Old Yellow Enzyme homologues in *Mucor circinelloides*: expression profile and

biotransformation.

Alice Romagnolo^a, Federica Spina^a, Anna Poli^a, Sara Risso^a, Bianca Serito^a, Michele Crotti^b, Daniela Monti^c, Elisabetta Brenna^b, Luisa Lanfranco^a and Giovanna Cristina Varese^a*

Supp. Fig. 1. a) conserved domains for 9 *mcoyes*. b) Conserved domains for *mcoye10*.

Supp. Fig. 2. PCR products obtained during specific primer validation; b: negative control (PCR mixture with no DNA templates). Molecular weight marker: GelPilot 1 kb Plus Ladder. Image acquired with Gel Doc XR, Biorad and processed with Quantity One software, Biorad.

Supp. Fig. 3. qPCR report of three genes (*mcoye9*, *mcoye6* and *mcoye10*). The first three curves represent HK gene. All the genes represented in the graph are expressed after the HK gene.

Primers	Sequences (5'-3')	Amplicon length	Annealing temperatures (°C)	
<i>mcoye1</i> F	TGCCAATGGTTATCTGGTCG	177	60	
mcoyel R	CTGGAAGCCGTTACCTGGA	1//		
<i>mcoye2</i> F	TCGTGCCAACTTCTTCTTGC	222	60	
mcoye2 R	GGTTCAATTCCCAGCCGTTG	225		
<i>mcoye3</i> F	GGCTACTTGACCTCAGAGCT	175	60	
mcoye3 R	GAGTCAATGAAAGGCCACCA	175		
<i>mcoye4</i> F	AGCTACCTCGTGCTCTTACC	195	56	
mcoye4 R	GGATGATCCGCCATAAATATCG	183		
mcoye5 F	CTCAGGCCCTTCAAGACAGA	157	60	
mcoye5 R	GTATCCACCGGCAGAGATGA			
<i>тсоуеб</i> F	GGCGCTTTCATCTACTTGCA	206	60	
<i>тсоуеб</i> R	CGCATTTAAGGCAGCTTGCA			
mcoye7 F	TCCCTCCATCATTATCGCAAT	231	56	
mcoye7 R	AATCAAGATACCCCACATCG	231		
<i>mcoye8</i> F	CTTCTCTCCTAATGGCTCAG	162	56	
mcoye8 R	AATGGTGTTCACCTTGCCAT	102	30	
<i>mcoye9</i> F	GTGCAAGATTTTCGCCAAGC	225	60	
mcoye9 R	CTCGGATACCTGTTCGCTCT	223	00	
mcoye10 F	AATCGGCGTGGATGTCATTG	100	<u>()</u>	
mcoye10 R	ATCAGCCTCGTCCTTTTCCA	189	οU	

Supp. Table 1. List of specific primers for qRT-PCR of *M. circinelloides*.

Species	Sequence ID	ID % with OYE1
	239566	52.50
	321291	52.30
	288216	53.60
	326062	53.40
Brokurolla sinsina ESU 041 v1 0	258711	53.40
Backusella circina FSU 941 VI.0	301550	49.30
	320605	53.10
	283228	49.60
	282556	50.00
	270152	51.90
	1409933	49.80
	1344648	48.70
Hesseltinella vesiculosa NRRL3301 v2.0	1389673	52.50
	1407959	46.60
	1276110	51.10
	204294	53.00
	121608	53.30
Lichtheimia hyalospora v1.0	230638	49.20
	167093	37.70
	113057	52.60
	24356	53.10
	112394	52.20
	146092	54.00
	155499	50.60
Phycomyces blakesleeanus NRRL1555 v2.0	133910	51.90
	181382	51.50
	168981	50.40
	168987	50.40
	168986	50.00
	229508	60.20
	224787	51.90
	193785	51.90
Rhizopus microsporus ATCC11559 v1.0	224132	48.70
	226116	60.00
	228303	39.00
	171195	50.70
	10823	55.10
	7780	60.20
	5247	59.80
Rhizopus microsporus var. chinensis CCTCC	11257	53.70
M201021	9553	53.10
	15357	51.90
	9473	52.50
	2454	49.10

Supp. Table 2. Putative OYE homologues of the fungi belonging to the Mucormycotina with sequence ID (JGI database) and identity percentage with *S. pastorianus* OYE1.

	579	48.70
	13117	39.00
	236210	59.50
	277442	54.00
	196704	52.30
	263891	52.70
Rhizopus microsporus var. microsporus	233319	51.30
ATCC52813 v1.0	210812	51.30
	220486	48.70
	231713	48.00
	198995	39.10
	294582	50.70
	1405	59.50
	226692	54.00
	234533	52.70
	221217	51.30
Rhizopus microsporus var. microsporus	20582	48.70
ATCC52814 v1.0	338611	51.90
	323344	45.60
	278916	50.70
	209982	57.10
	301704	49.10
	11141	53.30
	13469	53.20
	13470	54.10
	1911	52.90
Rhizonus orvzae 99-880	13455	52.70
Rinzopus oryzae >> 666	16652	52.40
	16660	52.90
	5596	36.20
	16962	34.90
	16961	34.90
	167996	50.20
	296378	51.30
Umbelonsis ramanniana AG v1 0	238239	52.10
	228649	33.70
	228848	44.20
	263903	44.30

Biomass dry weight, pH and reducing sugars

The dry weight of fungal biomasses did not change significantly throughout the biotransformation of CE and MCA and did not reveal any remarkable difference between the condition with the substrate and the control either. In the condition without MCI, the biomass remained stable during the whole experiment while, by contrast, after 4 d of MCI exposure there was a slight inhibition of fungal growth (- 30 %).

In all cultural conditions, the pH was acidic (CE: 3.8-4.2, MCA: 4.2-4.7, MCI: 4.1-4.8) and did not display any significant variation throughout the experiments. The consumption of reducing sugars followed a similar trend for the three substrates; the fungus used most of the glucose (80 %) during the pre-growth phase leaving at the end of the assay, less than 5 %. The consumption profiles in presence and absence of the substrates were similar.