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APPENDIX A: TIGHT BINDING HAMILTONIAN ELEMENTS

The 2NTB Hamiltonian for stanene at the ~Γ point can be simplified as:

[Γ] =



Γ0 0 0 0 Γ3 0 0 −Γ5

0 Γ1 0 0 0 Γ4 0 0
0 0 Γ1 0 0 0 Γ4 0
0 0 0 Γ2 Γ5 0 0 Γ6

Γ3 0 0 Γ5 Γ0 0 0 0
0 Γ4 0 0 0 Γ1 0 0
0 0 Γ4 0 0 0 Γ1 0
−Γ5 0 0 Γ6 0 0 0 Γ2


(S1)

Its eigenvalues can be calculated by applying a unitary transformation:

Γ̃ = U†0 ΓU0 (S2)

where:

U0 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0


(S3)

The resulting transformed Hamiltonian Γ̃ can be represented as:

Γ̃ =

γ0 0 0
0 γ1 0
0 0 γ1

 (S4)

where:

γ0 =

 Γ0 Γ3 −Γ5 0
Γ3 Γ0 0 Γ5

−Γ5 0 Γ2 Γ6

0 Γ5 Γ6 Γ2

 (S5)

and

γ1 =

[
Γ1 Γ4

Γ4 Γ1

]
(S6)

with:

Γ0 = εs + 6ssσ2 (S7)

Γ1 = εp + 3ppπ2 + 3ppσ2 (S8)

Γ2 = εp + 6ppπ2 (S9)

Γ3 = 3ssσ (S10)

Γ4 = 3ppπ − a2
0

2b2
ppπ +

a2
0

2b2
ppσ (S11)

Γ5 =
3∆z

b
spσ (S12)

Γ6 = 3ppπ(1− ∆2
z

b2
) + 3ppσ

∆2
z

b2
(S13)
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with b =
√

(a2
0/3) + ∆2

z.

The Hamiltonian HK for the high symmetry ~K point can be expressed in the basis set {sa, pax, pay, paz , sb, pbx, pby, pbz} as:

[HK ] =



K0 0 0 0 0 K3 −iK3 0
0 K1 0 0 −K3 K4 iK4 −K5

0 0 K1 0 iK3 iK4 −K4 iK5

0 0 0 K2 0 −K5 iK5 0
0 −K3 −iK3 0 K0 0 0 0
K3 K4 −iK4 −K5 0 K1 0 0
iK3 −iK4 −K4 −iK5 0 0 K1 0

0 −K5 −iK5 0 0 0 0 K2


(S14)

This Hamiltonian can be transferred to another basis set by performing the unitary transformation

H̃K = U†1HKU1 (S15)

where

U1 =



1 0 0 0 0 0 0 0

0 0 0 0
√

2
2 0 0

√
2

2

0 0 0 0 − i
√

2
2 0 0 i

√
2

2
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0
√

2
2 0 0 0 0

√
2

2 0

0 i
√

2
2 0 0 0 0 − i

√
2

2 0
0 0 0 0 0 1 0 0


(S16)

The transformed matrix H̃K is:

H̃K =

κ0 0 0
0 κ1 0
0 0 κ2

 (S17)

with:

κ0 =

 K0

√
2K3 0√

2K3 K1 −
√

2K5

0 −
√

2K5 K2

 (S18)

κ1 =

 K0 −
√

2K3 0

−
√

2K3 K1 −
√

2K5

0 −
√

2K5 K2

 (S19)

κ2 =

[
K1 2K4

2K4 K1

]
(S20)

The analytical eigenvalues can be obtained evaluating the determinant of the matrices κ0, κ1, κ2. The quadratic
expressions for each matrix can be written as:

det(κ0 − λI) = (K0 − λ)(K1 − λ)(K2 − λ)− 2K2
5 (K0 − λ)− 2K2

3 (K2 − λ) = 0 (S21)

det(κ1 − λI) = (K0 − λ)(K1 − λ)(K2 − λ)− 2K2
5 (K0 − λ)− 2K2

3 (K2 − λ) = 0 (S22)

det(κ2 − λI) = (K1 − λ)2 − 4K2
4 = 0 (S23)
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The matrix elements at the ~K point can be expressed as:

K0 = εs − 6ssσ2 (S24)

K1 = εp −
3

2
(ppπ2 + ppσ2) (S25)

K2 = εp − 3ppπ2 (S26)

K3 =

√
3a0

2b
spσ (S27)

K4 =
a2

0

4b2
(ppσ − ppπ) (S28)

K5 =

√
3∆za0

2b2
(ppσ − ppπ) (S29)

After simplification, we get the polynomial equations:

λ3 + η2λ
2 + η1λ+ η0 = 0 (S30)

(λ−K1)2 − 4K2
4 = 0 (S31)

where:

η0 = 2K2K
2
3 + 2K0K

2
5 −K0K1K2 (S32)

η1 = K0K1 +K1K2 +K0K2 − 2K2
4 − 2K2

5 (S33)

η2 = −(K0 +K1 +K2) (S34)

ξ0 = (3η1 − η2
2)/9 (S35)

ξ1 = (9η1η2 − 27η0 − 2η3
2)/54 (S36)

ξ2 = ξ3
0 + ξ2

1 (S37)

The eigensolutions at the ~K point are:

λ0 = −η2

3
+

3

√
ξ1 +

√
ξ2 +

3

√
ξ1 −

√
ξ2 (S38)

λ1 = −η2

3
− (

1− i
√

3

2
)

3

√
ξ1 +

√
ξ2 − (

1 + i
√

3

2
)

3

√
ξ1 −

√
ξ2 (S39)

λ2 = −η2

3
− (

1 + i
√

3

2
)

3

√
ξ1 +

√
ξ2 − (

1− i
√

3

2
)

3

√
ξ1 −

√
ξ2 (S40)

λ3,4 = K1 ± 2K4 (S41)

APPENDIX B: ~k · ~p ANALYSIS

In Ref. [1] a general expression for the ~k · ~p dispersion relations of silicene and similar materials (such as stanene)

has already been obtained near the ~K ′ point from nearest-neighbor tight-binding relations (see also Refs. [2–5]).

