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I. ~K ·
~P ANALYSIS AT THE POINT ~K

′

In the following, we will strictly follow the procedure of Ref. [1]. First, let us diagonalize the tight-binding Hamilto-

nian exactly at the point ~K ′ = [ 4π/(3a0), 0, 0 ]
T . In ~K ′ we have that ei

~K′·~d1 = ei2π/3, ei
~K′·~d2 = e−i2π/3, ei

~K′·~d3 = 1,
and therefore the Hamiltonian (S43) becomes:

H̃0( ~K
′) =







































∆ 0 0 0 0 iV ′
2 −V ′

2 0

0 0 0 0 −iV ′
2 V ′

1 −iV ′
1 −iV ′

3

0 0 0 0 V ′
2 −iV ′

1 −V ′
1 V ′

3

0 0 0 ∆pz 0 −iV ′
3 V ′

3 0

0 iV ′
2 V ′

2 0 ∆ 0 0 0

−iV ′
2 V ′

1 iV ′
1 iV ′

3 0 0 0 0

−V ′
2 iV ′

1 −V ′
1 V ′

3 0 0 0 0

0 iV ′
3 V ′

3 0 0 0 0 ∆pz
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with

V ′
1 =

3

4
sin2 θ (Vppπ − Vppσ) , V ′

2 =
3

2
sin θ Vspσ , V ′

3 =
3

2
sin θ cos θ (Vppπ − Vppσ) . (S103)

Exactly as in Ref. [1], let us move from the basis set V1 to the basis set V2 = {|pAz 〉, |sA〉, |ϕB
2 〉, |pBz 〉, |sB〉, |ϕA

1 〉, |ϕ3〉, |ϕ4〉),
where

|ϕA
1 〉 = − 1√

2
(|pAx 〉+ i |pAy 〉) , |ϕB

2 〉 =
1√
2
(|pBx 〉 − i |pBy 〉) ,

|ϕ3〉 = −1

2
(|pAx 〉 − i |pAy 〉)−

1

2
(|pBx 〉+ i |pBy 〉) , |ϕ4〉 =

1

2
(|pAx 〉 − i |pAy 〉)−

1

2
(|pBx 〉+ i |pBy 〉)

(S104)

through the unitary transformation

Ũ1 =












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



































0 1 0 0 0 0 0 0

0 0 0 0 0 − 1√
2

−1

2

1

2

0 0 0 0 0 − i√
2

i

2
− i

2

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0
1√
2

0 0 0 −1

2
−1

2

0 0 − i√
2

0 0 0 − i

2
− i

2

0 0 0 1 0 0 0 0
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The Hamiltonian becomes

H1( ~K
′) = (Ũ1)

† H̃0( ~K
′) Ũ1 =


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
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
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
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




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

∆pz 0 −iV3 0 0 0 0 0

0 ∆ iV2 0 0 0 0 0

iV3 −iV2 0 0 0 0 0 0

0 0 0 ∆pz 0 −iV3 0 0

0 0 0 0 ∆ −iV2 0 0

0 0 0 iV3 iV2 0 0 0

0 0 0 0 0 0 V1 0

0 0 0 0 0 0 0 −V1
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with V1 = 2V ′
1 , V2 =

√
2V ′

2 , and V3 =
√
2V ′

3 . This Hamiltonian is a block diagonal matrix with the following blocks
on the diagonal:

H
~K′

A =





∆pz 0 −iV3
0 ∆ iV2
iV3 −iV2 0



 , H
~K′

B =





∆pz 0 −iV3
0 ∆ −iV2
iV3 iV2 0



 , V1 , −V1 . (S107)

The eigenvalues ǫi (with i = 1, 2, 3, where ǫ3 < ǫ1 < ǫ2) of H
~K′

A are the roots of the equation det(H
~K′

A − ǫI3) = 0
(where I3 is the 3× 3 identity matrix), i.e. of

ǫ3 − (∆ +∆pz)ǫ
2 − (−∆pz∆+ V 2

2 + V 2
3 )ǫ+∆pzV

2
2 +∆V 2

3 = 0 , (S108)

while the corresponding orthonormalized eigenvectors are
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

1

αi

V2(ǫi −∆pz)

αi(∆− ǫi)V3

i(ǫi −∆pz)

αiV3
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








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
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u1i

u2i

u3i


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where

αi =

√

1 +

(

V2(ǫi −∆pz)

(∆− ǫi)V3

)2

+

(

ǫi −∆pz

V3

)2

. (S110)

The matrix of the eigenvectors UA diagonalizes H
~K′

A , i.e. U †
AH

~K′

A UA = ΛA, with

UA =





u11 u12 u13
u21 u22 u23
u31 u32 u33



 , ΛA =





ǫ1 0 0
0 ǫ2 0
0 0 ǫ3



 . (S111)

The eigenvalues of H
~K′

B are again the roots of Eq. (S108) and thus coincide with those of H
~K′

A , but its eigenvectors

have the form [u1i, −u2i, u3i ]T . Therefore, we have that U †
BH

~K′

B UB = ΛB , with

UB =





u11 u12 u13
−u21 −u22 −u23
u31 u32 u33



 , ΛB = ΛA . (S112)
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From this it follows that (U ′
2)

†H1( ~K
′)U ′

2 = H2( ~K
′), where

U ′
2 =























u11 u12 u13 0 0 0 0 0
u21 u22 u23 0 0 0 0 0
u31 u32 u33 0 0 0 0 0
0 0 0 u11 u12 u13 0 0
0 0 0 −u21 −u22 −u23 0 0
0 0 0 u31 u32 u33 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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




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, H2( ~K
′) =























ǫ1 0 0 0 0 0 0 0
0 ǫ2 0 0 0 0 0 0
0 0 ǫ3 0 0 0 0 0
0 0 0 ǫ1 0 0 0 0
0 0 0 0 ǫ2 0 0 0
0 0 0 0 0 ǫ3 0 0
0 0 0 0 0 0 V1 0
0 0 0 0 0 0 0 −V1






















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In this way, we have moved from the basis set V2 to the basis set V3 = {|Φ1〉, |Φ2〉, |Φ3〉, |Φ4〉, |Φ5〉, |Φ6〉, |Φ7〉, |Φ8〉),
where |Φ1〉 = u11|pAz 〉+ u21|sA〉+ u31|ϕB

2 〉, |Φ2〉 = u12|pAz 〉+ u22|sA〉+ u32|ϕB
2 〉, |Φ3〉 = u13|pAz 〉+ u23|sA〉+ u33|ϕB

2 〉,
|Φ4〉 = u11|pBz 〉 − u21|sB〉 + u31|ϕA

1 〉, |Φ5〉 = u12|pBz 〉 − u22|sB〉 + u32|ϕA
1 〉, |Φ6〉 = u13|pBz 〉 − u23|sB〉 + u33|ϕA

1 〉,
|Φ7〉 = |ϕ3〉, and |Φ8〉 = |ϕ4〉.
Substituting the values of the NNTB parameters of Table 1 into the expressions of V1, V2 and V3 and solving
Eq. (S108), we obtain that ǫ3 = −9.8374 eV (double degenerate), V1 = −4.1959 eV, ǫ1 = −1.7430 eV (double
degenerate), ǫ2 = 2.4555 eV (double degenerate), −V1 = 4.1959 eV. Therefore, the Fermi energy ǫF (which leaves half
of the energy levels occupied, i.e. with values lower than ǫF , and half unoccupied, i.e. with values higher than ǫF )

is located at ǫ1 and thus in our analysis around ~K ′ we have focused on the states corresponding to this eigenvalue.
Following Ref. [1], we have permuted the position of the basis states in such a way as to group the states with the

same eigenvectors through a final change of basis (U ′′
2 )

