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I. K.P ANALYSIS AT THE POINT K’

In the following, we will strictly follow the procedure of Ref. [1]. First, let us diagonalize the tight-binding Hamilto-
nian exactly at the point K’ = [47/(3a0), 0, 0]7. In K’ we have that e84 = ¢i27/3 ik’ dy — o—i2n/3 oiK'ds _ 1
and therefore the Hamiltonian (S43) becomes:

A 0 0 0 0 WVl -V o0
0 0 0 0 —iVj VI —iVi —iV

0 0 0 0 VI iVl -V VI
G| 0 0 e 0 - W0 si)

0 WV, W 0 A 0 0 0

Vi VOV iV 0 0 0 0

vy vl Vi Vi 0 0 00

0 i W 0 0 0 0 A
with

Vi = Z sin? 0 (Vopr — Vipo ), Vi = g sinf Vipo, Vi = % sinf cos 0 (Vppr — Vipo ) - (S103)

Exactly as in Ref. [1], let us move from the basis set V; to the basis set Vo = {|p2), |s), |02), [pE), [s8), |¢h), [03), [04)),
where

(o) = =)+l IeF) = S (1) —i1pf)). o
los) = —5 (p2) — i o)) — 5p2) +ilpE)) s lipa) = 5 (p2) — o)) — 5 (Ip2) + i 1p2))

through the unitary transformation
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The Hamiltonian becomes

(A, 0 Vs 0 0 0O 0 0 |
0 A % 0 0 0 0 0
Vs —iV, 0 0 0 0 0 0
H(R) = (@) BBty = | 0 00 B 0B 000 ($106)
0 0 0 0 A —iV, 0 0
0 0 0 iVaiVh O 0 0
0 0 0 0 0 0 Vi 0
(0 0 0 0 0 0 0 -V|

with Vi = 2V, Vo = 2V, and V3 = \/§V3’ This Hamiltonian is a block diagonal matrix with the following blocks
on the diagonal:

) A, 0 —iVs y A, 0 —iV3
HY = 0 A iV |, HE =] 0 A -V |, W, -W. (S107)
iV —iVa 0 iVy iVa 0

The eigenvalues €; (with i = 1,2,3, where €3 < €; < €2) of Hfl are the roots of the equation det(Hfl —el3) =0
(where I3 is the 3 x 3 identity matrix), i.e. of

& — (A+Ap) — (A A+ VE+ Ve + A, Ve + AVE =0, (S108)

while the corresponding orthonormalized eigenvectors are

- . - - -
a U1;
Valei = Apz) | = (S109)
Oq(A — Ei)Vg U2
’i(Ei — Apz) s
L Oél‘Vg J L ! J

where

a; = \/1 + (W)Z + (6_‘/??)2 (S110)

The matrix of the eigenvectors U, diagonalizes Hfl, i.e. ULHfI Uas = Ay, with

Uil U12 U3 eq 00
UA = U21 U292 U23 ; AA = 0 €2 O . (Slll)
U31 U32 U33 0 0 €3

The eigenvalues of H g " are again the roots of Eq. (S108) and thus coincide with those of H fl, but its eigenvectors
have the form [wuy;, —ug;, uz; |T. Therefore, we have that U;H?UB = Ap, with

Uil U2 u13
UB = —U21 —U22 —U23 3 AB = AA . (8112)
Uzr U2 U33



From this it follows that (U})THy(K')U} = Hy(K'), where

—uu U12 U13 0 0 0 00 €1 00 0 0 0 O 0
U21 U292 U23 0 0 0 00 0 €9 00 0 0 O 0
U3l U32 U33 0 0 0 00 0 0 €3 00 0 O 0
/ 0 0 0 U1 U112 (AR} 00 > 0 0 0 €1 0O 0 O 0
U2=1 0 0 0 —um —usm —um 00| 2EI=10000e0 0 o0 (S113)
0 0 0 usl usz2 uss 00 00 0 0O €3 0 0
0 0 O 0 0 0 10 00 0O0O0O0O7WV O
Lo 0 0 0 0 0 01] L0 00000 0 —V|

In this way, we have moved from the basis set Vs to the basis set Vs = {|®1),|P2), |P3), |P4), |P5), |Ps), |P7), |Ps)),
where |®1) = w1 |pZ') + uzi|s?) + uzi|pF), [Pa) = wia|pf) + uze|s?) + usa|ph), [Ps) = uislpl) + uasls?) + uss|F),
©4) = uii|pl) — un|s®) + usilet), [@s) = wia|pf) — uaals?) + usalpt), |P6) = wislpl) — uasls®) + uaslet),
|®7) = [p3), and |Pg) = |¢4).

Substituting the values of the NNTB parameters of Table 1 into the expressions of Vi, V5 and V3 and solving
Eq. (S108), we obtain that e3 = —9.8374 eV (double degenerate), V; = —4.1959 eV, ¢; = —1.7430 eV (double
degenerate), ea = 2.4555 eV (double degenerate), —V; = 4.1959 eV. Therefore, the Fermi energy ep (which leaves half
of the energy levels occupied, i.e. with values lower than ez, and half unoccupied, i.e. with values higher than ep)
is located at €; and thus in our analysis around K’ we have focused on the states corresponding to this eigenvalue.
Following Ref. [1], we have permuted the position of the basis states in such a way as to group the states with the
same eigenvectors through a final change of basis (UY)1Hy(K')UY = H}(K'), where

100000007 e, 000000 07
00100000 06 00000 0
00001000 000000 0
, lot1oo00000 , o |00 0e00 0 0
U2=100010000| HE)I=10000e00 0 | (5114)
00000100 00000e 0 0
00000010 0000007V, 0
(00000001 000000 0 —1;|

in this way moving from the basis set V3 to the basis set V4 = {|®1), |D4), |D2), |P5), |P3), \<I>6>,| ), | ).