Here we will first develop an analogous treatment around ~K ′, including the additional parameter ∆pz (the difference
between the on-site energy of the pz atomic orbital and that of the px and py orbitals) that we have considered in our

nearest-neighbor tight-binding analysis. Then we will adopt a similar procedure to find the ~k · ~p expressions around

the points ~K and ~Γ. Finally, once we have obtained the ~k ·~p analytical relations near these points, we will numerically

find the values of the ~k · ~p parameters which best fit the DFT dispersion relations in those regions of the reciprocal
space.

In order to maintain a close analogy with Ref. [1], we will consider a reference frame rotated by 30◦ in the clockwise
direction with respect to that adopted in the previous tight-binding calculations. With this choice, the three vectors
which connect each atom A to its nearest neighbor B atoms (in Fig. 1, atoms A and B are represented in blue and
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in red, respectively) are:

~d1 =
a0√

3


√

3
2

1
2

cot θ

 , ~d2 =
a0√

3


−
√

3
2

1
2

cot θ

 , ~d3 =
a0√

3


0

−1

cot θ

 , (S42)

where θ = arctan[(a0/
√

3)/(−∆)] is the angle between the z direction orthogonal to the plane and the bond between

an A atom and a nearest-neighbor B atom (in stanene θ ≈ 107.1◦). In the reciprocal space, ~K ′ = [ 4π/(3a0), 0, 0 ]T ,
~K = [−4π/(3a0), 0, 0 ]T , and ~Γ = [ 0, 0, 0 ]T .

Using the basis set V1 = {|sA〉, |pAx 〉, |pAy 〉, |pAz 〉, |sB〉, |pBx 〉, |pBy 〉, |pBz 〉} and the nearest neighbor approach with the
∆pz parameter, the Hamiltonian in the absence of spin-orbit coupling can be written as:

H̃0(~k) =



∆ 0 0 0 h15 h16 h17 h18

0 0 0 0 −h16 h26 h27 h28

0 0 0 0 −h17 h27 h37 h38

0 0 0 ∆pz −h18 h28 h38 h48

h∗15 −h∗16 −h∗17 −h∗18 ∆ 0 0 0
h∗16 h∗26 h∗27 h∗28 0 0 0 0
h∗17 h∗27 h∗37 h∗38 0 0 0 0
h∗18 h∗28 h∗38 h∗48 0 0 0 ∆pz


(S43)

where:

h15 = Vssσ (ei
~k·~d1 + ei

~k·~d2 + ei
~k·~d3) ,

h16 = sin θ

√
3

2
Vspσ (ei

~k·~d1 − ei~k·~d2) ,

h17 = sin θ Vspσ

[
1

2
(ei

~k·~d1 + ei
~k·~d2)− ei~k·~d3

]
,

h18 = cos θ Vspσ (ei
~k·~d1 + ei

~k·~d2 + ei
~k·~d3) ,

h26 =

[
sin2 θ

3

4
Vppσ +

(
1− sin2 θ

3

4

)
Vppπ

]
(ei

~k·~d1 + ei
~k·~d2) + Vppπe

i~k·~d3 ,

h27 = sin2 θ

√
3

4
(Vppσ − Vppπ) (ei

~k·~d1 − ei~k·~d2) ,

h28 = sin θ cos θ

√
3

2
(Vppσ − Vppπ) (ei

~k·~d1 − ei~k·~d2) ,

h37 =

[
sin2 θ

1

4
Vppσ +

(
1− sin2 θ

1

4

)
Vppπ

]
(ei

~k·~d1 + ei
~k·~d2) +

[
sin2 θ Vppσ +

(
1− sin2 θ

)
Vppπ

]
ei
~k·~d3 ,

h38 = sin θ cos θ (Vppσ − Vppπ)

[
1

2
(ei

~k·~d1 + ei
~k·~d2)− ei~k·~d3

]
,

h48 = (cos2 θ Vppσ + sin2 θ Vppπ) (ei
~k·~d1 + ei

~k·~d2 + ei
~k·~d3) ,

(S44)

with ~k = [ kx, ky, 0 ]T the wave vector of the electrons in stanene. In analogy with Ref. [1], here we have taken as
zero energy the value of εp, i.e. we have subtracted the value of εp (in our case, equal to 1.7747 eV: see Table 1) to
all the elements on the diagonal of the Hamiltonian. Therefore, ∆ = εs − εp = −6.4042 − 1.7747 = −8.1789 eV. At
the end of the calculations, the value εp will be added back to the elements on the diagonal of the final Hamiltonians.

B.1: ~k · ~p analysis at the point ~K′

Regarding the ~k · ~p analysis at the point ~K ′, it is very similar to that performed in Ref. [1] and thus here we report
only the main steps, describing the differences with respect to such reference; a detailed explanation can be found in
the Supplementary Information.
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In ~K ′ we have that ei
~K′·~d1 = ei2π/3, ei

~K′·~d2 = e−i2π/3, ei
~K′·~d3 = 1, and therefore the Hamiltonian (S43) becomes:

H̃0( ~K ′) =



∆ 0 0 0 0 iV ′2 −V ′2 0
0 0 0 0 −iV ′2 V ′1 −iV ′1 −iV ′3
0 0 0 0 V ′2 −iV ′1 −V ′1 V ′3
0 0 0 ∆pz 0 −iV ′3 V ′3 0
0 iV ′2 V ′2 0 ∆ 0 0 0
−iV ′2 V ′1 iV ′1 iV ′3 0 0 0 0
−V ′2 iV ′1 −V ′1 V ′3 0 0 0 0

0 iV ′3 V ′3 0 0 0 0 ∆pz


(S45)

with

V ′1 =
3

4
sin2 θ (Vppπ − Vppσ) , V ′2 =

3

2
sin θ Vspσ , V ′3 =

3

2
sin θ cos θ (Vppπ − Vppσ) . (S46)

This Hamiltonian can be diagonalized performing a basis change through the unitary matrix Ũ

Ũ =



u21 0 u22 0 u23 0 0 0

0 −u31√
2

0 −u32√
2

0 −u33√
2
− 1

2
1
2

0 − iu31√
2

0 − iu32√
2

0 − iu33√
2

i
2 − i

2

u11 0 u12 0 u13 0 0 0

0 −u21 0 −u22 0 −u23 0 0

u31√
2

0 u32√
2

0 u33√
2

0 − 1
2 −

1
2

− iu31√
2

0 − iu32√
2

0 − iu33√
2

0 − i
2 −

i
2

0 u11 0 u12 0 u13 0 0



. (S47)