†H2( ~K
′)U ′′

2 = H ′
0(
~K ′), where

U ′′
2 =























1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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

















, H ′
0( ~K

′) =























ǫ1 0 0 0 0 0 0 0
0 ǫ1 0 0 0 0 0 0
0 0 ǫ2 0 0 0 0 0
0 0 0 ǫ2 0 0 0 0
0 0 0 0 ǫ3 0 0 0
0 0 0 0 0 ǫ3 0 0
0 0 0 0 0 0 V1 0
0 0 0 0 0 0 0 −V1


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






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in this way moving from the basis set V3 to the basis set V4 = {|Φ1〉, |Φ4〉, |Φ2〉, |Φ5〉, |Φ3〉, |Φ6〉, |Φ7〉, |Φ8〉).
The overall unitary matrix Ũ corresponding to the basis change from V1 to V4, i.e. such that (Ũ)†H̃0( ~K

′)Ũ = H ′
0(
~K ′),

is

Ũ = Ũ1U
′
2U

′′
2 =

























































u21 0 u22 0 u23 0 0 0

0 −u31√
2

0 −u32√
2

0 −u33√
2

−1

2

1

2

0 − iu31√
2

0 − iu32√
2

0 − iu33√
2

i

2
− i

2

u11 0 u12 0 u13 0 0 0

0 −u21 0 −u22 0 −u23 0 0

u31√
2

0
u32√
2

0
u33√
2

0 −1

2
−1

2

− iu31√
2

0 − iu32√
2

0 − iu33√
2

0 − i

2
− i

2

0 u11 0 u12 0 u13 0 0


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In analogy with Ref. [1], we have obtained the ~k ·~p Hamiltonian of stanene around ~K ′ performing a low-order expansion

around ~K ′ of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the
subset of states we are mainly interested in (i.e., those with energy nearest to the Fermi energy).

More in detail, in H̃o(~k) (see Eq. (S43)) we have substituted each occurrence of ~k with ~K ′ + ~κ (where ~κ = ~k − ~K ′

represents the distance in the reciprocal space between ~K ′ and ~k); then we have performed a Taylor expansion around
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~κ = 0 (which corresponds to ~k = ~K ′) of all the elements of the matrix. Since we are interested only in the behavior

of the dispersion relations near ~K ′ (i.e. for small values of ~κ) and from the DFT and tight-binding results it appears

that the dispersion relations around ~K ′ are nearly linear, we have kept only the first-order terms of the expansion.

The dependence on ~k appears in the elements of H̃o(~k) (see Eq. (S44)) only through the complex exponentials ei
~k·~di ;

therefore, the first-order Taylor expansion H̃
(exp)
o (~κ) of the Hamiltonian H̃o(~k) can be simply performed substituting

the following quantities to the exponentials ei
~k·~di in all the elements (Eq. (S44)) of the matrix:

ei
~k·~d1 = ei

~K′·~d1ei~κ·
~d1 ≈ ei

~K′·~d1(1 + i~κ · ~d1) =
(

−1

2
+ i

√
3

2

)

(

1 + i
a0
2
κx + i

a0

2
√
3
κy

)

,

ei
~k·~d2 = ei

~K′·~d2ei~κ·
~d2 ≈ ei

~K′·~d2(1 + i~κ · ~d2) =
(

−1

2
− i

√
3

2

)

(

1− i
a0
2
κx + i

a0

2
√
3
κy

)

,

ei
~k·~d3 = ei

~K′·~d3ei~κ·
~d3 ≈ ei

~K′·~d3(1 + i~κ · ~d3) = 1− i
a0√
3
κy

(S116)

(where we have substituted the coordinates of ~K ′, ~d1, ~d2, and ~d3). Then, in order to project the expanded Hamiltonian

H̃
(exp)
o (~κ) onto the subset of states corresponding to the bands nearest to the Fermi energy, we have first changed

the basis from V1 to V4 (the basis set which diagonalizes the tight-binding Hamiltonian exactly in ~K ′, i.e. for ~κ = 0),

obtaining the matrix H
′ (exp)
0 (~κ) = (Ũ)†H̃

(exp)
0 (~κ) Ũ . The projection of H

′ (exp)
0 (~κ) onto the basis states |Φ1〉 and |Φ4〉

(which correspond near ~K ′ to the bands nearest to the Fermi energy) is then the 2× 2 submatrix obtained from the
intersection of its first two rows and of its first two columns (because |Φ1〉 and |Φ4〉 are the first two elements of V4).
At the end of this analytical procedure, we obtain the following 2× 2 matrix:

H ~K′(~κ) =

[

ǫ1 γ(κx + iκy)
γ(κx − iκy) ǫ1

]

, (S117)

where γ (which coincides with ~vF , with ~ the reduced Planck constant and vF the Fermi velocity) is equal to

γ = −
√
3a0
2

[

u211(Vppπ sin
2 θ + Vppσ cos

2 θ)− u221Vssσ + 2u11u21 cos θVspσ − 1

2
|u31|2 sin2 θ(Vppσ − Vppπ)

]

. (S118)

Its eigenvalues are equal to ǫ(~κ) = ǫ1 ± γ
√

κ2x + κ2y = ǫ1 ± γ|~κ|, which fit quite well the tight-binding bands nearest

to the Fermi energy around the ~K ′ point.
Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). Rearranging Eq. (8),
the spin-orbit Hamiltonian on the basis of 8 atomic orbitals (differing also for the spin) centered on the same atom
{|s ↑〉, |s ↓〉, |px ↑〉, |px ↓〉, |py ↑〉, |py ↓〉, |pz ↑〉, |pz ↓〉 is:

ĤSO =
∆SO

3























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −i 0 0 1
0 0 0 0 0 i −1 0
0 0 i 0 0 0 0 −i
0 0 0 −i 0 0 −i 0
0 0 0 −1 0 i 0 0
0 0 1 0 i 0 0 0























. (S119)

Since no spin-orbit interaction exists between orbitals on different atoms, on the basis set V1 ⊗ {| ↑〉, | ↓〉} = {|sA ↑
〉, |sA ↓〉, |pAx ↑〉, |pAx ↓〉, |pAy ↑〉, |pAy ↓〉, |pAz ↑〉, |pAz ↓〉, |sB ↑〉, |sB ↓〉, |pBx ↑〉, |pBx ↓〉, |pBy ↑〉, |pBy ↓〉, |pBz ↑〉, |pBz ↓〉} (the
operator ⊗ being the tensor product) the spin-orbit contribution to the Hamiltonian is

H̃SO =

[

ĤSO 0

0 ĤSO

]

. (S120)

On the other hand, the part of Hamiltonian which does not include the spin-orbit interaction, i.e. H̃0(~k), acts
identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis set V1 ⊗ {| ↑〉, | ↓〉} as

H̃0(~k)⊗ I2 (where I2 is the 2× 2 identity matrix). Therefore, the total Hamiltonian on the basis set V1⊗{| ↑〉, | ↓〉} is
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H̃0(~k)⊗I2+H̃SO. We can repeat our previous treatment on this extended Hamiltonian. We first perform a first-order

Taylor expansion around ~K ′ (only of the first term, because the second term does not depend on ~k). Then we move

from the basis set V1 ⊗ {| ↑〉, | ↓〉} to the basis set V4 ⊗ {| ↑〉, | ↓〉} through the matrix Ũ ⊗ I2, obtaining:

(Ũ ⊗ I2)
†(H̃

(exp)
0 (~κ)⊗ I2 + H̃SO)(Ũ ⊗ I2) =

= (Ũ ⊗ I2)
†(H̃

(exp)
0 (~κ)⊗ I2)(Ũ ⊗ I2) + (Ũ ⊗ I2)

†H̃SO(Ũ ⊗ I2) =

= H
′ (exp)
0 (~κ)⊗ I2 + (Ũ ⊗ I2)

†H̃SO(Ũ ⊗ I2) .

