### **Description of Supplementary Files**

File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables.



Supplementary Figure 1.

#### Supplementary Figure 1. The generation of MetRS<sup>L274G</sup> mice

**A.** Schematic map of Gt(Rosa26) mMetRS<sup>L274G</sup> conditional Knock-In allele (fx mice). B-F: PCR images showing genotyping. PCR reactions were performed on each studied MetRS<sup>L274G</sup> animal (>30) and at least on 10 fx mice for genotyping. **G.** Sequencing confirmation of the L274G mutation in MetRS<sup>L274G</sup> mice. **H-K:** sequencing confirmation of the "stop signal" excision by Cre recombinase. ex, cre recombinase excised allele. fx, conditional knock-in allele. Sequencing confirmation of restriction analysis was done on two MetRS<sup>L274G</sup> mice and two fx mice.

#### Supplementary Figure 2.



# Supplementary Figure 2. Body weight of fx and MetRS<sup>L274G</sup> mice with and without ANL treatment.

ANL (0.2 mmol/kg) was administered to 25-day-old MetRS<sup>L274G</sup> mice and fx mice by daily I.P. injections for 6 consecutive days, body weights increased after treatment in both cohorts, consistent with normal growth of mice at this age. By daily observations, fx and *MetRS*<sup>L274G</sup> mice looked equally healthy and active. A. Body weight of wild type, fx and MetRS<sup>L274G</sup> mice at the age of ~45 days. B. Body weight of MetRS<sup>L274G</sup> and fx mice before and after ANL injection that started at the age of ~25 days. Each dot represents an individual animal. No significant differences were detected between MetRS<sup>L274G</sup> and fx mice (N=3-6, P>0.05, Wilcoxon Rank Sum test). These data were also confirmed by the daily observation of MetRS<sup>L274G</sup> parabionts.



#### Supplementary Figure 3. Additional FUNCAT studies.

**A.** FUNCAT on ANL labeled proteins in MetRS<sup>L274G</sup> cells, as compared to the cells from C57BL/6 mice, treated or not with ANL. Similar results were obtained with at least three independently derived primary cell preparations from three of each: MetRS<sup>L274G</sup> mice and C57BL/6 mice. **B.** FUNCAT on ANL labeled proteins in muscle cryosections from parabiotic MetRS<sup>L274G</sup> or C57BL/6 mice that were administered with ANL *in vivo* (as in Figure 4A). **C.** FUCNAT assay and dystrophin immunofluorescence were performed on ~10-micron adjacent sections of C57BL/6 muscle that was derived from parabiotic partners of MetRS<sup>L274G</sup> animals (with ANL administration *in vivo* as described schematically in Figure 4A). Isotype matched IgG controls for dystrophin immuno-detection are also shown. Hoechst (blue) labels all nuclei. Scale

bar, 100 $\mu$ m. Similar results were obtained from at least three C57BL/6 parabiosed to MetRS<sup>L274G</sup> mice and three MetRS<sup>L274G</sup> parabiosed to C57BL/6 mice.



**Supplementary Figure 4. FUNCAT comparison between** MetRS<sup>L274G</sup> and fx muscle tissue and **co-detection with dystrophin immunofluorescence.** 

Representative images of 10-micron muscle cryosections that were derived from MetRS<sup>L274G</sup> or fx mice administered with ANL *in vivo*, and assayed by **(A).** FUNCAT or **B.** FUNCAT with dystrophin immunostaining on adjacent sections. Hoechst (blue) labels all nuclei. Scale bar, 100μm. Similar results were obtained with at least 3 MetRS<sup>L274G</sup> and fx mice.

#### Supplementary Figure 5.



#### Supplementary Figure 5. Blood chimerism.

Gel electrophoresis on PCR wiith Cre-specific primers that was performed on genomic DNA isolated from heart-bleed derived blood cells of parabionts and control C57BL/6 mice, as indicated. Cre-specific primers (OL2642 and OL 2647) were used to amplify the 450bp Cre DNA fragment. I kb ladder (M). Similar results were obtained from 7 pairs of old C57BL/6 to young MetRS<sup>L274G</sup> parabionts and 6 pairs of old C57BL/6 to young C57BL/6 parabionts.

#### Supplementary Figure 6.



## Supplementary Figure 6. Detection of ANL-tagged proteins from primary myoblasts incubated with *in vivo* ANL labeled serum.

MetRS<sup>L274G</sup> mice and the negative control fx mice were labeled with ANL for 5 days *in vivo*, as in Methods. Their blood serum was collected. A. Click-Chemistry Western Blotting was used to assay for effective ANL tagging of serum proteome in MetRS<sup>L274G</sup> but not fx mice. B. Primary C57BL/6 myoblasts were cultured with serum from MetRS<sup>L274G</sup> and fx mice (as illustrated in the schematic) and Click-Chemistry Western Blotting was used to assay for the association of the *in vivo* ANL tagged serum proteins with the C57BL/6 myoblasts in culture. A few above-background (of the fx negative control) bands were detected (arrow heads) C. FUNCAT assay has also detected the above background ANL labeled proteins in C57BL/6 myoblasts that were cultured with MetRS<sup>L274G</sup> ANL-tagged serum, which rendered these cells visible by the Click-

fluorescence. At least 6 individual serum samples from each: 3 MetRS<sup>L274G</sup> mice and 3 fx mice produced similar results after incubation with primary myoblasts and subsequent analysis by Click-Western.