Indeed, we have that (Ũ)†H̃0( ~K ′)Ũ = H ′0( ~K ′), with

H ′0( ~K ′) =



ε1 0 0 0 0 0 0 0
0 ε1 0 0 0 0 0 0
0 0 ε2 0 0 0 0 0
0 0 0 ε2 0 0 0 0
0 0 0 0 ε3 0 0 0
0 0 0 0 0 ε3 0 0
0 0 0 0 0 0 V1 0
0 0 0 0 0 0 0 −V1


. (S48)

With respect to Ref. [1], in our analysis we have included the further tight-binding parameter ∆pz. As a consequence,
here the energies εi (with i = 1, 2, 3, where ε3 < ε1 < ε2) are the roots of the equation

ε3 − (∆ + ∆pz)ε
2 − (−∆pz∆ + V 2

2 + V 2
3 )ε+ ∆pzV

2
2 + ∆V 2

3 = 0 , (S49)

(with V1 = 2V ′1 , V2 =
√

2V ′2 , and V3 =
√

2V ′3), while the quantities u are defined in this way:

u1i =
1

αi
, u2i =

V2(εi −∆pz)

αi(∆− εi)V3
, u3i =

i(εi −∆pz)

αiV3
, (S50)

with

αi =

√
1 +

(
V2(εi −∆pz)

(∆− εi)V3

)2

+

(
εi −∆pz

V3

)2

. (S51)

Substituting the values of the NNTB parameters of Table 1 into the expressions of V1, V2 and V3 and solving Eq. (S49),
we obtain that ε3 = −9.8374 eV (double degenerate), V1 = −4.1959 eV, ε1 = −1.7430 eV (double degenerate),
ε2 = 2.4555 eV (double degenerate), −V1 = 4.1959 eV. Therefore, the Fermi energy εF (which leaves half of the
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energy levels occupied, i.e. with values lower than εF , and half unoccupied, i.e. with values higher than εF ) is located
at ε1 and thus we have focused on the states corresponding to this eigenvalue.

In order to obtain the ~k · ~p Hamiltonian of stanene around ~K ′, we have performed a first-order Taylor expansion

around ~K ′ of all the elements of the tight-binding Hamiltonian of Eq. (S43), obtaining the matrix H̃
(exp)
o (~κ) (where

~κ = ~k − ~K ′ represents the distance in the reciprocal space between ~K ′ and ~k). Then, performing a basis change

through the unitary matrix Ũ , we have obtained H
′ (exp)
0 (~κ) = (Ũ)†H̃

(exp)
0 (~κ) Ũ . The ~k · ~p Hamiltonian is obtained

projecting this matrix onto the two states which have energy at ~K ′ equal to ε1, i.e. considering the 2× 2 submatrix

of H
′ (exp)
0 (~κ) given by the intersection of its first two rows and of its first two columns. We obtain:

H ~K′(~κ) =

[
ε1 γ(κx + iκy)

γ(κx − iκy) ε1

]
, (S52)

where γ (which coincides with ~vF , with ~ the reduced Planck constant and vF the Fermi velocity) is equal to

γ = −
√

3a0

2

[
u2

11(Vppπ sin2 θ + Vppσ cos2 θ)− u2
21Vssσ + 2u11u21 cos θVspσ −

1

2
|u31|2 sin2 θ(Vppσ − Vppπ)

]
. (S53)

If we include the spin-orbit coupling (neglecting the Rashba term), the total Hamiltonian on the basis V1⊗{| ↑〉, | ↓〉}
can be written as H̃0(~k)⊗ I2 + H̃SO, where

H̃SO =

[
ĤSO 0

0 ĤSO

]
, ĤSO =

∆SO

3



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −i 0 0 1
0 0 0 0 0 i −1 0
0 0 i 0 0 0 0 −i
0 0 0 −i 0 0 −i 0
0 0 0 −1 0 i 0 0
0 0 1 0 i 0 0 0


. (S54)

Repeating the previous treatment on this extended Hamiltonian, we have first performed a first-order Taylor expansion

in ~κ around ~K ′ of its elements. Then we have changed our basis through the unitary matrix Ũ ⊗ I2, obtaining

(Ũ ⊗ I2)†(H̃
(exp)
0 (~κ)⊗ I2 + H̃SO)(Ũ ⊗ I2) = H

′ (exp)
0 (~κ)⊗ I2 + (Ũ ⊗ I2)†H̃SO(Ũ ⊗ I2) . (S55)

Finally, we have considered the 4× 4 submatrix given by the intersection of its first 4 rows and of its first 4 columns

(which corresponds to projecting the Hamiltonian onto the two basis states with energy ε1 at ~K ′ in the absence of

spin-orbit, taken with spin up and spin down). We have obtained this ~k · ~p Hamiltonian: ε1 0 γ(κx + iκy) 0
0 ε1 0 γ(κx + iκy)

γ(κx − iκy) 0 ε1 0
0 γ(κx − iκy) 0 ε1

+ λ1st
SO

 −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (S56)

with

λ1st
SO =

∆SO

3
|u31|2 . (S57)

Following the method described in the Appendix B of Ref. [1], we have then partially recovered the effect, on the
4 bands that we have considered in our projection, of the 12 bands that we have instead discarded, through a term
−Hn(Hσ − ε1 I12)−1H†n, where I12 is the 12 × 12 identity matrix, Hn is given by the intersection of the first 4 rows

and of the 5th-to-16th columns of (Ũ ⊗ I2)†H̃SO(Ũ ⊗ I2), and Hσ is the intersection of the 5th-to-16th rows and of

the 5th-to-16th columns of H ′0( ~K ′)⊗ I2. We obtain the following quantity (which represents an effective second-order
spin-orbit interaction):

H2nd
so =

 b1 0 0 0
0 b2 0 0
0 0 b2 0
0 0 0 b1

 , (S58)
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with

b1 =

(
∆SO

3

)2
(

2u2
12|u31|2 + 4u11u12u31u32 + 2u2

11|u32|2 + |u31|2|u32|2

ε1 − ε2
+

+
2u2

13|u31|2 + 4u11u13u31u33 + 2u2
11|u33|2 + |u31|2|u33|2

ε1 − ε3

)
,

b2 =

(
∆SO

3

)2
(
|u31|2|u32|2

ε1 − ε2
+
|u31|2|u33|2

ε1 − ε3
+

2 ε1 u
2
11

ε21 − V 2
1

)
.