(S121)

Finally, we project the resulting Hamiltonian onto the basis { |Φ1〉, |Φ4〉 } ⊗ { | ↑〉, | ↓〉 } = { |Φ1 ↑〉, |Φ1 ↓〉, |Φ4 ↑
〉, |Φ4 ↓〉}, obtaining:







ǫ1 0 γ(κx + iκy) 0
0 ǫ1 0 γ(κx + iκy)

γ(κx − iκy) 0 ǫ1 0
0 γ(κx − iκy) 0 ǫ1






+ λ1stSO







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






, (S122)

with

λ1stSO =
∆SO

3
|u31|2 . (S123)

The first term of Eq. (S122) corresponds to H ~K′(~κ) ⊗ I2, while its second term is obtained performing the product

(Ũ ⊗ I2)
†H̃SO(Ũ ⊗ I2) and considering its 4× 4 submatrix given by the intersection of its first 4 rows and of its first

4 columns (since { |Φ1 ↑〉, |Φ1 ↓〉, |Φ4 ↑〉, |Φ4 ↓〉} represent the first 4 elements of the basis set V4 ⊗ {| ↑〉, | ↓〉}).
Following this procedure, we have neglected the coupling which exists between the 4 states on which we have

performed our projection and the other 12 states that we have discarded (as we have seen, only the Hamiltonian

without spin-orbit in ~k = ~K ′ is diagonal on the basis V4 ⊗ {| ↑〉, | ↓〉}). The effect of this interaction can be partially

recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H
′ (exp)
0 (~κ)⊗ I2 +

(Ũ ⊗ I2)
†H̃SO(Ũ ⊗ I2) of Eq. (S121) (where the first term is the Hamiltonian without spin-orbit coupling and the

second term is the spin-orbit contribution) in the form

[

Hπ Hn

H†
n Hσ

]

, (S124)

where the 4× 4 matrix Hπ is given by the intersection of the first 4 rows and of the first 4 columns (i.e., the rows and
the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S121), the 4 × 12
matrix Hn is given by the intersection of its first 4 rows and of its 5th-to-16th columns, the 12 × 4 matrix H†

n is
given by the intersection of its 5th-to-16th rows and of its first 4 columns, and the 12 × 12 matrix Hσ is given by
the intersection of its 5th-to-16th rows and of its 5th-to-16th columns. Since the eigenvalues of Hπ are near ǫ1, the
eigenvalues of Hσ are far from it, and Hn is much smaller than Hσ − ǫ1 I12, following the procedure described in the
Appendix B of Ref. [1] we can approximate the Hamiltonian of Eq. (S121) near ǫ1 with Hπ −Hn(Hσ − ǫ1 I12)

−1H†
n

(where I12 is the 12× 12 identity matrix). The matrix Hπ represents the projection of Eq. (S121) on the first 4 states
of the basis V4⊗{| ↑〉, | ↓〉}, i.e. exactly Eq. (S122). Instead, the term −Hn(Hσ− ǫ1 I12)−1H†

n gives rise to an effective
second-order spin-orbit contribution. Let us approximate [1] the Hamiltonian of Eq. (S121) with its value in ~κ = 0

(i.e. in ~k = ~K ′); in this case its part without spin-orbit is the diagonal matrix H ′
0(
~K ′) ⊗ I2. Therefore, the matrix

Hn derives only from the spin-orbit part of Eq. (S121) and is given by the intersection of the first 4 rows and of the

5th-to-16th columns of (Ũ ⊗ I2)
†H̃SO(Ũ ⊗ I2). Instead, in Hσ the contribution of the Hamiltonian without spin-orbit

dominates on that of spin-orbit and we can approximate Hσ with the intersection of the 5th-to-16th rows and of the

5th-to-16th columns of H ′
0(
~K ′)⊗ I2. Performing the calculation, we obtain the following quantity:

H2nd
SO =







b1 0 0 0
0 b2 0 0
0 0 b2 0
0 0 0 b1






, (S125)
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with

b1 =

(

∆SO

3

)2
(

2u212|u31|2 + 4u11u12u31u32 + 2u211|u32|2 + |u31|2|u32|2
ǫ1 − ǫ2

+

+
2u213|u31|2 + 4u11u13u31u33 + 2u211|u33|2 + |u31|2|u33|2

ǫ1 − ǫ3

)

,

b2 =

(

∆SO

3

)2
(

|u31|2|u32|2
ǫ1 − ǫ2

+
|u31|2|u33|2
ǫ1 − ǫ3

+
2 ǫ1 u

2
11

ǫ21 − V 2
1

)

.

(S126)

Adding Eq. (S125) to Eq. (S122), we obtain the Hamiltonian

H ~K′(~κ)⊗ I2 +







d1 0 0 0
0 d2 0 0
0 0 d2 0
0 0 0 d1






, (S127)

where

d1 = b1 − λ1stSO , d2 = b2 + λ1stSO . (S128)

II. ~K ·
~P ANALYSIS AT THE POINT ~K

The ~k · ~p analysis around ~K can be performed in a very similar way, following again the procedure of Ref. [1].

We first diagonalize the tight-binding Hamiltonian exactly at the point ~K = [− 4π/(3a0), 0, 0 ]
T . In ~K we have

that ei
~K·~d1 = e−i2π/3, ei

~K·~d2 = ei2π/3, ei
~K·~d3 = 1, and therefore the Hamiltonian (S43) becomes:

H̃0( ~K) =







































∆ 0 0 0 0 −iV ′
2 −V ′

2 0

0 0 0 0 iV ′
2 V ′

1 iV ′
1 iV ′

3

0 0 0 0 V ′
2 iV ′

1 −V ′
1 V ′

3

0 0 0 ∆pz 0 iV ′
3 V ′

3 0

0 −iV ′
2 V ′

2 0 ∆ 0 0 0

iV ′
2 V ′

1 −iV ′
1 −iV ′

3 0 0 0 0

−V ′
2 −iV ′

1 −V ′
1 V ′

3 0 0 0 0

0 −iV ′
3 V ′

3 0 0 0 0 ∆pz







































(S129)

with

V ′
1 =

3

4
sin2 θ (Vppπ − Vppσ) , V ′

2 =
3

2
sin θ Vspσ , V ′

3 =
3

2
sin θ cos θ (Vppπ − Vppσ) . (S130)

Let us move from the basis set V1 to the basis set N2 = {|pAz 〉, |sA〉, |ψB
2 〉, |pBz 〉, |sB〉, |ψA

