —Ve + cm%i + 05&5
where
a? 9 9 a
c3 = E(V4 a33 — Vodqizs — Vs2q33qu3), ca= 76(‘/2 q33 — V3 qu3),

) ) ) (S90)

a a a
05:§(V%57Vpp7r)7 Cﬁzﬂ(%‘i’g V;ap'rr)a 07:5‘/1-

Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). Rearranging Eq. (8),
the spin-orbit Hamiltonian on the basis of 8 atomic orbitals (differing also for the spin) centered on the same atom

{Is 115 L)y [pe 1) [p2 1), oy 1) 10y 1), 102 1), |22 1) s

000 0 00 0 O
000 0 00 0 O
000 0 —i0 0 1
- Aso 000 0 0 i —1 0
HSO:T 00i 0 00 0O —i (591)
000 —i 00 —i O
000-104i 0 0
(001 0 400 0

Since no spin-orbit interaction exists between orbitals on different atoms, on the basis set V; @ {| 1),| 1)} = {|s* 1

st D lpg D lee B lpg 1)y ) [p2 1), p2 D 1s® 0,07 D, 1) ps DIy D (py D2 1), [pP 1)} (the
operator ® being the tensor product) the spin-orbit contribution to the Hamiltonian is

- Hso 0
Heon = N . S92
50 [ 0 Hso } (892)

On the other hand, the part of Hamiltonian which does not include the spin-orbit interaction, i.e. ﬂO(E), acts
identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis set V; ® {| 1),| |)} as

Ho(K)® I (where I is the 2 x 2 identity matrix). Therefore, the total Hamiltonian on the basis set V; @ {| 1), ] 1)} is
ﬁO(E) @ I + Hso. We can repeat our previous treatment on this extended Hamiltonian. We first perform a second-
order Taylor expansion around r (only of the first term, because the second term does not depend on E) Then we
move from the basis set V; @ {| 1),| )} to the basis set My ® {| 1), | })} through the matrix Q ® I, obtaining:

(Q® L) (H ™ (R) © I + Hso)(Q © I) =
= (Q ® 12)T(I~{0(exp)(g) & I2)(Q ® I) + (Q ® Iz)Tgso(Q ®Iy) = (S93)
=H "M (R) @ L+ (Q® L) Hso(@® I).

Finally, we project the resulting Hamiltonian onto the basis {|3), |77), )} @ {| D), | 1)} = {Ims 1), |73 1), |77 ©
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), [74), |78 1), |78 1) }, obtaining:

000 O 0 O
000 O O O
Aso [000 0 —i 0
He® oL+ =22 | 0o s o (S94)
00« 0 0 O
000 — 0 O

where Hg(R) is given by Eq. (S89). The second term of Eq. (S94) is obtained performing the product (QeI) Hso (Q@
I5) and considering its 6 x 6 submatrix given by the intersection of its first 6 rows and of its first 6 columns (since
{Ims 1), Ims ), 172 1), |77 d)s I78 1), |78 L) } represent the first 6 elements of the basis set My @ {| 1), | 1) }).

Following this procedure, we have neglected the coupling which exists between the 6 states on which we have
performed our projection and the other 10 states that we have discarded (as we have seen, only the Hamiltonian
without spin-orbit in k& = T is diagonal on the basis My @ {| 1),| 1)}). The effect of this interaction can be partially
recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H(/)(exp)(/%’) ®

L+ (Q® 1) Hso(Q ® I) of Eq. (S93) (where the first term is the Hamiltonian without spin-orbit coupling and the
second term is the spin-orbit contribution) in the form

[ gg g: } , (S95)
where the 6 x 6 matrix H, is given by the intersection of the first 6 rows and of the first 6 columns (i.e., the rows
and the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S93), the 6 x 10
matrix H, is given by the intersection of its first 6 rows and of its 7th-to-16th columns, the 10 x 6 matrix H is
given by the intersection of its 7th-to-16th rows and of its first 6 columns, and the 10 x 10 matrix H, is given by the
intersection of its 7th-to-16th rows and of its 7th-to-16th columns. Let us define €,, the average of the eigenvalues of
Hf(ﬁ), ie. €4 = (€5 — Vs — V5)/3. Since the eigenvalues of H, are near e, the eigenvalues of H, are far from it,
and H,, is much smaller than H, — €4, I10, following the procedure described in the Appendix B of Ref. [1] we can
approximate the Hamiltonian of Eq. (S93) near e, with Hy — H,,(Hy — €4, I10) "' H (where I g is the 10 x 10 identity
matrix). The matrix H, represents the projection of Eq. (S93) on the first 6 states of the basis My ® {| 1),] 1)},
i.e. exactly Eq. (S94). Instead, the term —H,, (H, — €4, [10) "1 H, gives rise to an effective second-order spin-orbit
contribution. Let us approximate [1] the Hamiltonian of Eq. (S93) with its value in # = 0 (i.e. in k = I'); in this
case its part without spin-orbit is the diagonal matrix Hé(f) ® I5. Therefore, the matrix H,, derives only from the
spin-orbit part of Eq. (S93) and is given by the intersection of the first 6 rows and of the 7th-to-16th columns of
(Q ® IQ)TET SO(Q ® I). Instead, in H, the contribution of the Hamiltonian without spin-orbit dominates on that of
spin-orbit and we can approximate H, with the intersection of the 7th-to-16th rows and of the 7th-to-16th columns
of H)(T') @ I,. Performing the calculation, we obtain the following quantity:

er 0 0 0 0 0
0 eg O 0 O 0
2nd 0 0 €2 0 ies 0
HsG' =10 0 0 e 0 —ies|” (596)
0 O —ieg 0 €9 0
0 0 0 i62 0 €9
with
Aso 2 2 qis Aso : q%l qu es — Vo — Vs
— 143 — —w = - S97
“ ( 3 ) €av — Vs ©2 3 eav—e’1+e,w—e’2 r€ 3 (597)
Adding Eq. (S96) to Eq. (S94), we obtain the Hamiltonian
fi 00 0 0 0
0 f1 O 0 0 0
. 0 0 fo 0 =—ifsy O
He® L+ | o 00 0 ifs| (S98)
0 0 ifg 0 f2 0
0 0 0 —ifs 0 fo
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where

Aso

fi=e, fa=e, fs—?—ez (S99)

The & - P parameters obtained from the tight-binding ones (in particular, the NNTB parameters of Table 1) are
reported in Table 2. In order to compute these values, we have exploited the Egs. (549), (S53), (S77), (S78), (S79),
(S81), (S82), (S83), (S72), (S90), (S57), (S59), (S61), (S97), and (S99). Moreover, remembering that in Eq. (S43) we
have subtracted €, = 1.7747 eV to all the elements on the diagonal and that this shift survives all the basis changes we

have previously performed, now we have added back €, = 1.7747 eV to the elements located on the diagonal of the k- I
Hamiltonians. This means that we have added €, = 1.7747 eV to €; and €4, while we have subtracted €, = 1.7747 eV
to Vs (because —Vi appears on the diagonal of Eq. (589)).

The E«ﬁdispersion relations are obtained finding the eigenvalues of the EﬁHamiltonians (Egs. (S52), (S60), (S65),
(S70), (S89), (S98)). In Fig. 6 we show the comparison between the tight-binding bands and the k - p dispersion

relations computed around the K and T points, both neglecting and including the spin-orbit coupling effect in the
calculation.

B.4: Fitting of the k- P parameters

With the prev1ously described procedure we have been able to find the expressions of the k- ‘D p' Hamiltonians around
the points K, K and T (Egs. (S52), (S60), (S65), (S70), (S89), (S98)) and to express the k - § parameters which
appear inside them as a function of the nearest-neighbor tight-binding parameters (Eqs. (S49), (S53), (S77), (S78),
(S79), (S81), (S82), (S83), (S72), (S90), (S57), (S59), (S61), (S97), (S99)). However, these tight-binding parameters
have been found fitting the overall set of DFT bands along the maximum symmetry directions (the closed loop of
straight lines joining M , f, and K ) of the entire Brillouin zone (even though weighting more the regions nearest to
the Fermi energy). Once we have the analytical form of the k - i dispersion relations, it is more useful to obtain the
E-ﬁparameters (e1, v, €, Vs, cs3, ca, C5, Cg, C7, d1, da, f1, fo, f3) directly fitting the DFT dispersion relations in
the regions around the points K (or K’ ) and f, in such a way as to improve their local accuracy. In detail, we have
chosen the k - p parameters in such a way as to minimize the following error function:

Ny(P,%)

= > X X X wEAEIR-BEE), (S100)
P={K.[} {Wlthout S0, b=l kel(P)
with so}

where E{:g(lg) and El?gT(E) are the k -  and DFT dispersion relation, respectively, I(P) is the subset of the values

of k along the maximum symmetry directions (for which the DFT bands have been computed) which are nearer to
the points K and I' than 7/(6ag) (i.e. 1/8 of the distance between I' and K'), and
1

EP)=— S101
wik, F) = 1+ 104 |k — P|? (5101

(in such a way as to attribute a greater weight to the energy values corresponding to the k’s nearest to K and 1:“)
For each of the considered E’s, the calculation of x is performed on all the bands (specified by the index b), without
and with spin-orbit interaction, for which we have found the k- p expressions: the number NV, of these bands near K
is 2 without spin-orbit and 4 with spin-orbit, while near T it is 3 without spin-orbit and 6 with spin-orbit. We notice
that in the actual implementation of the fitting procedure we have included also a further fitting parameter: the
relative energy shift which in practice exists between the DFT dispersion relations obtained neglecting the spin-orbit
contribution and those computed including it. The minimization has been performed using the direct search method
described in Ref. [6].

The values of the & - p parameters that we have obtained at the end of this procedure are reported in Table 3.

In Fig. 7 we show the comparison between the DFT bands and the k- p dispersion relations obtained, using these

values for the & - p parameters, around the K and T points, both neglecting and including the spin-orbit coupling
effect in the calculation.
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If we are interested in the dispersion relations in the presence of a magnetic field g, we can simply substitute the
coordinates ry (with £ = z,y) with r; + (¢/h) Ay inside our k - 5 Hamiltonians (Eqgs. (S52), (S60), (S65), (S70), (S89),
(S98)). Here, e is the modulus of the electron charge, & is the reduced Planck constant, and Ay is the ¢-th coordinate
of the vector potential A (chosen in such a way that B = V x A).
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