(S59)

Adding Eq. (S58) to Eq. (S56), we obtain the Hamiltonian

H ~K′(~κ)⊗ I2 +

 d1 0 0 0
0 d2 0 0
0 0 d2 0
0 0 0 d1

 , (S60)

where

d1 = b1 − λ1st
SO , d2 = b2 + λ1st

SO . (S61)

B.2: ~k · ~p analysis at the point ~K

The ~k·~p analysis around ~K is very similar to that around ~K ′. Here we summarize it, reporting a detailed explanation
in the Supplementary Information.

In ~K we have that ei
~K·~d1 = e−i2π/3, ei

~K·~d2 = ei2π/3, ei
~K·~d3 = 1, and therefore the Hamiltonian (S43) becomes:

H̃0( ~K) =



∆ 0 0 0 0 −iV ′2 −V ′2 0
0 0 0 0 iV ′2 V ′1 iV ′1 iV ′3
0 0 0 0 V ′2 iV ′1 −V ′1 V ′3
0 0 0 ∆pz 0 iV ′3 V ′3 0
0 −iV ′2 V ′2 0 ∆ 0 0 0
iV ′2 V ′1 −iV ′1 −iV ′3 0 0 0 0
−V ′2 −iV ′1 −V ′1 V ′3 0 0 0 0

0 −iV ′3 V ′3 0 0 0 0 ∆pz


. (S62)

This hermitian matrix is the complex conjugate of Eq. (S45) and thus can be diagonalized by the complex conjugate

of the unitary matrix Ũ , that we call W̃ :

W̃ =



w21 0 w22 0 w23 0 0 0

0 −w31√
2

0 −w32√
2

0 −w33√
2
− 1

2
1
2

0 iw31√
2

0 iw32√
2

0 iw33√
2
− i

2
i
2

w11 0 w12 0 w13 0 0 0

0 −w21 0 −w22 0 −w23 0 0

w31√
2

0 w32√
2

0 w33√
2

0 − 1
2 −

1
2

iw31√
2

0 iw32√
2

0 iw33√
2

0 i
2

i
2

0 w11 0 w12 0 w13 0 0



, (S63)
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where wij = u∗ij . We have that (W̃ )†H̃0( ~K)W̃ = H ′0( ~K), with

H ′0( ~K) =



ε1 0 0 0 0 0 0 0
0 ε1 0 0 0 0 0 0
0 0 ε2 0 0 0 0 0
0 0 0 ε2 0 0 0 0
0 0 0 0 ε3 0 0 0
0 0 0 0 0 ε3 0 0
0 0 0 0 0 0 V1 0
0 0 0 0 0 0 0 −V1


. (S64)

The energies εi (with i = 1, 2, 3, where ε3 < ε1 < ε2) are still the roots of Eq. (S49) and have the same values as in
~K ′. Therefore, also in this case we have focused our analysis on the states corresponding to the energy ε1.

The ~k · ~p Hamiltonian around ~K has been obtained in a way similar to what we have done near ~K ′. We have

performed a first-order Taylor expansion around ~K of all the elements of the tight-binding Hamiltonian of Eq. (S43),

obtaining the matrix H̃
(exp)
o (~κ), with ~κ = ~k− ~K. Then we have performed a basis change through the unitary matrix

W̃ , obtaining H
′ (exp)
0 (~κ) = (W̃ )†H̃

(exp)
0 (~κ) W̃ . Projecting this matrix onto the two states corresponding to ε1, i.e.

considering the 2×2 submatrix of H
′ (exp)
0 (~κ) given by the intersection of its first two rows and of its first two columns,

we have finally obtained the ~k · ~p Hamiltonian around ~K:

H ~K(~κ) =

[
ε1 −γ(κx − iκy)

−γ(κx + iκy) ε1

]
, (S65)

where γ is still given by Eq. (S53).
If we include the spin-orbit interaction (neglecting the Rashba term), the total Hamiltonian on the basis V1 ⊗ {| ↑

〉, | ↓〉} is H̃0(~k)⊗ I2 + H̃SO, where H̃SO is given by Eq. (S54). We have first performed a first-order Taylor expansion

in ~κ around ~K of its elements. Then we have changed our basis through the unitary matrix W̃ ⊗ I2, obtaining

(W̃ ⊗ I2)†(H̃
(exp)
0 (~κ)⊗ I2 + H̃SO)(W̃ ⊗ I2) = H

′ (exp)
0 (~κ)⊗ I2 + (W̃ ⊗ I2)†H̃SO(W̃ ⊗ I2) . (S66)

Finally, we have considered the 4× 4 submatrix given by the intersection of its first 4 rows and of its first 4 columns.

At the end, we have obtained this ~k · ~p Hamiltonian: ε1 0 −γ(κx − iκy) 0
0 ε1 0 −γ(κx − iκy)

−γ(κx + iκy) 0 ε1 0
0 −γ(κx + iκy) 0 ε1

+ λ1st
SO

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , (S67)

with

λ1st
SO =

∆SO

3
|w31|2 . (S68)

(which coincides with Eq. (S57)).
Also in this case, we can improve our effective Hamiltonian adopting the method described in the Appendix B of

Ref. [1]. We obtain the following effective second-order spin-orbit interaction:

H2nd
so =

 b2 0 0 0
0 b1 0 0
0 0 b1 0
0 0 0 b2

 , (S69)

where b1 and b2 are defined in Eq. (S59). Adding Eq. (S69) to Eq. (S67), we derive the Hamiltonian

H ~K(~κ)⊗ I2 +

 d2 0 0 0
0 d1 0 0
0 0 d1 0
0 0 0 d2

 , (S70)

where d1 and d2 are defined in Eq. (S61).
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B.3: ~k · ~p analysis at the point ~Γ

Let us now describe in more detail the derivation of the ~k · ~p Hamiltonian around ~Γ.