1 〉, |ψ3〉, |ψ4〉}, where

|ψA
1 〉 = − 1√

2
(|pAx 〉 − i |pAy 〉) , |ψB

2 〉 = 1√
2
(|pBx 〉+ i |pBy 〉) ,

|ψ3〉 = −1

2
(|pAx 〉+ i |pAy 〉)−

1

2
(|pBx 〉 − i |pBy 〉) , |ψ4〉 =

1

2
(|pAx 〉+ i |pAy 〉)−

1

2
|(pBx 〉 − i |pBy 〉)

(S131)
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through the unitary transformation

W̃1 =

























































0 1 0 0 0 0 0 0

0 0 0 0 0 − 1√
2

−1

2

1

2

0 0 0 0 0
i√
2

− i

2

i

2

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0
1√
2

0 0 0 −1

2
−1

2

0 0
i√
2

0 0 0
i

2

i

2

0 0 0 1 0 0 0 0

























































. (S132)

The Hamiltonian becomes

H1( ~K) = (W̃1)
† H̃0( ~K) W̃1 =







































∆pz 0 iV3 0 0 0 0 0

0 ∆ −iV2 0 0 0 0 0

−iV3 iV2 0 0 0 0 0 0

0 0 0 ∆pz 0 iV3 0 0

0 0 0 0 ∆ iV2 0 0

0 0 0 −iV3 −iV2 0 0 0

0 0 0 0 0 0 V1 0

0 0 0 0 0 0 0 −V1







































, (S133)

with V1 = 2V ′
1 , V2 =

√
2V ′

2 , and V3 =
√
2V ′

3 . This Hamiltonian is a block diagonal matrix with the following blocks
on the diagonal:

H
~K
A =





∆pz 0 iV3
0 ∆ −iV2

−iV3 iV2 0



 , H
~K
B =





∆pz 0 iV3
0 ∆ iV2

−iV3 −iV2 0



 , V1 , −V1 . (S134)

The eigenvalues ǫi (with i = 1, 2, 3, where ǫ3 < ǫ1 < ǫ2) of H
~K
A are the roots of the equation det(H

~K
A − ǫI3) = 0 (where

I3 is the 3× 3 identity matrix), i.e. of

ǫ3 − (∆ +∆pz)ǫ
2 − (−∆pz∆+ V 2

2 + V 2
3 )ǫ+∆pzV

2
2 +∆V 2

3 = 0 (S135)

(the same as at the ~K ′ point), while the corresponding orthonormalized eigenvectors are





















1

αi

V2(ǫi −∆pz)

αi(∆− ǫi)V3

− i(ǫi −∆pz)

αiV3





















≡





















w1i

w2i

w3i





















(S136)

where

αi =

√

1 +

(

V2(ǫi −∆pz)

(∆− ǫi)V3

)2

+

(

ǫi −∆pz

V3

)2

. (S137)
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The matrix of the eigenvectors WA diagonalizes H
~K
A , i.e. W †

AH
~K
A WA = ΛA, with

WA =





w11 w12 w13

w21 w22 w23

w31 w32 w33



 , ΛA =





ǫ1 0 0
0 ǫ2 0
0 0 ǫ3



 . (S138)

The eigenvalues of H
~K
B are again the roots of Eq. (S135) and thus coincide with those of H

~K
A , but its eigenvectors

have the form [w1i, −w2i, w3i ]
T . Therefore, we have that W †

BH
~K
BWB = ΛB , with

WB =





w11 w12 w13

−w21 −w22 −w23

w31 w32 w33



 , ΛB = ΛA . (S139)

Therefore, (W ′
2)

†H1( ~K)W ′
2 = H2( ~K), where

W ′
2 =























w11 w12 w13 0 0 0 0 0
w21 w22 w23 0 0 0 0 0
w31 w32 w33 0 0 0 0 0
0 0 0 w11 w12 w13 0 0
0 0 0 −w21 −w22 −w23 0 0
0 0 0 w31 w32 w33 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1























, H2( ~K) =























ǫ1 0 0 0 0 0 0 0
0 ǫ2 0 0 0 0 0 0
0 0 ǫ3 0 0 0 0 0
0 0 0 ǫ1 0 0 0 0
0 0 0 0 ǫ2 0 0 0
0 0 0 0 0 ǫ3 0 0
0 0 0 0 0 0 V1 0
0 0 0 0 0 0 0 −V1























. (S140)

In this way, we have moved from the basis set N2 to the basis set N3 = {|Ψ1〉, |Ψ2〉, |Ψ3〉, |Ψ4〉, |Ψ5〉, |Ψ6〉, |Ψ7〉, |Ψ8〉),
where |Ψ1〉 = w11|pAz 〉+w21|sA〉+w31|ψB

2 〉, |Ψ2〉 = w12|pAz 〉+w22|sA〉+w32|ψB
2 〉, |Ψ3〉 = w13|pAz 〉+w23|sA〉+w33|ψB

2 〉,
|Ψ4〉 = w11|pBz 〉 − w21|sB〉 + w31|ψA

1 〉, |Ψ5〉 = w12|pBz 〉 − w22|sB〉 + w32|ψA
1 〉, |Ψ6〉 = w13|pBz 〉 − w23|sB〉 + w33|ψA

1 〉,
|Ψ7〉 = |ψ3〉, and |Ψ8〉 = |ψ4〉.
Substituting the values of the NNTB parameters of Table 1 into the expressions of V1, V2 and V3 and solving
Eq. (S135), we obtain that ǫ3 = −9.8374 eV (double degenerate), V1 = −4.1959 eV, ǫ1 = −1.7430 eV (double
degenerate), ǫ2 = 2.4555 eV (double degenerate), −V1 = 4.1959 eV. Therefore, the Fermi energy ǫF (which leaves half
of the energy levels occupied, i.e. with values lower than ǫF , and half unoccupied, i.e. with values higher than ǫF )

is located at ǫ1 and thus in our analysis around ~K we have focused on the states corresponding to this eigenvalue.
Following Ref. [1], we have permuted the position of the basis states in such a way as to group the states with the

same eigenvectors through a final change of basis (W ′′
2 )

†H2( ~K)W ′′
2 = H ′

0(
~K), where

W ′′
2 =























1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1























, H ′
0(
~K) =























ǫ1 0 0 0 0 0 0 0
0 ǫ1 0 0 0 0 0 0
0 0 ǫ2 0 0 0 0 0
0 0 0 ǫ2 0 0 0 0
0 0 0 0 ǫ3 0 0 0
0 0 0 0 0 ǫ3 0 0
0 0 0 0 0 0 V1 0
0 0 0 0 0 0 0 −V1























, (S141)

in this way moving from the basis set N3 to the basis set N4 = {|Ψ1〉, |Ψ4〉, |Ψ2〉, |Ψ5〉, |Ψ3〉, |Ψ6〉, |Ψ7〉, |Ψ8〉).
The overall unitary matrix W̃ corresponding to the basis change from V1 toN4, i.e. such that (W̃ )†H̃0( ~K)W̃ = H ′

0(
~K),
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is

W̃ = W̃1W
′
2W

′′
2 =

























































w21 0 w22 0 w23 0 0 0

0 −w31√
2

0 −w32√
2

0 −w33√
2

−1

2

1

2

0
iw31√

2
0

iw32√
2

0
iw33√

2
− i

2

i

2

w11 0 w12 0 w13 0 0 0

0 −w21 0 −w22 0 −w23 0 0

w31√
2

0
w32√
2

0
w33√
2

0 −1

2
−1

2
iw31√

2
0

iw32√
2

0
iw33√

2
0

i

2

i

2

0 w11 0 w12 0 w13 0 0

























































. (S142)

In analogy with Ref. [1], we have obtained the ~k ·~p Hamiltonian of stanene around ~K performing a low-order expansion

around ~K of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the
subset of states we are mainly interested in (i.e., those with energy nearest to the Fermi energy).