8
The overall unitary matrix U corresponding to the basis change from V; to Vy, i.e. such that ()" Ho(K")U = H)(K'),
is

U921 0 ug2 0 u23 0 0 0
1 1
o s 0 _Us2 0 _uss 2
V2 V2 V2 o2 2
0 _ 1u3] 0 — 1Uu32 0 — iugs 11
V2 V2 V2 22
~ Uil 0 U192 0 U113 0 0 0
U= U1U2U . (S115)
0 —U21 0 —Uu92 0 —U23 0 0
s, g w2 o w0 11
V2 V2 V2 2 2
fwi 0 fwﬁ 0 ,iuﬁ 0 ,E ,E
V2 V2 V2 2 2
0 u11 0 U1 0 uz 0 0

In analogy with Ref. [1], we have obtained the k- p Hamiltonian of stanene around K’ performing a low-order expansion
around K’ of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the
subset of states we are mainly interested in (i.e., those with energy nearest to the Fermi energy).

More in detail, in H,(k) (see Eq. (543)) we have substituted each occurrence of k with K’ + & (where 7@ = k — K’
represents the distance in the reciprocal space between K’ and k); then we have performed a Taylor expansion around



7 = 0 (which corresponds to k = K') of all the elements of the matrix. Since we are interested only in the behavior
of the dispersion relations near K’ (i.e. for small values of K) and from the DFT and tight-binding results it appears
that the dispersion relations around K' are nearly linear, we have kept only the first-order terms of the expansion.
The dependence on k appears in the elements of H, (l;:) (see Eq. (S44)) only through the complex exponentials ei’;‘”fi;
therefore, the first-order Taylor expansion H, (e Xp)( 7) of the Hamiltonian H,(k) can be simply performed substituting

the following quantities to the exponentials ¢?**% in all the elements (Eq. (S44)) of the matrix:
o Y = - 1 3
Ry R giRdy o GRd) r J)) = (_2 _H\2[> (I—H 2\[ )

o R TN L=, - 1
ezk' 2 elK 'dze’u@- 2 ezK -dz(l +Zl_€' d2) — <_ —Z\/§> (]_ _ @ Ky +1 F ) ’ (8116)

o)

(where we have substituted the coordinates of K’ , afl, d;, and J;)) Then, in order to project the expanded Hamiltonian
I:IO(SXP)(E) onto the subset of states corresponding to the bands nearest to the Fermi energy, we have first changed
the basis from V; to V, (the basis set which diagonalizes the tight-binding Hamiltonian exactly in K’ , 1e. for K = 0),
obtaining the matrix Hé(exp)( R) = (U)TH(EXP)( R)U. The projection of H, (exP)( 7) onto the basis states |®1) and |®,)

(which correspond near K’ to the bands nearest to the Fermi energy) is then the 2 x 2 submatrix obtained from the
intersection of its first two rows and of its first two columns (because |®1) and |®4) are the first two elements of Vy).
At the end of this analytical procedure, we obtain the following 2 x 2 matrix:

i €1 Y(kg + iky)
HK’(H) - |:’Y(ﬂm _ iﬂy) €1 v 9 (8117)

where v (which coincides with hvg, with A the reduced Planck constant and vg the Fermi velocity) is equal to

3 1
\/;ao u%l(me sin? 0 + Vipo c0s? 0) — u3, Viso + 2u11ua1 cOS OVspo — §|u31 ? sin? OVppe — Vppr)| - (S118)

Y=

Its eigenvalues are equal to €(<) = €1 £ v4/r2 + k2 = €1 £ 7|K|, which fit quite well the tight-binding bands nearest

to the Fermi energy around the K’ point.
Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). Rearranging Eq. (8),
the spin-orbit Hamiltonian on the basis of 8 atomic orbitals (differing also for the spin) centered on the same atom

{‘5 T>7 |3 ¢>a |px T>7 |px ¢>7 ‘py T>7 |py \l/>a |pz T>7 ‘pz \L> is

000 0 OO0 O0 O
000 0 OO0 O O
000 0 — 0 0 1
- Aso 000 0 0 i -1 0
Hso==3"1004i 0 00 0 —i (S119)
000 — 0 0 —2 O
000-1 0 ¢ 0 O
0010 700 0
Since no spin-orbit interaction exists between orbitals on different atoms, on the basis set Vi @ {| 1),| 1)} = {|s* 1
) lst D)ot s lps 1) gt D lpg 1) e 1), 12 1), 185 1), 152 0,18 1), 108 1) 1pF 1), 108 1), 102 1), [p? 1)} (the
operator ® being the tensor product) the spin-orbit contribution to the Hamiltonian is
. Hso O
Hgo = N . S120
o0 { 0 Hso} (5120)

On the other hand, the part of Hamiltonian which does not include the spin-orbit interaction, i.e. fIO(E), acts
identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis set V; ® {| 1),| {)} as

Ho(k)® I, (where I is the 2 x 2 identity matrix). Therefore, the total Hamiltonian on the basis set Vi @ {| 1), ] 1)} is
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I{fo(IZ) ® I, + Hgo. We can repeat our previous treatment on this extended Hamiltonian. We first perform a first-order
Taylor expansion around K’ (only of the first term, because the second term does not depend on k). Then we move
from the basis set V1 @ {| 1), | 1)} to the basis set V4 @ {| 1),| |)} through the matrix U ® I, obtaining:
(U @ L) (AP (R) @ I + Hso) (U @ I) =
= (U o L) HP(R) @ L) U ® L)+ (U L) Hso(U ® I,) = (S121)
=H"P(R) @I+ (U ® L) Hso(U & I).