We first diagonalize the tight-binding Hamiltonian exactly at the point ~Γ = [ 0, 0, 0 ]T . In ~Γ we have that ei
~Γ·~d1 = 1,

ei
~Γ·~d2 = 1, ei

~Γ·~d3 = 1, and therefore the Hamiltonian (S43) reads:

H̃0(~Γ) =



∆ 0 0 0 V4 0 0 V5

0 0 0 0 0 V6 0 0
0 0 0 0 0 0 V6 0
0 0 0 ∆pz −V5 0 0 V7

V4 0 0 −V5 ∆ 0 0 0
0 V6 0 0 0 0 0 0
0 0 V6 0 0 0 0 0
V5 0 0 V7 0 0 0 ∆pz


(S71)

with

V4 = 3Vssσ , V5 = 3 cos θ Vspσ ,

V6 =
3

2
sin2 θ Vppσ +

(
3− 3

2
sin2 θ

)
Vppπ , V7 = 3 cos2 θ Vppσ + 3 sin2 θ Vppπ .

(S72)

Let us now move from the basis set V1 to the basis set M2 = {|v1〉, |v2〉, |v3〉, |v4〉, |v5〉, |v6〉, |v7〉, |v8〉), where

|v1〉 =
1√
2

(|sA〉+ |sB〉) , |v2〉 =
1√
2

(|pAz 〉 − |pBz 〉) , |v3〉 =
1√
2

(|sA〉 − |sB〉) , |v4〉 =
1√
2

(|pAz 〉+ |pBz 〉)

|v5〉 =
1√
2

(|pAx 〉+ |pBx 〉) , |v6〉 =
1√
2

(|pAy 〉+ |pBy 〉) , |v7〉 =
1√
2

(|pAx 〉 − |pBx 〉) , |v8〉 =
1√
2

(|pAy 〉 − |pBy 〉)
(S73)

through the unitary transformation

Q̃1 =
1√
2



1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 −1 0 1 0 0 0 0


. (S74)

The Hamiltonian becomes

H1(~Γ) = (Q̃1)† H̃0(~Γ) Q̃1 =



∆ + V4 −V5 0 0 0 0 0 0
−V5 ∆pz − V7 0 0 0 0 0 0

0 0 ∆− V4 V5 0 0 0 0
0 0 V5 ∆pz + V7 0 0 0 0
0 0 0 0 V6 0 0 0
0 0 0 0 0 V6 0 0
0 0 0 0 0 0 −V6 0
0 0 0 0 0 0 0 −V6


. (S75)

This Hamiltonian is a block diagonal matrix with the following blocks on the diagonal:

H
~Γ
A =

[
∆ + V4 −V5

−V5 ∆pz − V7

]
, H

~Γ
B =

[
∆− V4 V5

V5 ∆pz + V7

]
, V6 , V6 , −V6 , −V6 . (S76)

The eigenvalues ε′i (with i = 1, 2, where ε′2 < ε′1) of H
~Γ
A are the roots of the equation det(H

~Γ
A − εI2) = 0 (where I2 is

the 2× 2 identity matrix), i.e. of

ε2 + ε [−(∆ + V4)− (∆pz − V7) ] + [ (∆ + V4)(∆pz − V7)− V 2
5 ] = 0 , (S77)
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while the corresponding orthonormalized eigenvectors are 1
βi

− 1
βi

V5

ε′i−∆pz+V7

 ≡
 q1i

q2i

 (S78)

where

βi =

√
1 +

(
V5

ε′i −∆pz + V7

)2

(S79)

(with i = 1, 2).

The matrix of the eigenvectors QA diagonalizes H
~Γ
A, i.e. Q†AH

~Γ
AQA = Λ′A, with

QA =

[
q11 q12

q21 q22

]
, Λ′A =

[
ε′1 0
0 ε′2

]
. (S80)

In a similar way, the eigenvalues ε′i (with i = 3, 4, where ε′4 < ε′3) of H
~Γ
B are the roots of the equation det(H

~Γ
B−εI2) = 0,

i.e. of

ε2 + ε [−(∆− V4)− (∆pz + V7) ] + [ (∆− V4)(∆pz + V7)− V 2
5 ] = 0 , (S81)

while the corresponding orthonormalized eigenvectors are 1
βi

1
βi

V5

ε′i−∆pz−V7

 ≡
 q3i

q4i

 (S82)

where

βi =

√
1 +

(
V5

ε′i −∆pz − V7

)2

(S83)

(with i = 3, 4).

The matrix of the eigenvectors QB diagonalizes H
~Γ
B , i.e. Q†BH

~Γ
BQB = Λ′B , with

QB =

[
q33 q34

q43 q44

]
, Λ′B =

[
ε′3 0
0 ε′4

]
. (S84)

Therefore, (Q′2)†H1(~Γ)Q′2 = H2(~Γ), where

Q′2 =



q11 q12 0 0 0 0 0 0
q21 q22 0 0 0 0 0 0
0 0 q33 q34 0 0 0 0
0 0 q43 q44 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, H2(~Γ) =



ε′1 0 0 0 0 0 0 0
0 ε′2 0 0 0 0 0 0
0 0 ε′3 0 0 0 0 0
0 0 0 ε′4 0 0 0 0
0 0 0 0 V6 0 0 0
0 0 0 0 0 V6 0 0
0 0 0 0 0 0 −V6 0
0 0 0 0 0 0 0 −V6


. (S85)

In this way, we have moved from the basis set M2 to the basis set M3 = {|τ1〉, |τ2〉, |τ3〉, |τ4〉, |τ5〉, |τ6〉, |τ7〉, |τ8〉},
where |τ1〉 = q11|v1〉 + q21|v2〉, |τ2〉 = q12|v1〉 + q22|v2〉, |τ3〉 = q33|v3〉 + q43|v4〉, |τ4〉 = q34|v3〉 + q44|v4〉, |τ5〉 = |v5〉,
|τ6〉 = |v6〉, |τ7〉 = |v7〉, and |τ8〉 = |v8〉.
Substituting the values of the NNTB parameters of Table 1 into the expressions of V4, V5, V6 and V7, and solving
Eqs. (S77) and (S81), we obtain that ε′2 = −12.0655 eV, ε′4 = −5.4436 eV, −V6 = −2.1652 eV (double degenerate),
ε′3 = −1.2715 eV, ε′1 = 0.5309 eV, V6 = 2.1652 eV (double degenerate). Therefore, the Fermi energy εF (which leaves
half of the energy levels occupied, i.e. with values lower than εF , and half unoccupied, i.e. with values higher than