More in detail, in H̃o(~k) (see Eq. (S43)) we have substituted each occurrence of ~k with ~K + ~κ (where ~κ = ~k − ~K

represents the distance in the reciprocal space between ~K and ~k); then we have performed a Taylor expansion around

~κ = 0 (which corresponds to ~k = ~K) of all the elements of the matrix. Since we are interested only in the behavior

of the dispersion relations near ~K (i.e. for small values of ~κ) and from the DFT and tight-binding results it appears

that the dispersion relations around ~K are nearly linear, we have kept only the first-order terms of the expansion.

The dependence on ~k appears in the elements of H̃o(~k) (see Eq. (S44)) only through the complex exponentials ei
~k·~di ;

therefore, the first-order Taylor expansion H̃
(exp)
o (~κ) of the Hamiltonian H̃o(~k) can be simply performed substituting

the following quantities to the exponentials ei
~k·~di in all the elements of the matrix (Eq. (S44)):

ei
~k·~d1 = ei

~K·~d1ei~κ·
~d1 ≈ ei

~K·~d1(1 + i~κ · ~d1) =
(

−1

2
− i

√
3

2

)

(

1 + i
a0
2
κx + i

a0

2
√
3
κy

)

,

ei
~k·~d2 = ei

~K·~d2ei~κ·
~d2 ≈ ei

~K·~d2(1 + i~κ · ~d2) =
(

−1

2
+ i

√
3

2

)

(

1− i
a0
2
κx + i

a0

2
√
3
κy

)

,

ei
~k·~d3 = ei

~K·~d3ei~κ·
~d3 ≈ ei

~K·~d3(1 + i~κ · ~d3) = 1− i
a0√
3
κy

(S143)

(where we have substituted the coordinates of ~K, ~d1, ~d2, and ~d3). Then, in order to project the expanded Hamiltonian

H̃
(exp)
o (~κ) onto the subset of states corresponding to the bands nearest to the Fermi energy, we have first changed

the basis from V1 to N4 (the basis set which diagonalizes the tight-binding Hamiltonian exactly in ~K, i.e. for ~κ = 0),

obtaining the matrix H
′ (exp)
0 (~κ) = (W̃ )†H̃

(exp)
0 (~κ) W̃ . The projection of H

′ (exp)
0 (~κ) onto the basis states |Ψ1〉 and

|Ψ4〉 (which correspond near ~K to the bands nearest to the Fermi energy) is then the 2× 2 submatrix obtained from
the intersection of its first two rows and of its first two columns (because |Ψ1〉 and |Ψ4〉 are the first two elements of
N4). At the end of this analytical procedure, we obtain the following 2× 2 matrix:

H ~K(~κ) =

[

ǫ1 −γ(κx − iκy)
−γ(κx + iκy) ǫ1

]

, (S144)

where γ (which coincides with ~vF , with ~ the reduced Planck constant and vF the Fermi velocity) is equal to

γ = −
√
3a0
2

[

w2
11(Vppπ sin

2 θ + Vppσ cos
2 θ)− w2

21Vssσ + 2w11w21 cos θVspσ − 1

2
|w31|2 sin2 θ(Vppσ − Vppπ)

]

(S145)

(which is identical to Eq. (S118)). Its eigenvalues are equal to ǫ(~κ) = ǫ1 ± γ
√

κ2x + κ2y = ǫ1 ± γ|~κ|, which fit the

tight-binding bands quite well around the ~K point.
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Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). Rearranging Eq. (8),
the spin-orbit Hamiltonian on the basis of 8 atomic orbitals (differing also for the spin) centered on the same atom
{|s ↑〉, |s ↓〉, |px ↑〉, |px ↓〉, |py ↑〉, |py ↓〉, |pz ↑〉, |pz ↓〉 is:

ĤSO =
∆SO

3























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −i 0 0 1
0 0 0 0 0 i −1 0
0 0 i 0 0 0 0 −i
0 0 0 −i 0 0 −i 0
0 0 0 −1 0 i 0 0
0 0 1 0 i 0 0 0























. (S146)

Since no spin-orbit interaction exists between orbitals on different atoms, on the basis set V1 ⊗ {| ↑〉, | ↓〉} = {|sA ↑
〉, |sA ↓〉, |pAx ↑〉, |pAx ↓〉, |pAy ↑〉, |pAy ↓〉, |pAz ↑〉, |pAz ↓〉, |sB ↑〉, |sB ↓〉, |pBx ↑〉, |pBx ↓〉, |pBy ↑〉, |pBy ↓〉, |pBz ↑〉, |pBz ↓〉} (the
operator ⊗ being the tensor product) the spin-orbit contribution to the Hamiltonian is

H̃SO =

[

ĤSO 0

0 ĤSO

]

. (S147)

On the other hand, the part of Hamiltonian which does not include the spin-orbit interaction, i.e. H̃0(~k), acts
identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis set V1 ⊗ {| ↑〉, | ↓〉} as

H̃0(~k)⊗ I2 (where I2 is the 2× 2 identity matrix). Therefore, the total Hamiltonian on the basis set V1⊗{| ↑〉, | ↓〉} is

H̃0(~k)⊗I2+H̃SO. We can repeat our previous treatment on this extended Hamiltonian. We first perform a first-order

Taylor expansion around ~K (only of the first term, because the second term does not depend on ~k). Then we move

from the basis set V1 ⊗ {| ↑〉, | ↓〉} to the basis set N4 ⊗ {| ↑〉, | ↓〉} through the matrix W̃ ⊗ I2, obtaining:

(W̃ ⊗ I2)
†(H̃

(exp)
0 (~κ)⊗ I2 + H̃SO)(W̃ ⊗ I2) =

= (W̃ ⊗ I2)
†(H̃

(exp)
0 (~κ)⊗ I2)(W̃ ⊗ I2) + (W̃ ⊗ I2)

†H̃SO(W̃ ⊗ I2) =

= H
′ (exp)
0 (~κ)⊗ I2 + (W̃ ⊗ I2)

†H̃SO(W̃ ⊗ I2) .

(S148)

Finally, we project the resulting Hamiltonian onto the basis { |Ψ1〉, |Ψ4〉 } ⊗ { | ↑〉, | ↓〉 } = { |Ψ1 ↑〉, |Ψ1 ↓〉, |Ψ4 ↑
〉, |Ψ4 ↓〉}, obtaining:







ǫ1 0 −γ(κx − iκy) 0
0 ǫ1 0 −γ(κx − iκy)

−γ(κx + iκy) 0 ǫ1 0
0 −γ(κx + iκy) 0 ǫ1






+ λ1stSO







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1






, (S149)

with

λ1stSO =
∆SO

3
|w31|2 (S150)

(which is identical to Eq. (S123)). The first term of Eq. (S149) corresponds to H ~K(~κ) ⊗ I2, while its second term is

obtained performing the product (W̃ ⊗ I2)†H̃SO(W̃ ⊗ I2) and considering its 4×4 submatrix given by the intersection
of its first 4 rows and of its first 4 columns (since { |Ψ1 ↑〉, |Ψ1 ↓〉, |Ψ4 ↑〉, |Ψ4 ↓〉} represent the first 4 elements of the
basis set N4 ⊗ {| ↑〉, | ↓〉}).