Finally, we project the resulting Hamiltonian onto the basis {|®1), [P4) } @ {| 1), | )} = {|®1 1), |P1 ), P4 T
), |®4 })}, obtaining:

€1 0 V(Ko + iky) 0 ~100 0
v(nz(imy) o 601 ’““””0*“””” S IO (S122)
0 V(ka — iky) 0 €1 0 00 —1
with
AsS = %|u31‘2~ (S123)

The first term of Eq. (S122) corresponds to Hz,(K) ® I3, while its second term is obtained performing the product
(U ® I)Hso (U ® I) and considering its 4 x 4 submatrix given by the intersection of its first 4 rows and of its first
4 columns (since { |®1 1), |®1 |), P4 1), |P4 )} represent the first 4 elements of the basis set V4 @ {| 1),| 1) })-
Following this procedure, we have neglected the coupling which exists between the 4 states on which we have
performed our projection and the other 12 states that we have discarded (as we have seen, only the Hamiltonian
without spin-orbit in k¥ = K’ is diagonal on the basis V4 @ {| 1),| 1)}). The effect of this interaction can be partially
recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H(/)(QXP)(/%') ® I+

(U ® L) Hso(U ® I) of Eq. (S121) (where the first term is the Hamiltonian without spin-orbit coupling and the
second term is the spin-orbit contribution) in the form

H, H,
[t 0], sz

where the 4 x 4 matrix H; is given by the intersection of the first 4 rows and of the first 4 columns (i.e., the rows and
the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S121), the 4 x 12
matrix H, is given by the intersection of its first 4 rows and of its 5th-to-16th columns, the 12 x 4 matrix H] is
given by the intersection of its 5th-to-16th rows and of its first 4 columns, and the 12 x 12 matrix H, is given by
the intersection of its 5th-to-16th rows and of its 5th-to-16th columns. Since the eigenvalues of H, are near €7, the
eigenvalues of H, are far from it, and H,, is much smaller than H, — €; I3, following the procedure described in the
Appendix B of Ref. [1] we can approximate the Hamiltonian of Eq. (S121) near €; with H, — H,,(H, — €; I12) " H}
(where I is the 12 x 12 identity matrix). The matrix H, represents the projection of Eq. (S121) on the first 4 states
of the basis V,®{| 1),| 1)}, i.e. exactly Eq. (S122). Instead, the term —H,,(H, —€; I12) "' H] gives rise to an effective
second-order spin-orbit contribution. Let us approximate [1] the Hamiltonian of Eq. (S121) with its value in & = 0
(ie. in k = K'); in this case its part without spin-orbit is the diagonal matrix H{(K') ® I5. Therefore, the matrix
H,, derives only from the spin-orbit part of Eq. (S121) and is given by the intersection of the first 4 rows and of the
5th-to-16th columns of (U @ I) Hso(U @ I). Instead, in H, the contribution of the Hamiltonian without spin-orbit
dominates on that of spin-orbit and we can approximate H, with the intersection of the 5th-to-16th rows and of the
5th-to-16th columns of Hé([? ") ® I5. Performing the calculation, we obtain the following quantity:

by 0 0 O

ond _ | 0 b2 0 O
Hgy = 00 by 0 (5125)

0 0 0 b



with
by — Aso 2 2“%2|U31\2 + 4uiuiousiuge + QU%1|U32\2 + \U31|2|U32\2 n
! 3 €1 — €9
+ 2uisluzi|® + 4 uniuizuziugs + 2ufy |ugs|? + |U31|2|“33|2> 7 (S126)
€1 — €3
_ (Aso 2 s Pluse?  JusiPluss?> | 26 ud
by = + + 5|
3 €] — €2 €1 — €3 e — Vi
Adding Eq. (S125) to Eq. (S122), we obtain the Hamiltonian
do 0 0 O
ﬂ 0 do 0 O
HI-('/(IQ) ® Iy + 0 0 dy 0 s (8127)
0 0 0 d;
where
dy = by — AL, dy = by + AL (S128)

II. K.P ANALYSIS AT THE POINT K

The k - P analysis around K can be performed in a very similar way, following again the procedure of Ref. [1].
We first diagonalize the tight-binding Hamiltonian exactly at the point K = [—47/(3ac), 0, 0]7. In K we have
that e 1 = =i27/3 ik d2 — (i2m/3 ikds — ] and therefore the Hamiltonian (S43) becomes:

A 0 0 0 0 —iVl -V, 0
0O 0 0 0 Vi Vi iVl Vi
o 0 0 0 Vi iV -V W
PO 0 0 0 A, 0 V5 V5 0
Ho(R) = P RERERE (S129)
0 —iv{ W 0 A 0 0 0
WV, OVl =iVl iVl 0 0 0 0
ViV —V{ Vi 0 0 0 0
0 —iVi V. 0 0 0 0 A,
with
/ 3 <2 / 3 . / 3 .
Vi= 7 Sin 0 (Vopr — Vipo), Vo = 3 sinf Vepo, Vi = 3 sin@ cos 0 (Vppr — Vipo) - (5130)
Let us move from the basis set V1 to the basis set No = {|p2), |s4), [08), [pB), [sB), |vi), [43), [v4) }, where
1 ) 1 .
i) = ——=(p2) —ilpy)) . 1¥7) = —=(p2) +ilpy)),
X ‘/? v , (S131)
[Ws) = =5 (Ip2) +ilpy) — 5(Ip2) —ilpy)) . [a) = 5(p2) +ilpy)) — 5107) = ilpy))



through the unitary transformation

01 0 00 O 0 0
00 0 00O L 1 1
V22 2
) 1
00 0 00O ﬁ 5 3
- 10 0 00 O 0 0
W, = . (5132)
00 0 01 O 0 O
00 L 00 O - —=
V2 2
) ) )
00 — 00 O - =
V2 2 2
00 0 10 O 0 0
The Hamiltonian becomes
Ap, 0 V3 0 0 0 0 O
0 A —iVa 0 0 0 0 O
A ZEAZE 0 0 0 0 O
- - Lo~ 0 0 0 AV 0 V3 0 0
Hi(K)= (W) Hy(K) W, = b , (S133)
0 0 0 0 A Vo 0 0
0 0 0 —iV3 =iV, 0 0 O
0 0 0 0 0 0 Vi 0
0 0 0 0 0 0 0 -V

with V; = 2V{, Vo = +/2Vy, and V3 = v/2V4. This Hamiltonian is a block diagonal matrix with the following blocks
on the diagonal:

B A, 0 iVs B A, 0 iV
HE=| 0 A -V, |, HE=| 0 A iW%m|, W, -W. (S134)
—iVy iV 0 —iVs —iVy 0

The eigenvalues ¢; (with i = 1,2,3, where €3 < €1 < €3) of Hf are the roots of the equation det(Hf —el3) = 0 (where
I5 is the 3 x 3 identity matrix), i.e. of

€ —(A+A0,) — (AL A+VE+ Ve + A VE+AVE=0 (S135)

(the same as at the K’ point), while the corresponding orthonormalized eigenvectors are

1
Z Wi;
Valei = Apz) | = (S136)
Oq(A — Ei)Vg W2i
72(61*Apz) ws;
L Oéi‘/g J L ! J

where




The matrix of the eigenvectors W, diagonalizes Hf, ie. W};HEWA = Ay, with

w11 Wi2 W13 e 0 0
WA = Wo1 W2 W23 s AA = 0 €9 0 . (8138)
w31 W32 W33 0 0 e3

The eigenvalues of H § are again the roots of Eq. (S135) and thus coincide with those of H f , but its eigenvectors
have the form [w1;, —wa;, w3; |T. Therefore, we have that W;;HgWB = Ap, with
w11 Wiz W13
WB = —Wg1 —W22 —W23 s AB = AA . (8139)

w31 W32 W33

Therefore, (W) Hy (K)W4 = Hy(K), where

_’LU11 W12 W13 0 0 0 00 €1 00 0 0 0 O 0
W21 W22 W23 0 0 0 00 0 €2 00 0 0 O 0
W31 W32 W33 0 0 0 00 0 0 €3 0 0 0 O 0
/ 0 0 0 w11 w12 w13 00 > 0 0 O €1 0 0 O 0
Wa=10 0 0 —wsm —wem —woo| PE=1g 000600 o0 (8140)
0 0 0 w31 w32 w33 00 0 0 0 0O €3 0 0
0 0 O 0 0 0 10 000 0O0O0%WV O
L0 0 0 0 0 0 01] (000000 0 —V|

In this way, we have moved from the basis set N5 to the basis set N5 = {|Uy), [¥a), |Us), [Ty), |V5), |Ts), [T7),|Ts)),
where [U1) = wiy[pZ') +wai|s?) +wsi [¥5), [Va) = wia|ps) +waz|s?) +wsa|vd), [Ws) = wislp) +wasls?) +was|pd),
(Wa) = win|pf) — wa[s?) + wai|'), [Ws) = wia|p?) — waals®) + waal)), [We) = wia[p?) — wasls®) + was|yi),
(W7) = [¢3), and [Wg) = |¢h4).

Substituting the values of the NNTB parameters of Table 1 into the expressions of Vi, V5 and V3 and solving
Eq. (S135), we obtain that e3 = —9.8374 eV (double degenerate), V; = —4.1959 eV, ¢; = —1.7430 eV (double
degenerate), ea = 2.4555 eV (double degenerate), —V; = 4.1959 eV. Therefore, the Fermi energy e (which leaves half
of the energy levels occupied, i.e. with values lower than ez, and half unoccupied, i.e. with values higher than ep)
is located at €; and thus in our analysis around K we have focused on the states corresponding to this eigenvalue.
Following Ref. [1], we have permuted the position of the basis states in such a way as to group the states with the
same eigenvectors through a final change of basis (W4)THy(K)WJ = H})(K), where

10000000 e 000000 0
00100000 0e 0000 0 0
00001000 0 0ea 000 0 O
Y 01000000 - 00 0e 000 0
WQ:OOOlOOOO’HO(K):00006300 0 |° (5141)
00000100 0000 O0<e 0 O
00000010 0000O0TO0TWVW O
(00000001 000000 0 —V|

in this way moving from the basis set A3 to the basis set Ny = {|U1), |[¥y), |Va), |¥s5), [¥3), |Vs), [¥7), |Ps)).
The overall unitary matrix W corresponding to the basis change from V; to Ny, i.e. such that (W) Ho(K)W = H{(K),
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is

w21 0 Wa2 0 wWa3 0 0 0

L e = A 11

V2 V2 v2 202

0 w31 0 1W32 0 twzg 11

V2 V2 V22 2

~ ~ , /, w11 O w12 0 w13 0 0 0

W =WWiWwy = . (S142)

0 — W21 0 — W22 0 —W23 0 0
w31 0 w32 0 w33 0 11

V2 V2 V2 2 2

w31 0 W32 0 w33 0 it

V2 V2 V2 2 2

0 w11 0 w12 0 w13 0 0

In analogy with Ref. [1], we have obtained the k- P Hamiltonian of stanene around K performing a low-order expansion
around K of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the
subset of states we are mainly interested in (i.e., those with energy nearest to the Fermi energy).