εF ) is located between −V6 and ε′3. In our analysis around ~Γ we have focused on the states nearest to the Fermi

energy, and in particular, as we will discuss in the following, on the three states with energy in ~Γ equal to −V6 (double
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degenerate) and ε′3. It is therefore useful to permute the position of the basis states in such a way as to put these 3

states in the first positions, through a final change of basis (Q′′2)†H2(~Γ)Q′′2 = H ′0(~Γ), where

Q′′2 =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0


, H ′0(~Γ) =



ε′3 0 0 0 0 0 0 0
0 −V6 0 0 0 0 0 0
0 0 −V6 0 0 0 0 0
0 0 0 ε′1 0 0 0 0
0 0 0 0 ε′2 0 0 0
0 0 0 0 0 ε′4 0 0
0 0 0 0 0 0 V6 0
0 0 0 0 0 0 0 V6


, (S86)

in this way moving from the basis set M3 to the basis set M4 = {|τ3〉, |τ7〉, |τ8〉, |τ1〉, |τ2〉, |τ4〉, |τ5〉, |τ6〉}.
The overall unitary matrix Q̃ corresponding to the basis change from V1 toM4, i.e. such that (Q̃)†H̃0(~Γ)Q̃ = H ′0(~Γ),
is

Q̃ = Q̃1Q
′
2Q
′′
2 =

1√
2



q33 0 0 q11 q12 q34 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
q43 0 0 q21 q22 q44 0 0
−q33 0 0 q11 q12 −q34 0 0

0 −1 0 0 0 0 1 0
0 0 −1 0 0 0 0 1
q43 0 0 −q21 −q22 q44 0 0


. (S87)

In analogy with Ref. [1], we have obtained the ~k ·~p Hamiltonian of stanene around ~Γ performing a low-order expansion

around ~Γ of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the
subset of states we are mainly interested in (i.e., those with energy nearest to the Fermi energy).

More in detail, in H̃o(~k) (see Eq. (S43)) we have substituted each occurrence of ~k with ~Γ + ~κ (where ~κ = ~k − ~Γ
represents the distance in the reciprocal space between ~Γ and ~k); then we have performed a Taylor expansion around

~κ = 0 (which corresponds to ~k = ~Γ) of all the elements of the matrix. Since we are interested only in the behavior

of the dispersion relations near ~Γ (i.e. for small values of ~κ) and from the DFT and tight-binding results it appears

that the dispersion relations around ~Γ are non linear, this time we have not stopped the expansion to the first-order

terms, but we have kept also its second-order terms. The dependence on ~k appears in the elements of H̃o(~k) (see

Eq. (S44)) only through the complex exponentials ei
~k·~di ; therefore, the second-order Taylor expansion H̃

(exp)
o (~κ) of

the Hamiltonian H̃o(~k) can be simply performed substituting in all the elements of the matrix (see Eq. (S44)) to the

exponentials ei
~k·~di the following quantities:

ei
~k·~d1 = ei

~Γ·~d1ei~κ·
~d1 = ei~κ·

~d1 ≈ 1 + i~κ · ~d1 +
(i~κ · ~d1)2

2
=

[
1− 1

2

(
a

2
κx +

a

2
√

3
κy

)2
]

+ i

[
a

2
κx +

a

2
√

3
κy

]
,

ei
~k·~d2 = ei

~Γ·~d2ei~κ·
~d2 = ei~κ·

~d2 ≈ 1 + i~κ · ~d2 +
(i~κ · ~d2)2

2
=

[
1− 1

2

(
−a

2
κx +

a

2
√

3
κy

)2
]

+ i

[
−a

2
κx +

a

2
√

3
κy

]
,

ei
~k·~d3 = ei

~Γ·~d3ei~κ·
~d3 = ei~κ·

~d3 ≈ 1 + i~κ · ~d3 +
(i~κ · ~d3)2

2
=

[
1− a2

6
κ2
y

]
− i a√

3
κy

(S88)

(where we have substituted the coordinates of ~Γ, ~d1, ~d2, and ~d3). In order to project the expanded Hamiltonian

H̃
(exp)
o (~κ) onto the subset of states corresponding to the bands nearest to the Fermi energy, we have first changed

the basis from V1 toM4 (the basis set which diagonalizes the tight-binding Hamiltonian exactly in ~Γ, i.e. for ~κ = 0),

obtaining the matrix H
′ (exp)
0 (~κ) = (Q̃)†H̃

(exp)
0 (~κ) Q̃. Then, the projection of the Hamiltonian onto a subset of the

overall basisM4 is directly obtained considering the submatrix of H
′ (exp)
0 (~κ) which corresponds to the basis elements

we are interested in. We have first tried to separately project the Hamiltonian onto the two subset of states {|τ7〉, |τ8〉}
(which are degenerate in ~Γ) and {|τ3〉} (these states would correspond to the highest valence bands and to the lowest
conduction band, respectively). However, computing the eigenvalues of the two Hamiltonians that we have obtained
in this way, we have found energy dispersion relations that completely miss the main features (including the sign of
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the concavity) of the tight-binding energy bands. We have seen that, in order to obtain an accurate approximation,
it is necessary to include in our calculation also the interaction between these bands, and thus at least consider the

basis set {|τ3〉, |τ7〉, |τ8〉}. Therefore, we have projected the Hamiltonian H
′ (exp)
0 (~κ) onto the subset of basis states

{|τ3〉, |τ7〉, |τ8〉}, obtaining (if the spin is not included) a 3-band ~k · ~p description of stanene around the ~Γ point (in

addition, in the Supplementary Information we report the extended ~k · ~p Hamiltonian obtained including in the basis

set also the state |τ1〉, which corresponds to the second lowest conduction band in ~Γ). Since we have previously
ordered the basis elements of M4 in such a way as to have these three states in the first positions, the projection of

H
′ (exp)
0 (~κ) onto the set {|τ3〉, |τ7〉, |τ8〉} is the 3× 3 submatrix obtained from the intersection of its first 3 rows and of

its first 3 columns. At the end of this analytical procedure, we obtain the following 3× 3 matrix:

H~Γ(~κ) =


ε′3 + c3(κ2

x + κ2
y) −ic4κx −ic4κy

ic4κx −V6 + c5κ
2
x + c6κ

2
y −c7κxκy

ic4κy −c7κxκy −V6 + c6κ
2
x + c5κ

2
y

 (S89)

where

c3 =
a2

12
(V4 q

2
33 − V7 q

2
43 − V5 2 q33 q43) , c4 =

a√
6

(V2 q33 − V3 q43) ,

c5 =
a2

8
(V6 − Vppπ) , c6 =

a2

24
(V6 + 3 Vppπ), c7 =

a2

12
V1 .

(S90)

Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). Rearranging Eq. (8),
the spin-orbit Hamiltonian on the basis of 8 atomic orbitals (differing also for the spin) centered on the same atom
{|s ↑〉, |s ↓〉, |px ↑〉, |px ↓〉, |py ↑〉, |py ↓〉, |pz ↑〉, |pz ↓〉 is:

ĤSO =
∆SO

3



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −i 0 0 1
0 0 0 0 0 i −1 0
0 0 i 0 0 0 0 −i
0 0 0 −i 0 0 −i 0
0 0 0 −1 0 i 0 0
0 0 1 0 i 0 0 0


. (S91)

Since no spin-orbit interaction exists between orbitals on different atoms, on the basis set V1 ⊗ {| ↑〉, | ↓〉} = {|sA ↑
〉, |sA ↓〉, |pAx ↑〉, |pAx ↓〉, |pAy ↑〉, |pAy ↓〉, |pAz ↑〉, |pAz ↓〉, |sB ↑〉, |sB ↓〉, |pBx ↑〉, |pBx ↓〉, |pBy ↑〉, |pBy ↓〉, |pBz ↑〉, |pBz ↓〉} (the
operator ⊗ being the tensor product) the spin-orbit contribution to the Hamiltonian is

H̃SO =

[
ĤSO 0

0 ĤSO

]
. (S92)

On the other hand, the part of Hamiltonian which does not include the spin-orbit interaction, i.e. H̃0(~k), acts
identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis set V1 ⊗ {| ↑〉, | ↓〉} as

H̃0(~k)⊗ I2 (where I2 is the 2× 2 identity matrix). Therefore, the total Hamiltonian on the basis set V1⊗{| ↑〉, | ↓〉} is

H̃0(~k)⊗ I2 + H̃SO. We can repeat our previous treatment on this extended Hamiltonian. We first perform a second-

order Taylor expansion around ~Γ (only of the first term, because the second term does not depend on ~k). Then we

move from the basis set V1 ⊗ {| ↑〉, | ↓〉} to the basis set M4 ⊗ {| ↑〉, | ↓〉} through the matrix Q̃⊗ I2, obtaining:

(Q̃⊗ I2)†(H̃
(exp)
0 (~κ)⊗ I2 + H̃SO)(Q̃⊗ I2) =

= (Q̃⊗ I2)†(H̃
(exp)
0 (~κ)⊗ I2)(Q̃⊗ I2) + (Q̃⊗ I2)†H̃SO(Q̃⊗ I2) =

= H
′ (exp)
0 (~κ)⊗ I2 + (Q̃⊗ I2)†H̃SO(Q̃⊗ I2) .

(S93)

Finally, we project the resulting Hamiltonian onto the basis { |τ3〉, |τ7〉, |τ8〉} ⊗ { | ↑〉, | ↓〉 } = { |τ3 ↑〉, |τ3 ↓〉, |τ7 ↑
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〉, |τ7 ↓〉, |τ8 ↑〉, |τ8 ↓〉 }, obtaining:

H~Γ(~κ)⊗ I2 +
∆SO

3


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −i 0
0 0 0 0 0 i
0 0 i 0 0 0
0 0 0 −i 0 0

 , (S94)

where H~Γ(~κ) is given by Eq. (S89). The second term of Eq. (S94) is obtained performing the product (Q̃⊗I2)†H̃SO(Q̃⊗
I2) and considering its 6 × 6 submatrix given by the intersection of its first 6 rows and of its first 6 columns (since
{ |τ3 ↑〉, |τ3 ↓〉, |τ7 ↑〉, |τ7 ↓〉, |τ8 ↑〉, |τ8 ↓〉 } represent the first 6 elements of the basis set M4 ⊗ {| ↑〉, | ↓〉}).

Following this procedure, we have neglected the coupling which exists between the 6 states on which we have
performed our projection and the other 10 states that we have discarded (as we have seen, only the Hamiltonian

without spin-orbit in ~k = ~Γ is diagonal on the basis M4 ⊗ {| ↑〉, | ↓〉}). The effect of this interaction can be partially

recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H
′ (exp)
0 (~κ) ⊗

I2 + (Q̃⊗ I2)†H̃SO(Q̃⊗ I2) of Eq. (S93) (where the first term is the Hamiltonian without spin-orbit coupling and the
second term is the spin-orbit contribution) in the form[

Hπ Hn

H†n Hσ

]
, (S95)

where the 6 × 6 matrix Hπ is given by the intersection of the first 6 rows and of the first 6 columns (i.e., the rows
and the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S93), the 6× 10
matrix Hn is given by the intersection of its first 6 rows and of its 7th-to-16th columns, the 10 × 6 matrix H†n is
given by the intersection of its 7th-to-16th rows and of its first 6 columns, and the 10× 10 matrix Hσ is given by the
intersection of its 7th-to-16th rows and of its 7th-to-16th columns. Let us define εav the average of the eigenvalues of
H~Γ(~0), i.e. εav = (ε′3 − V6 − V6)/3. Since the eigenvalues of Hπ are near εav, the eigenvalues of Hσ are far from it,
and Hn is much smaller than Hσ − εav I10, following the procedure described in the Appendix B of Ref. [1] we can
approximate the Hamiltonian of Eq. (S93) near εav with Hπ−Hn(Hσ−εav I10)−1H†n (where I10 is the 10×10 identity
matrix). The matrix Hπ represents the projection of Eq. (S93) on the first 6 states of the basis M4 ⊗ {| ↑〉, | ↓〉},
i.e. exactly Eq. (S94). Instead, the term −Hn(Hσ − εav I10)−1H†n gives rise to an effective second-order spin-orbit

contribution. Let us approximate [1] the Hamiltonian of Eq. (S93) with its value in ~κ = 0 (i.e. in ~k = ~Γ); in this

case its part without spin-orbit is the diagonal matrix H ′0(~Γ) ⊗ I2. Therefore, the matrix Hn derives only from the
spin-orbit part of Eq. (S93) and is given by the intersection of the first 6 rows and of the 7th-to-16th columns of