Following this procedure, we have neglected the coupling which exists between the 4 states on which we have
performed our projection and the other 12 states that we have discarded (as we have seen, only the Hamiltonian

without spin-orbit in ~k = ~K is diagonal on the basis N4 ⊗ {| ↑〉, | ↓〉}). The effect of this interaction can be partially

recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H
′ (exp)
0 (~κ)⊗ I2 +

(W̃ ⊗ I2)
†H̃SO(W̃ ⊗ I2) of Eq. (S148) (where the first term is the Hamiltonian without spin-orbit coupling and the

second term is the spin-orbit contribution) in the form

[

Hπ Hn

H†
n Hσ

]

, (S151)
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where the 4× 4 matrix Hπ is given by the intersection of the first 4 rows and of the first 4 columns (i.e., the rows and
the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S148), the 4 × 12
matrix Hn is given by the intersection of its first 4 rows and of its 5th-to-16th columns, the 12 × 4 matrix H†

n is
given by the intersection of its 5th-to-16th rows and of its first 4 columns, and the 12 × 12 matrix Hσ is given by
the intersection of its 5th-to-16th rows and of its 5th-to-16th columns. Since the eigenvalues of Hπ are near ǫ1, the
eigenvalues of Hσ are far from it, and Hn is much smaller than Hσ − ǫ1 I12, following the procedure described in the
Appendix B of Ref. [1] we can approximate the Hamiltonian of Eq. (S148) near ǫ1 with Hπ −Hn(Hσ − ǫ1 I12)

−1H†
n

(where I12 is the 12 × 12 identity matrix). The matrix Hπ represents the projection of Eq. (S148) on the first 4
states of the basis N4 ⊗ {| ↑〉, | ↓〉}, i.e. exactly Eq. (S149). Instead, the term −Hn(Hσ − ǫ1 I12)

−1H†
n gives rise to an

effective second-order spin-orbit contribution. Let us approximate [1] the Hamiltonian of Eq. (S148) with its value

in ~κ = 0 (i.e. in ~k = ~K); in this case its part without spin-orbit is the diagonal matrix H ′
0(
~K) ⊗ I2. Therefore, the

matrix Hn derives only from the spin-orbit part of Eq. (S148) and is given by the intersection of the first 4 rows and

of the 5th-to-16th columns of (W̃ ⊗ I2)
†H̃SO(W̃ ⊗ I2). Instead, in Hσ the contribution of the Hamiltonian without

spin-orbit dominates on that of spin-orbit and we can approximate Hσ with the intersection of the 5th-to-16th rows

and of the 5th-to-16th columns of H ′
0(
~K)⊗ I2. Performing the calculation, we obtain the following quantity:

H2nd
SO =







b2 0 0 0
0 b1 0 0
0 0 b1 0
0 0 0 b2






, (S152)

with

b1 =

(

∆SO

3

)2
(

2w2
12|w31|2 + 4w11w12w31w32 + 2w2

11|w32|2 + |w31|2|w32|2
ǫ1 − ǫ2

+

+
2w2

13|w31|2 + 4w11w13w31w33 + 2w2
11|w33|2 + |w31|2|w33|2

ǫ1 − ǫ3

)

,

b2 =

(

∆SO

3

)2
(

|w31|2|w32|2
ǫ1 − ǫ2

+
|w31|2|w33|2
ǫ1 − ǫ3

+
2 ǫ1 w

2
11

ǫ21 − V 2
1

)

(S153)

(which coincide with the definitions reported in Eq. (S126)). Adding Eq. (S152) to Eq. (S149), we obtain the
Hamiltonian

H ~K(~κ)⊗ I2 +







d2 0 0 0
0 d1 0 0
0 0 d1 0
0 0 0 d2






, (S154)

where

d1 = b1 − λ1stSO , d2 = b2 + λ1stSO (S155)

(which coincide with the definitions reported in Eq. (S128)).

III. EXTENDED ~K ·
~P ANALYSIS AT THE POINT ~Γ

Here we report the derivation of a 4-band (8-band including the spin) ~k · ~p Hamiltonian around ~Γ, obtained

considering around ~Γ the four states with energy in ~Γ equal to −V6 (double degenerate), ǫ′3 and ǫ′1 (which are the
states nearest to the Fermi energy and correspond to the two highest valence bands and to the two lowest conduction
bands).

In order to arrive at this result, we have first diagonalized the tight-binding Hamiltonian exactly at the point ~Γ. In
~Γ, adopting the basis set V1 the Hamiltonian matrix is H̃0(~Γ) (see Eq. (S71)). Following the first steps described in
our Appendix B.3, we have first moved from the basis set V1 to the basis set M2 through the unitary transformation

Q̃1; as a consequence, the Hamiltonian matrix becomes H1(~Γ) (see Eq. (S75)). Then, we have moved from the basis

set M2 to the basis set M3 through the unitary transformation Q′
2, obtaining the diagonalized Hamiltonian H2(~Γ)
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(see Eq. (S85)). Finally, since in this case we wanted to focus on the four states with energy in ~Γ equal to −V6 (double
degenerate), ǫ′3 and ǫ′1, we have permuted the position of the basis states in such a way as to put these 4 states in the

first positions, through a final change of basis (R′′
2 )

†H2(~Γ)R
′′
2 = H ′

0(
~Γ), where

R′′
2 =























1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0























, H ′
0(
~Γ) =























ǫ′1 0 0 0 0 0 0 0
0 ǫ′3 0 0 0 0 0 0
0 0 −V6 0 0 0 0 0
0 0 0 −V6 0 0 0 0
0 0 0 0 ǫ′2 0 0 0
0 0 0 0 0 ǫ′4 0 0
0 0 0 0 0 0 V6 0
0 0 0 0 0 0 0 V6























. (S156)

In this way we have moved from the basis set M3 to the basis set P4 = {|τ1〉, |τ3〉, |τ7〉, |τ8〉, |τ2〉, |τ4〉, |τ5〉, |τ6〉}.
The overall unitary matrix R̃ corresponding to the basis change from V1 to P4, i.e. such that (R̃)†H̃0(~Γ)R̃ = H ′

0(
~Γ),

is

R̃ = Q̃1Q
′
2R

′′
2 =

1√
2























q11 q33 0 0 q12 q34 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
q21 q43 0 0 q22 q44 0 0
q11 −q33 0 0 q12 −q34 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1

−q21 q43 0 0 −q22 q44 0 0























. (S157)

Then, we have obtained the 4-band ~k · ~p Hamiltonian of stanene around ~Γ performing a low-order expansion around
~Γ of the tight-binding Hamiltonian of Eq. (S43) and reducing the matrix size through projection onto the subset of
states {|τ1〉, |τ3〉, |τ7〉, |τ8〉}.
More in detail, in H̃o(~k) (see Eq. (S43)) we have substituted each occurrence of ~k with ~Γ + ~κ (where ~κ = ~k − ~Γ

represents the distance in the reciprocal space between ~Γ and ~k); then we have performed a second-order Taylor

expansion around ~κ = 0 (which corresponds to ~k = ~Γ) of all the elements of the matrix. The second-order Taylor

expansion H̃
(exp)
o (~κ) of the Hamiltonian H̃o(~k) can be simply performed substituting in all the elements of the matrix

(see Eq. (S44)) to the exponentials ei
~k·~di the quantities reported in Eq. (S88). In order to project the expanded

Hamiltonian H̃
(exp)
o (~κ) onto the subset of basis states {|τ1〉, |τ3〉, |τ7〉, |τ8〉} (corresponding to the bands nearest to the

Fermi energy), we have first changed the basis from V1 to P4, obtaining the matrix H
′ (exp)
0 (~κ) = (R̃)†H̃

(exp)
0 (~κ) R̃.