More in detail, in Hy(k) (sce Eq. (S43)) we have substituted cach occurrence of k with K + & (where @ = k — K
represents the distance in the reciprocal space between K and E), then we have performed a Taylor expansion around
R = 0 (which corresponds to k=K ) of all the elements of the matrix. Since we are interested only in the behavior
of the dispersion relations near K (i.e. for small values of g) and from the DFT and tight-binding results it appears
that the dispersion relations around K are nearly linear, we have kept only the first-order terms of the expansion.
The dependence on k appears in the elements of ﬁO(E) (see Eq. (S44)) only through the complex exponentials eiE'CE;
therefore, the first-order Taylor expansion I;TO(eXp )(/?5) of the Hamiltonian ffo(l_é) can be simply performed substituting
the following quantities to the exponentials eiFdi in all the elements of the matrix (Eq. (S44)):

s N N Lo - 1 3
ezk‘dl — esz 1iRd1 oy ezK~d1(1 +Z:‘_<5d1) = <_2 —@\2[> (1 —|—ia—20/€E —I—Z;;gliy) s

e oo oo . 1 3
etz = gl o OB (1 iR - dy) = <_2 * Zﬁ) <1 -t izci;ﬁ”@) ’ o
3 — eiK-dgeiE-Js ~ eil?-tis 1 +i/_€"J =1 i&fi
( 3) \/g Y

(where we have substituted the coordinates of K , afl, JQ, and d_;,) Then, in order to project the expanded Hamiltonian
ﬁo(exp)(/%’) onto the subset of states corresponding to the bands nearest to the Fermi energy, we have first changed
the basis from V; to Ny (the basis set which diagonalizes the tight-binding Hamiltonian exactly in K, i.e. for & = 0),
obtaining the matrix H(/)(CXP)(/?J) = (W)TFIO(CXP)(E) W. The projection of H(/)(CXP)(F{) onto the basis states |¥;) and
|W4) (which correspond near K to the bands nearest to the Fermi energy) is then the 2 x 2 submatrix obtained from
the intersection of its first two rows and of its first two columns (because |¥;) and |¥,) are the first two elements of
Ny). At the end of this analytical procedure, we obtain the following 2 x 2 matrix:

o €1 (kg — iKy)
HK(H) - 7,7(,{:6 + i/fy) €1 :| ’ (8144)
where v (which coincides with hvg, with A the reduced Planck constant and vg the Fermi velocity) is equal to

_ \/§a0 2

1
5 W31 (Vipr SIN? 0 + Vyypor €082 0) — w3y Viso + 2w11wa1 €08 OVipy — 5|w31|2 sin? 0(Vypo — Vpprr) | (S145)

’y:

which is identical to Eq. (S118)). Its eigenvalues are equal to €(R) = €1 & v, /K2 + k2 = €; & ~y|R|, which fit the
z Yy
tight-binding bands quite well around the K point.
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Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). Rearranging Eq. (8),
the spin-orbit Hamiltonian on the basis of 8 atomic orbitals (differing also for the spin) centered on the same atom

{Is 1) 1s 1), [pe 1) Ipa 4)s Ipy 1), [Py 1), Ip2 1), P2 L) st

000 0 00 0 O
000 0 00 0 O
000 0 —i0 0 1

- Aso 000 0 0 4 -1 0

HSO:T 00i 0 00 0 —i (5146)
000 —i 0 0 —i O
000 -1 0 i 0
(001 0 4 00 0]

Since no spin-orbit interaction exists between orbitals on different atoms, on the basis set V; @ {| 1),| 1)} = {|s* 1

)15t D pg M leg D, ley 1y 1102 1), Ip2 D 1s% ), 157 D,y 1), P ey 1) lpy b2 1), 1p2 1} (the

operator ® being the tensor product) the spin-orbit contribution to the Hamiltonian is

- Hso O
Hqp = A . S147
50 { 0 Hso } ( )

On the other hand, the part of Hamiltonian which does not include the spin-orbit interaction, i.e. ﬁo(E), acts
identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis set V1 @ {| 1),| {)} as
Ho(K)® I (where I is the 2 x 2 identity matrix). Therefore, the total Hamiltonian on the basis set V; @ {| 1), ] 1)} is
ﬁo(E) ® I+ H so. We can repeat our previous treatment on this extended Hamiltonian. We first perform a first-order
Taylor expansion around K (only of the first term, because the second term does not depend on I;) Then we move

from the basis set V1 ® {| 1),| 1)} to the basis set Ny ® {| 1),| {)} through the matrix W ® I, obtaining:
(W & L) (H™ (7) © I + Hso)(W © I) =
— (W& L) (A (7) 0 L)W @ L) + (W e L) Heo(W ® I) = (S148)
=H "R 2L+ (We L) Hso(Wa L).

Finally, we project the resulting Hamiltonian onto the basis {|U1), [T4) } @ {| 1), | 1)} = {|¥1 D), [Py J), [Py T
), [¥4 )}, obtaining:

€1 0 —Y (ke — iky) 0 . 10 00
i) 0 S S A R R (8149)
0 —Y (kg + iky) 0 €1 00 01
with
AsS = %hﬂ?ﬂﬁ (S150)

(which is identical to Eq. (S123)). The first term of Eq. (S149) corresponds to H (&) ® I3, while its second term is
obtained performing the product (W@IQ)TE[ SO(W ® I5) and considering its 4 x 4 submatrix given by the intersection
of its first 4 rows and of its first 4 columns (since { |¥1 1), |1 1), ¥4 1), [Py })} represent the first 4 elements of the
basis set My @ {| 1),| 1)}).

Following this procedure, we have neglected the coupling which exists between the 4 states on which we have
performed our projection and the other 12 states that we have discarded (as we have seen, only the Hamiltonian

without spin-orbit in k=K is diagonal on the basis Ny @ {| 1),| {)}). The effect of this interaction can be partially
recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H(l)(exp)(/"{) ® I+

(W @ L) Hso (W & I) of Eq. (S148) (where the first term is the Hamiltonian without spin-orbit coupling and the
second term is the spin-orbit contribution) in the form