(Q̃ ⊗ I2)†H̃SO(Q̃ ⊗ I2). Instead, in Hσ the contribution of the Hamiltonian without spin-orbit dominates on that of
spin-orbit and we can approximate Hσ with the intersection of the 7th-to-16th rows and of the 7th-to-16th columns

of H ′0(~Γ)⊗ I2. Performing the calculation, we obtain the following quantity:

H2nd
SO =


e1 0 0 0 0 0
0 e1 0 0 0 0
0 0 e2 0 ie2 0
0 0 0 e2 0 −ie2

0 0 −ie2 0 e2 0
0 0 0 ie2 0 e2

 , (S96)

with

e1 =

(
∆SO

3

)2
2 q2

43

εav − V6
, e2 =

(
∆SO

3

)2(
q2
21

εav − ε′1
+

q2
22

εav − ε′2

)
, εav =

ε′3 − V6 − V6

3
. (S97)

Adding Eq. (S96) to Eq. (S94), we obtain the Hamiltonian

H~Γ(~κ)⊗ I2 +


f1 0 0 0 0 0
0 f1 0 0 0 0
0 0 f2 0 −if3 0
0 0 0 f2 0 if3

0 0 if3 0 f2 0
0 0 0 −if3 0 f2

 , (S98)
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where

f1 = e1 , f2 = e2 , f3 =
∆SO

3
− e2 . (S99)

The ~k · ~p parameters obtained from the tight-binding ones (in particular, the NNTB parameters of Table 1) are
reported in Table 2. In order to compute these values, we have exploited the Eqs. (S49), (S53), (S77), (S78), (S79),
(S81), (S82), (S83), (S72), (S90), (S57), (S59), (S61), (S97), and (S99). Moreover, remembering that in Eq. (S43) we
have subtracted εp = 1.7747 eV to all the elements on the diagonal and that this shift survives all the basis changes we

have previously performed, now we have added back εp = 1.7747 eV to the elements located on the diagonal of the ~k ·~p
Hamiltonians. This means that we have added εp = 1.7747 eV to ε1 and ε′3, while we have subtracted εp = 1.7747 eV
to V6 (because −V6 appears on the diagonal of Eq. (S89)).

The ~k ·~p dispersion relations are obtained finding the eigenvalues of the ~k ·~p Hamiltonians (Eqs. (S52), (S60), (S65),

(S70), (S89), (S98)). In Fig. 6 we show the comparison between the tight-binding bands and the ~k · ~p dispersion

relations computed around the ~K and ~Γ points, both neglecting and including the spin-orbit coupling effect in the
calculation.

B.4: Fitting of the ~k · ~p parameters

With the previously described procedure we have been able to find the expressions of the ~k · ~p Hamiltonians around

the points ~K ′, ~K and ~Γ (Eqs. (S52), (S60), (S65), (S70), (S89), (S98)) and to express the ~k · ~p parameters which
appear inside them as a function of the nearest-neighbor tight-binding parameters (Eqs. (S49), (S53), (S77), (S78),
(S79), (S81), (S82), (S83), (S72), (S90), (S57), (S59), (S61), (S97), (S99)). However, these tight-binding parameters
have been found fitting the overall set of DFT bands along the maximum symmetry directions (the closed loop of

straight lines joining ~M , ~Γ, and ~K) of the entire Brillouin zone (even though weighting more the regions nearest to

the Fermi energy). Once we have the analytical form of the ~k · ~p dispersion relations, it is more useful to obtain the
~k · ~p parameters (ε1, γ, ε′3, V6, c3, c4, c5, c6, c7, d1, d2, f1, f2, f3) directly fitting the DFT dispersion relations in

the regions around the points ~K (or ~K ′) and ~Γ, in such a way as to improve their local accuracy. In detail, we have

chosen the ~k · ~p parameters in such a way as to minimize the following error function:

χ =
∑

~P={ ~K,~Γ}

∑
Σ=

{without so,
with so}

Nb(~P ,Σ)∑
b=1

∑
~k∈I(~P )

w(~k, ~P ) (E
~k·~p
b,Σ(~k)− EDFT

b,Σ (~k))2 , (S100)

where E
~k·~p
b,Σ(~k) and EDFT

b,Σ (~k) are the ~k · ~p and DFT dispersion relation, respectively, I(~P ) is the subset of the values

of ~k along the maximum symmetry directions (for which the DFT bands have been computed) which are nearer to

the points ~K and ~Γ than π/(6 a0) (i.e. 1/8 of the distance between ~Γ and ~K), and

w(~k, ~P ) =
1

1 + 104 |~k − ~P |2
(S101)

(in such a way as to attribute a greater weight to the energy values corresponding to the ~k’s nearest to ~K and ~Γ).

For each of the considered ~k’s, the calculation of χ is performed on all the bands (specified by the index b), without

and with spin-orbit interaction, for which we have found the ~k · ~p expressions: the number Nb of these bands near ~K

is 2 without spin-orbit and 4 with spin-orbit, while near ~Γ it is 3 without spin-orbit and 6 with spin-orbit. We notice
that in the actual implementation of the fitting procedure we have included also a further fitting parameter: the
relative energy shift which in practice exists between the DFT dispersion relations obtained neglecting the spin-orbit
contribution and those computed including it. The minimization has been performed using the direct search method
described in Ref. [6].

The values of the ~k · ~p parameters that we have obtained at the end of this procedure are reported in Table 3.

In Fig. 7 we show the comparison between the DFT bands and the ~k · ~p dispersion relations obtained, using these

values for the ~k · ~p parameters, around the ~K and ~Γ points, both neglecting and including the spin-orbit coupling
effect in the calculation.
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If we are interested in the dispersion relations in the presence of a magnetic field ~B, we can simply substitute the

coordinates κ` (with ` = x, y) with κ` + (e/~)A` inside our ~k · ~p Hamiltonians (Eqs. (S52), (S60), (S65), (S70), (S89),
(S98)). Here, e is the modulus of the electron charge, ~ is the reduced Planck constant, and A` is the `-th coordinate

of the vector potential ~A (chosen in such a way that ~B = ~∇× ~A).
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