Since we have previously ordered the basis elements of P4 in such a way as to have the states {|τ1〉, |τ3〉, |τ7〉, |τ8〉}
in the first positions, the projection of H

′ (exp)
0 (~κ) onto this set of states is the 4 × 4 submatrix obtained from the

intersection of its first 4 rows and of its first 4 columns. At the end of this analytical procedure, we obtain the
following 4× 4 matrix:

H~Γ(~κ) =

















ǫ′1 + c1(κ
2
x + κ2y) 0 c2κxκy −c2

2
(−κ2x + κ2y)

0 ǫ′3 + c3(κ
2
x + κ2y) −ic4κx −ic4κy

c2κxκy ic4κx −V6 + c5κ
2
x + c6κ

2
y −c7κxκy

−c2
2
(−κ2x + κ2y) ic4κy −c7κxκy −V6 + c6κ

2
x + c5κ

2
y

















(S158)

where

c1 =
a2

12
(−V4 q211 + V5 2 q11 q21 + V7 q

2
21) , c2 =

a2

6
√
2
(V2 q11 − V3 q21) ,

c3 =
a2

12
(V4 q

2
33 − V7 q

2
43 − V5 2 q33 q43) , c4 =

a√
6
(V2 q33 − V3 q43) ,

c5 =
a2

8
(V6 − Vppπ) , c6 =

a2

24
(V6 + 3 Vppπ), c7 =

a2

12
V1 .

(S159)
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Now let us include also the effect of the spin-orbit coupling (neglecting the Rashba term). On the basis set V1 ⊗ {| ↑
〉, | ↓〉} = {|sA ↑〉, |sA ↓〉, |pAx ↑〉, |pAx ↓〉, |pAy ↑〉, |pAy ↓〉, |pAz ↑〉, |pAz ↓〉, |sB ↑〉, |sB ↓〉, |pBx ↑〉, |pBx ↓〉, |pBy ↑〉, |pBy ↓〉, |pBz ↑
〉, |pBz ↓〉} (the operator ⊗ being the tensor product) the spin-orbit contribution to the Hamiltonian is

H̃SO =

[

ĤSO 0

0 ĤSO

]

, (S160)

where ĤSO is defined in Eq. (S91). On the other hand, the part of Hamiltonian which does not include the spin-orbit

interaction, i.e. H̃0(~k), acts identically on spin-up and spin-down orbitals, and thus it can be expressed on the basis

set V1 ⊗ {| ↑〉, | ↓〉} as H̃0(~k) ⊗ I2 (where I2 is the 2 × 2 identity matrix). Therefore, the total Hamiltonian on the

basis set V1 ⊗ {| ↑〉, | ↓〉} is H̃0(~k)⊗ I2 + H̃SO. We can repeat our previous treatment on this extended Hamiltonian.

We first perform a second-order Taylor expansion around ~Γ (only of the first term, because the second term does not

depend on ~k). Then we move from the basis set V1 ⊗ {| ↑〉, | ↓〉} to the basis set P4 ⊗ {| ↑〉, | ↓〉} through the matrix

R̃⊗ I2, obtaining:

(R̃⊗ I2)
†(H̃

(exp)
0 (~κ)⊗ I2 + H̃SO)(R̃⊗ I2) =

= (R̃⊗ I2)
†(H̃

(exp)
0 (~κ)⊗ I2)(R̃⊗ I2) + (R̃⊗ I2)

†H̃SO(R̃⊗ I2) =

= H
′ (exp)
0 (~κ)⊗ I2 + (R̃⊗ I2)

†H̃SO(R̃⊗ I2) .

(S161)

Finally, we project the resulting Hamiltonian onto the basis { |τ1〉, |τ3〉, |τ7〉, |τ8〉}⊗{ | ↑〉, | ↓〉 } = { |τ1 ↑〉, |τ1 ↓〉, |τ3 ↑
〉, |τ3 ↓〉, |τ7 ↑〉, |τ7 ↓〉, |τ8 ↑〉, |τ8 ↓〉 }, obtaining:

H~Γ(~κ)⊗ I2 +
∆SO

3























0 0 0 0 0 −q21 0 iq21
0 0 0 0 q21 0 iq21 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 q21 0 0 0 0 −i 0

−q21 0 0 0 0 0 0 i
0 −iq21 0 0 i 0 0 0

−iq21 0 0 0 0 −i 0 0























, (S162)

where H~Γ(~κ) is given by Eq. (S158). The second term of Eq. (S162) is obtained performing the product (R̃ ⊗
I2)

†H̃SO(R̃ ⊗ I2) and considering its 8 × 8 submatrix given by the intersection of its first 8 rows and of its first 8
columns (since { |τ1 ↑〉, |τ1 ↓〉, |τ3 ↑〉, |τ3 ↓〉, |τ7 ↑〉, |τ7 ↓〉, |τ8 ↑〉, |τ8 ↓〉 } represent the first 8 elements of the basis set
P4 ⊗ {| ↑〉, | ↓〉}).
Following this procedure, we have neglected the coupling which exists between the 8 states on which we have

performed our projection and the other 8 states that we have discarded (as we have seen, only the Hamiltonian

without spin-orbit in ~k = ~Γ is diagonal on the basis P4 ⊗ {| ↑〉, | ↓〉}). The effect of this interaction can be partially

recovered adopting the method described in the Appendix B of Ref. [1]. We can rewrite the matrix H
′ (exp)
0 (~κ)⊗ I2 +

(R̃ ⊗ I2)
†H̃SO(R̃ ⊗ I2) of Eq. (S161) (where the first term is the Hamiltonian without spin-orbit coupling and the

second term is the spin-orbit contribution) in the form

[

Hπ Hn

H†
n Hσ

]

, (S163)

where the 8 × 8 matrix Hπ is given by the intersection of the first 8 rows and of the first 8 columns (i.e., the rows
and the columns corresponding to the states considered in our projection) of the Hamiltonian of Eq. (S161), the 8× 8
matrix Hn is given by the intersection of its first 8 rows and of its 9th-to-16th columns, the 8 × 8 matrix H†

n is
given by the intersection of its 9th-to-16th rows and of its first 8 columns, and the 8 × 8 matrix Hσ is given by the
intersection of its 9th-to-16th rows and of its 9th-to-16th columns. Let us define ǫ′av the average of the eigenvalues of

H~Γ(
~0), i.e. ǫ′av = (ǫ′1 + ǫ′3 − V6 − V6)/4. Since the eigenvalues of Hπ are near ǫ′av, the eigenvalues of Hσ are far from

it, and Hn is much smaller than Hσ − ǫ′av I8, following the procedure described in the Appendix B of Ref. [1] we can
approximate the Hamiltonian of Eq. (S161) near ǫ′av with Hπ −Hn(Hσ − ǫ′av I8)

−1H†
n (where I8 is the 8× 8 identity

matrix). The matrix Hπ represents the projection of Eq. (S161) on the first 8 states of the basis P4 ⊗ {| ↑〉, | ↓〉},
i.e. exactly Eq. (S162). Instead, the term −Hn(Hσ − ǫ′av I8)