Hﬂ' H’I'L
[t ], s
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where the 4 x 4 matrix H; is given by the intersection of the first 4 rows and of the first 4 columns (i.e., the rows and
the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S148), the 4 x 12
matrix H, is given by the intersection of its first 4 rows and of its 5th-to-16th columns, the 12 x 4 matrix H] is
given by the intersection of its bth-to-16th rows and of its first 4 columns, and the 12 x 12 matrix H, is given by
the intersection of its 5th-to-16th rows and of its bth-to-16th columns. Since the eigenvalues of H, are near €;, the
eigenvalues of H, are far from it, and H, is much smaller than H, — €; I3, following the procedure described in the
Appendix B of Ref. [1] we can approximate the Hamiltonian of Eq. (S148) near ¢; with H, — H,,(H, — €; I12) " H}
(where I is the 12 x 12 identity matrix). The matrix H, represents the projection of Eq. (S148) on the first 4
states of the basis Ny ® {| 1),| 1)}, i.e. exactly Eq. (S149). Instead, the term —H,,(H, — €1 I12) "' H] gives rise to an
effective second-order spin-orbit contribution. Let us approximate [1] the Hamiltonian of Eq. (5148) with its value
in =0 (ie. in k¥ = K); in this case its part without spin-orbit is the diagonal matrix H)(K) ® I. Therefore, the
matrix H,, derives only from the spin-orbit part of Eq. (5148) and is given by the intersection of the first 4 rows and
of the 5th-to-16th columns of (W & I)' Hso(W @ ). Instead, in H, the contribution of the Hamiltonian without
spin-orbit dominates on that of spin-orbit and we can approximate H, with the intersection of the 5th-to-16th rows

—

and of the 5th-to-16th columns of H|(K) ® I5. Performing the calculation, we obtain the following quantity:

b 0 0 O
ond 0 by 0 O
HSO - 00 bl 0 ) (S152)
0 0 0 by
with
by — Aso\? 2wy ws1 |2 + 4w wiaws wse + 2w3 [ wae|® + |war]?wsa]? 4
! 3 €1 — €9
+ 2w%3|w31|2 + 4 wijwizwsiwsz + 2Il)%1|w33|2 + w31|2|w332> ’ (S153)
€1 — €3
_ (Aso 2 [ wn Plwsel? | fwsPlwss|? | 2e1wd
be = + + 5
3 €1 — €3 €1 — €3 e — Vi

(which coincide with the definitions reported in Eq. (S126)). Adding Eq. (S152) to Eq. (5149), we obtain the
Hamiltonian

d 0 0 0
Hg(R) @ L+ | g ‘él ;1 8 : (S154)
0 0 0 do
where
dy =by — A5, dy = by + A5D (S155)

(which coincide with the definitions reported in Eq. (S128)).

III. EXTENDED K - P ANALYSIS AT THE POINT T

Here we report the derivation of a 4-band (8-band including the spin) k- p Hamiltonian around f, obtained

considering around T' the four states with energy in T' equal to —Vs (double degenerate), €5 and €, (which are the
states nearest to the Fermi energy and correspond to the two highest valence bands and to the two lowest conduction
bands).

In order to arrive at this result, we have first diagonalized the tight-binding Hamiltonian exactly at the point [ In

I, adopting the basis set V; the Hamiltonian matrix is Ho(I') (see Eq. (S71)). Following the first steps described in
our Appendix B.3, we have first moved from the basis set V; to the basis set My through the unitary transformation

—

Q1; as a consequence, the Hamiltonian matrix becomes Hy(T') (see Eq. (S75)). Then, we have moved from the basis

—

set Ma to the basis set M3 through the unitary transformation Q%, obtaining the diagonalized Hamiltonian Hs(T')
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(see Eq. (S85)). Finally, since in this case we wanted to focus on the four states with energy in T’ equal to —V; (double
degenerate), €5 and €}, we have permuted the position of the basis states in such a way as to put these 4 states in the

first positions, through a final change of basis (RY)" Hy(T')RY = H}(T'), where

10000000 40 0 0 000 0
00001000 0e¢, 0 0 000 0
01000000 00 -V 0 000 0
, looooot1o0o0 L« oo 0 —5 00 0 0
2=100000010]| " TM=]090 0 0 &0 0 0 (5156)
00000001 00 0 0 06 0 0
00100000 00 0 0 00TV 0
(00010000, (00 0 0 00 0 V|

In this way we have moved from the basis set M3 to the basis set Py = {|71), |73), |77), |7s), |72), |74), |75), |76) }-
T

The overall unitary matrix R corresponding to the basis change from V; to Py, i.e. such that (R)'Ho(F)R = H}(T),
is

[ g1 gz 0 0 g2 gsa 00

0 0 1 0 0 0 10

0 0 0 1 0 0 01

1 @21 q43 0 0 g2 qu 00
R= == S157
QQ R \/5 g —q33 0 0 g2 —g3a 00 ( )

0 0 -1 0 0 0 10

0 0 0O -1 0 0 01

L —¢21 qu3 0 0 —g22 qua 0 O]

Then, we have obtained the 4-band k- p Hamiltonian of stanene around r performing a low-order expansion around
T of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the subset of
states {|71), |73), |7'7) |Tg>} B B o
More in detail, in H, (k) (see Eq. (543)) we have substituted each occurrence of k with I' + & (where £ = k — T’
represents the distance in the reciprocal space between ' and E), then we have performed a second-order Taylor
expansion around & = 0 (which corresponds to k = f) of all the elements of the matrix. The second-order Taylor
expansion H, (e Xp)( %) of the Hamiltonian H, (k) can be simply performed substituting in all the elements of the matrix

(see Eq. (S44)) to the exponentials eik-di

i the quantities reported in Eq. (S88). In order to project the expanded
Hamiltonian H. ) (R) onto the subset of basis states {|71), |73), |77), |7s)} (corresponding to the bands nearest to the
Fermi energy), we have first changed the basis from V; to Py, obtaining the matrix H(/)(eXp)(F{) = (]?)Tﬁo(e’(p)(/%') R.
Since we have previously ordered the basis elements of P, in such a way as to have the states {|m1),|73), |77), |7s)}
in the first positions, the projection of H, (EXP)( R) onto this set of states is the 4 x 4 submatrix obtained from the
intersection of its first 4 rows and of its ﬁrst 4 columns. At the end of this analytical procedure, we obtain the
following 4 x 4 matrix:

c
€ + e (k2 + K7) 0 Cokighy 22( Ko+ k)
0 eh + c3(K2 + K2 —iCyky —icyk
Hi(R) = sl ) ! " (S158)
Cokghky 1Cqkyg —Vs + C5/€i + cﬁni —CrRghy
022( /»g + kK ) 1C4Ky —CrRgRy —Vs + cmii + 05;‘65
where
a? a?
1= 12( VZLQHJFV52CI111121+V7(]21) 02:6\7@(‘/2%1*‘/31121),
a? 9 9 a S159
c3 = E(V4 a33 — Vo iz — Vs2q33qu3), ca= %(Vz q33 — V3 qa3), ( )
a2 a2 a2
C5 = g(Vﬁ—me), C6 = 24(‘/6+3Vpp7r) Cr = Evl-
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Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). On the basis set V; ® {| T