Supplementary Table 1: Primers that were used in these studies.

| Oligo1       | TGGCAGGCTTGAGATCTGG       |
|--------------|---------------------------|
| Oligo2       | TTATTGATCCGCGCCTGG        |
| Oligo3       | GACCACTACCAGCAGAACACC     |
| Oligo4       | AGAAGAGGTAGTTGCCACTATCC   |
| Oligo5       | ACGTCCAGACACAGCATAGG      |
| Oligo6       | GGACACGCTGAACTTGTGG       |
| Oligo7       | CTCTTCCCTCGTGATCTGCAACTCC |
| Oligo8       | CATGTCTTTAATCTACCTCGATGG  |
| Ctrl1forward | GTGGCACGGAACTTCTAGTC      |
| Ctrl1reverse | CTTGTCAAGTAGCAGGAAGA      |
| Ctrl2forward | GAGACTCTGGCTACTCATCC      |
| Ctrl2reverse | CCTTCAGCAAGAGCTGGGGAC     |
| OL2642       | tgcctgcattaccggtcgatgc    |
| OL2643       | ccatgagtgaacgaacctggtcg   |
| 2839reverse  | GCTTGGTCACCTCATCCGTC      |
| 1169reverse  | ACTGGCGAAGGCGACAATAC      |
| 162 reverse  | CATGCCGAGAGTGATCCCG       |
| GAPDH-F      | CCACTTGAAGGGTGGAGCCA      |
| GAPDH-R      | TCATGGATGACCTTGGCCAG      |

Supplementary Table 2: Genes that have been found by the BONCAT focused Antibody array studies. N=3 independent array experiments for each parabiotic cohort. P<0.05 (Wilcoxon rank sum test), 2-fold increase over negative control.

| Name                                                           | Unigene ID |
|----------------------------------------------------------------|------------|
| 1. B7-1/CD80                                                   | Mm.89474   |
| 2. BCMA / TNFRSF17                                             | Mm.12935   |
| 3. BLC                                                         | Mm.10116   |
| 4. CCR6                                                        | Mm.8007    |
| 5. Cerberus 1                                                  | Mm.6780    |
| <ol> <li>Coagulation Factor III /<br/>Tissue Factor</li> </ol> | Mm.273188  |
| 7. Cripto                                                      | Mm.5090    |
| 8. DKK-1                                                       | Mm.214717  |
| 9. Dtk                                                         | Mm.424496  |
| 10. EGF R                                                      | Mm.420648  |
| 11. Endostatin                                                 | Mm.4352    |
| 12. FGF R4                                                     | Mm.276715  |
| 13. FLRG (Follistatin)                                         | Mm.251710  |
| 14. Follistatin-like 1                                         | Mm.182434  |
| 15. Fractalkine                                                | Mm.103711  |
| 16. Galectin-3                                                 | Mm.248615  |
| 17. GDF-5                                                      | Mm.4744    |
| 18. GFR alpha-4 / GDNF R<br>alpha-4                            | Mm.198399  |
| 19. Granzyme B                                                 | Mm.14874   |
| 20. ICAM-2 / CD102                                             | Mm.394     |
| 21. IFN-alpha / beta R2                                        | Mm.6834    |
| 22. IGFBP-1                                                    | Mm.21300   |
| 23. IGFBP-3                                                    | Mm.29254   |
| 24. IGF-I                                                      | Mm.268521  |
| 25. IL-10                                                      | Mm.874     |
| 26. IL-10 R alpha                                              | Mm.379327  |
| 27. IL-15 R alpha                                              | Mm.200196  |
| 28. IL-17BR                                                    | Mm.269363  |
| 29. IL-17R                                                     | Mm.4481    |
| 30. IL-21 R                                                    | Mm.155643  |
| 31. IL-22                                                      | Mm.103585  |
| 32. IL-22BP                                                    | Mm.331979  |
| 33. IL-27                                                      | Mm.222632  |
| 34. IL-31 RA                                                   | Mm.380801  |
| 35. IL-9 R                                                     | Mm.384     |

| 36. KC                     | Mm.21013   |
|----------------------------|------------|
| 37. LEPTIN(OB)             | Mm.277072  |
| 38. LIF                    | Mm.4964    |
| 39. MIG                    | Mm.766     |
| 40. MIP-3 alpha            | Mm.116739  |
| 41. MIP-3 beta             | Mm.426373. |
| 42. MMP-24 / MT5-MMP       | Mm.389325  |
| 43. MMP-3                  | Mm.4993.   |
| 44. MMP-9                  | Mm.4406    |
| 45. PDGF R beta            | Mm.4146    |
| 46. Progranulin            | Mm.1568.   |
| 47. Resistin               | Mm.1181    |
| 48. Serum Amyloid A1       | Mm.148800  |
| 49. SLPI                   | Mm.371583  |
| 50. SPARC                  | Mm.291442  |
| 51. TARC                   | Mm.41988   |
| 52. TCA-3                  | Mm.1283    |
| 53. TFPI                   | Mm.124316  |
| 54. TGF-beta 1             | Mm.248380  |
| 55. TGF-beta RI / ALK-5    | Mm.197552  |
| 56. TGF-beta RII           | Mm.172346  |
| 57. Thymus Chemokine-1     | Mm.293614  |
| 58. TIMP-1                 | Mm.8245    |
| 59. TIMP-4                 | Mm.255607  |
| 60. TL1A / TNFSF15         | Mm.208152  |
| 61. TLR1                   | Mm.273024  |
| 62. TLR3                   | Mm.33874   |
| 63. TMEFF1 / Tomoregulin-1 | Mm.422686  |
| 64. TNF RII                | Mm.235328  |
| 65. TNF-beta / TNFSF1B     | Mm.87787   |
| 66. TRAIL R2 / TNFRSF10B   | Mm.193430  |
| 67. TRANCE / TNFSF11       | Mm.249221  |
| 68. TREM-1                 | Mm.248352  |
| 69. VE-Cadherin            | Mm.21767   |
| 70. VEGF R3                | Mm.3291    |