−1H†
n gives rise to an effective second-order spin-orbit

contribution. Let us approximate [1] the Hamiltonian of Eq. (S161) with its value in ~κ = 0 (i.e. in ~k = ~Γ); in this
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case its part without spin-orbit is the diagonal matrix H ′
0(
~Γ) ⊗ I2. Therefore, the matrix Hn derives only from the

spin-orbit part of Eq. (S161) and is given by the intersection of the first 8 rows and of the 9th-to-16th columns of

(R̃ ⊗ I2)
†H̃SO(R̃ ⊗ I2). Instead, in Hσ the contribution of the Hamiltonian without spin-orbit dominates on that of

spin-orbit and we can approximate Hσ with the intersection of the 9th-to-16th rows and of the 9th-to-16th columns

of H ′
0(
~Γ)⊗ I2. Performing the calculation, we obtain the following quantity:

H2nd
SO =























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 b3 0 0 0 0 0
0 0 0 b3 0 0 0 0
0 0 0 0 b4 0 ib4 0
0 0 0 0 0 b4 0 −ib4
0 0 0 0 −ib4 0 b4 0
0 0 0 0 0 ib4 0 b4























, (S164)

with

b3 =

(

∆SO

3

)2
2 q243

ǫ′av − V6
, b4 =

(

∆SO

3

)2
q222

ǫ′av − ǫ′2
, ǫ′av =

ǫ′1 + ǫ′3 − V6 − V6
4

. (S165)

Adding Eq. (S164) to Eq. (S162), we obtain the Hamiltonian

H~Γ(~κ)⊗ I2 +























0 0 0 0 0 −d5 0 id5
0 0 0 0 d5 0 id5 0
0 0 d3 0 0 0 0 0
0 0 0 d3 0 0 0 0
0 d5 0 0 d4 0 −id6 0

−d5 0 0 0 0 d4 0 id6
0 −id5 0 0 id6 0 d4 0

−id5 0 0 0 0 −id6 0 d4























, (S166)

where

d3 = b3 , d4 = b4 , d5 =
∆SO

3
q21 , d6 =

∆SO

3
− b4 . (S167)

The ~k · ~p parameters obtained from the tight-binding ones (in particular, the NNTB parameters of Table 1) are
reported in Table SI. In order to compute these values, we have exploited the Eqs. (S108), (S118), (S77), (S78),
(S79), (S81), (S82), (S83), (S72), (S159), (S123), (S126), (S128), (S165), and (S167). Moreover, remembering that in
Eq. (S43) we have subtracted ǫp = 1.7747 eV to all the elements on the diagonal and that this shift survives all the
basis changes we have previously performed, now we have added back ǫp = 1.7747 eV to the elements located on the

diagonal of the ~k · ~p Hamiltonians. This means that we have added ǫp = 1.7747 eV to ǫ1, ǫ
′
1 and ǫ′3, while we have

subtracted ǫp = 1.7747 eV to V6 (because −V6 appears on the diagonal of Eq. (S158)).

The ~k · ~p dispersion relations are obtained finding the eigenvalues of the ~k · ~p Hamiltonians (Eqs. (S117), (S127),
(S144), (S154), (S158), (S166)). In Fig. S1 we show the comparison between the nearest-neighbor tight-binding bands

and the ~k · ~p dispersion relations computed around the ~K and ~Γ points, both neglecting and including the spin-orbit
coupling effect in the calculation.

Once we have derived the analytical form of the ~k · ~p dispersion relations, it is also useful to obtain the ~k · ~p
parameters (ǫ1, γ, ǫ

′
1, ǫ

′
3, V6, c1, c2, c3, c4, c5, c6, c7, d1, d2, d3, d4, d5, d6) directly fitting the DFT dispersion relations

in the regions around the points ~K (or ~K ′) and ~Γ, in such a way as to improve their local accuracy. We have derived
these values following the same method described in our Appendix B.4 (in this case, in Eq. (S100) the number Nb

near ~K is 2 without spin-orbit and 4 with spin-orbit, while near ~Γ it is 4 without spin-orbit and 8 with spin-orbit).

The values of the ~k · ~p parameters that we have obtained at the end of this procedure are reported in Table SII.

In Fig. S2 we show the comparison between the DFT bands and the ~k · ~p dispersion relations obtained, using these

values for the ~k · ~p parameters, around the ~K and ~Γ points, both neglecting and including the spin-orbit coupling
effect in the calculation.
If we are interested in the dispersion relations in the presence of a magnetic field ~B, we can simply substitute the

coordinates κℓ (with ℓ = x, y) with κℓ + (e/~)Aℓ inside our ~k · ~p Hamiltonians (Eqs. (S117), (S127), (S144), (S154),
(S158), (S166)). Here, e is the modulus of the electron charge, ~ is the reduced Planck constant, and Aℓ is the ℓ-th

coordinate of the vector potential ~A (chosen in such a way that ~B = ~∇× ~A).
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TABLE SI. Values of the ~k · ~p parameters obtained from the nearest-neighbor tight-binding parameters. A ~k · ~p description
with 4 bands near ~K and 8 bands near ~Γ is considered.

~k · ~p parameter value obtained from NNTB parameters

ǫ1 3.1749 · 10−2 eV

γ 2.9001 · 10−1 eV·nm

ǫ′1 2.3056 eV

ǫ′3 5.0316 · 10−1 eV

V6 3.9049 · 10−1 eV

c1 −2.9729 · 10−2 eV·nm2

c2 −3.2820 · 10−2 eV·nm2

c3 −2.3078 · 10−2 eV·nm2

c4 6.6487 · 10−1 eV·nm

c5 7.8477 · 10−2 eV·nm2

c6 1.2379 · 10−3 eV·nm2

c7 −7.7239 · 10−2 eV·nm2

d1 −5.3937 · 10−2 eV

d2 4.2190 · 10−2 eV

d3 −2.2850 · 10−2 eV

d4 8.8695 · 10−5 eV

d5 2.2185 · 10−1 eV

d6 2.2391 · 10−1 eV
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FIG. S1. Dispersion relations of stanene, obtained neglecting (a) and considering (b) spin-orbit interaction. With the thin red

line we show the nearest-neighbor tight-binding bands, while with the thick black line we report the ~k · ~p dispersion relations
obtained with the parameters of Table SI.
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TABLE SII. Values of the ~k · ~p parameters obtained fitting the DFT dispersion relations. A ~k · ~p description with 4 bands near
~K and 8 bands near ~Γ is considered.

~k · ~p parameter value fitted from DFT

ǫ1 −2.6346 · 10−4 eV

γ 2.9360 · 10−1 eV·nm

ǫ′1 1.4406 eV

ǫ′3 1.7378 · 10−1 eV

V6 4.6849 · 10−1 eV

c1 7.4819 · 10−3 eV·nm2

c2 9.2618 · 10−4 eV·nm2

c3 1.2286 · 10−4 eV·nm2

c4 7.4054 · 10−1 eV·nm

c5 6.5772 · 10−2 eV·nm2

c6 −8.0303 · 10−2 eV·nm2

c7 −1.3981 · 10−1 eV·nm2

d1 1.6876 · 10−2 eV

d2 1.0202 · 10−1 eV
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FIG. S2. Dispersion relations of stanene, obtained neglecting (a) and considering (b) spin-orbit interaction. With the thin

red line we show the DFT bands, while with the thick black line we report the ~k · ~p dispersion relations obtained with the
parameters of Table SII.
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