L0} =l )15t D g D leg D lpy D, ley D e )2 D), 1sP ) 157 1 ed 1), eE D ey Iy ), 102 1
), [pZ 1)} (the operator ® being the tensor product) the spin-orbit contribution to the Hamiltonian is

- Hso O
Hon = . S160
SO |: 0 HSO :| 5 ( )

where Hgo is defined in Eq. (S91). On the other hand, the part of Hamiltonian which does not include the spin-orbit
interaction, i.e. Ho(k) acts identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis
set V1 @ {| 1), | 1)} as Hy(k) ® I (where I, is the 2 x 2 identity matrix). Therefore, the total Hamiltonian on the
basis set V1 @ {| 1), ] 1)} is Ho(k) ® I + Hgo. We can repeat our previous treatment on this extended Hamiltonian.
We first perform a second-order Taylor expansion around r (only of the first term, because the second term does not
depend on k). Then we move from the basis set Vi @ {| 1), | 1)} to the basis set Py @ {| 1),| J)} through the matrix
R® I, obtaining;:

(R® L) (H"™™(7) @ I + Hso)(R® I,) =
=(R® ) (H(eXp (R) @ L)R® L)+ (Re L) Hso(R® I) = (5161)
—H (@) @I+ (R® L) Hso(R® I) .

Finally, we project the resulting Hamiltonian onto the basis { |71), |73), |77), [7s)}@{| 1), [ 1)} = {1 1), |71 ), |73
)5 [T3 ), |t 1)y [77 1), |78 1), |75 4) }, obtaining:

0 0 00 0 —ga 0 gy

0 0 00 q21 0 iQQl 0

0 0 00 O 0 0 O

A

m@en+=2 | 0 Do 0ed 0 Lo (8162)

—qg21 0 00 O 0 0 7

0 =221 00 z O 0 O

| —iggy 0 00 0 —i 0 0 |

where Hg(F) is given by Eq. (S158). The second term of Eq. (S162) is obtained performing the product (]:Z ®
IQ)THSO (R ® I5) and considering its 8 x 8 submatrix given by the intersection of its first 8 rows and of its first 8
columns (since { |1 1), |71 4), |73 1), |73 4), |77 1), |77 4), |78 1), |78 4} } represent the first 8 elements of the basis set
Pa@ {1 1), [ 1)

Following this procedure, we have neglected the coupling which exists between the 8 states on which we have
performed our projection and the other 8 states that we have discarded (as we have seen, only the Hamiltonian

without spin-orbit in k& = T is diagonal on the basis Py ® {| 1), 1)}). The effect of this interaction can be partially
recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H, (CXP)( R)® Iy +

(R® I)'Hso(R ® I,) of Eq. (S161) (where the first term is the Hamiltonian without spin-orbit coupling and the
second term is the spin-orbit contribution) in the form

H, H,
[HT HJ , (S163)

where the 8 x 8 matrix H, is given by the intersection of the first 8 rows and of the first 8 columns (i.e., the rows
and the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S161), the 8 x 8
matrix H,, is given by the intersection of its first 8 rows and of its 9th-to-16th columns, the 8 x 8 matrix H} is
given by the intersection of its 9th-to-16th rows and of its first 8 columns, and the 8 x 8 matrix H, is given by the
intersection of its 9th-to-16th rows and of its 9th-to-16th columns. Let us deﬁne e, the average of the eigenvalues of
Hf(()), ie. e, = (e +e5—Vs— 1/6)/4 Smce the eigenvalues of H, are near €,,, the eigenvalues of H, are far from
it, and H,, is much smaller than H, » Is, following the procedure described in the Appendix B of Ref. [1] we can
approximate the Hamiltonian of Eq. (8161) near ¢/, with H, — H,,(H, — €, Is) ' H] (where I3 is the 8 x 8 identity
matrix). The matrix H, represents the projection of Eq. (S161) on the first 8 states of the basis Py @ {| 1),| {)},
i.e. exactly Eq. (S162). Instead, the term —H, (H, — ¢,, Is) "' H] gives rise to an effective second-order spin-orbit

contribution. Let us approximate [1] the Hamiltonian of Eq. (S161) with its value in # = 0 (i.e. in k = I'); in this
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case its part without spin-orbit is the diagonal matrix H{(T' ) ® I5. Therefore, the matrix H,, derives only from the
spin-orbit part of Eq. (S161) and is given by the intersection of the first 8 rows and of the 9th-to-16th columns of
(é ® IQ)T]::[ SO(R ® I). Instead, in H, the contribution of the Hamiltonian without spin-orbit dominates on that of
spin-orbit and we can approximate H, with the intersection of the 9th-to-16th rows and of the 9th-to-16th columns
of H(’)(f) ® I5. Performing the calculation, we obtain the following quantity:

000 O O 0 O 0
00 0 O 0 0 O 0
00b3 0 O 0 O 0
ond 00 0 b3 O 0 O 0
HSO =1000 0 b, 0 iby 0 | (8164)
00 0 O 0 by 0 —iby
00 0 0O —iby O by 0
100 0 0 0 s 0 by
with
Aso\’ 2¢3 Aso\  dk e +es— Ve — Vs
by = by = | —= L= 3 . S165
= (50) £ (B0 2B @ i (5169
Adding Eq. (S164) to Eq. (S162), we obtain the Hamiltonian
0 0 0 0 0 —ds 0 ids ]
0 0 0 0 ds 0 ids 0
0 0 d3 0 O 0 0 0
. 0 0 0 d3 O 0 0 0
Hf(li) ® 12 + 0 d5 0 0 d4 0 —idﬁ 0 5 (8166)
—ds 0 0 0 O dy 0 idg
0 —ids 0 0 idg O dy 0
—ids 0 0 0 0 —idg O dy |
where
A A
d3 =03, d4y=0by, d5=%Q217 dGZ%_bAL (S167)

The & - P parameters obtained from the tight-binding ones (in particular, the NNTB parameters of Table 1) are
reported in Table SI. In order to compute these values, we have exploited the Eqgs. (S108), (S118), (S77), (S78),
(S79), (S81), (S82), (S83), (S72), (S159), (S123), (S126), (S5128), (S165), and (S167). Moreover, remembering that in
Eq. (S43) we have subtracted €, = 1.7747 €V to all the elements on the diagonal and that this shift survives all the
basis changes we have previously performed, now we have added back ¢, = 1.7747 eV to the elements located on the
diagonal of the k - 7 Hamiltonians. This means that we have added €p = 1.7747 €V to €1, €] and €}, while we have
subtracted €, = 1.7747 eV to Vg (because —Vg appears on the diagonal of Eq (S158)).

The & - P’ dispersion relations are obtained finding the eigenvalues of the k- P Hamiltonians (Egs. (S117), (S127),
(S144), (8154) (S158), (S166)). In Fig. S1 we show the comparison between the nearest-neighbor tight-binding bands
and the k - p dispersion relations computed around the K and T points, both neglecting and including the spin-orbit
coupling effect in the calculation.

Once we have derived the analytical form of the k- p dispersion relations, it is also useful to obtain the k- 19
parameters (€1, 7, €}, €5, Vs, c1, ¢, ¢3, Ca, Cs, Cq, C7, d1, da, d3, d4, d5, dg) directly fitting the DFT dispersion relations
in the regions around the points K (or K’ ) and f, in such a way as to improve their local accuracy. We have derived
these values following the same method described in our Appendix B.4 (in this case, in Eq. (S100) the number N,
near K is 2 without spin-orbit and 4 with spin-orbit, while near T it is 4 without spin-orbit and 8 with spin-orbit).

The values of the & - p parameters that we have obtained at the end of this procedure are reported in Table SII.

In Fig. S2 we show the comparison between the DFT bands and the k- p dispersion relations obtained, using these
values for the k - p parameters, around the K and T points, both neglecting and including the spin-orbit coupling
effect in the calculation. .

If we are interested in the dispersion relations in the presence of a magnetic field B, we can simply substitute the
coordinates k¢ (with ¢ = z,y) with k¢ + (e/h)A, inside our k - p Hamiltonians (Eqs. (S117), (S127), (S144), (S154),
(S158), (S166)). Here, e is the modulus of the electron charge, # is the reduced Planck constant, and A, is the ¢-th
coordinate of the vector potential A (chosen in such a way that B=Vx ff)
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TABLE SI. Values of the k- P parameters obtained from the nearest-neighbor tight-binding parameters. A k- P description
with 4 bands near K and 8 bands near I' is considered.

=

k - P parameter value obtained from NNTB parameters
€1 3.1749-1072 eV
v 2.9001 - 107! eV-nm
€ 2.3056 eV
€l 5.0316- 107! eV
Vs 3.9049 - 107! eV
c1 —2.9729-1072 eV-nm?
Ca —3.2820- 1072 eV-nm?
c3 —2.3078 - 1072 eV-nm?
4 6.6487 - 107! eV.nm
cs 7.8477-1072 eV.nm?
o 1.2379 - 1072 eV-nm?
cr —7.7239-1072 eV-nm?
dy —5.3937-1072 eV
do 4.2190-1072 eV
ds —2.2850-1072 eV
ds 8.8695-1075 eV
ds 2.2185-1071 eV
ds 2.2391-107! eV

Energy (eV)
o

Energy (eV)

(@)

FIG. S1. Dispersion relations of stanene, obtained neglecting (a) and considering (b) spin-orbit interaction. With the thin red

line we show the nearest-neighbor tight-binding bands, while with the thick black line we report the k- P dispersion relations
obtained with the parameters of Table SI.
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TABLE SII. Values of the I;-ﬁparameters obtained fitting the DFT dispersion relations. A E-ﬁdescription with 4 bands near
K and 8 bands near I' is considered.

=

k - P parameter value fitted from DFT

€1 —2.6346-107* eV
ol 2.9360 - 107! eV-nm
€l 1.4406 eV

€l 1.7378 - 107t eV
Vs 4.6849-1071 eV

c1 7.4819-1073 eV.nm?
co 9.2618 - 10~* eV-nm?
c3 1.2286 - 10~* eV-nm?
4 7.4054-107! eV.nm
cs 6.5772- 1072 eV-nm?
o —8.0303- 1072 eV-nm?
cr —1.3981-10"! eV.nm?
ds 1.6876 - 1072 eV

dy 1.0202- 107t eV

ds 1.5447 1072 eV

dy 2.4556 - 107t eV

ds 3.8460-107' eV

de 1.6716 - 107! eV

E ?,’ 0_/\A/_
= = \/\/\
o o

o) )

Lﬁ Lﬁ_z_/\/\/_
41 i 4} -
_6 | N I R | _6 | |

M T K M M T K M

FIG. S2. Dispersion relations of stanene, obtained neglecting (a) and considering (b) spin-orbit interaction. With the thin

red line we show the DFT bands, while with the thick black line we report the k- p dispersion relations obtained with the
parameters of Table SII.
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