Cell Reports, Volume 20

Supplemental Information

Set2 Methyltransferase Facilitates DNA

Replication and Promotes Genotoxic Stress

Responses through MBF-Dependent Transcription

Chen-Chun Pai, Anastasiya Kishkevich, Rachel S. Deegan, Andrea Keszthelyi, Lisa Folkes, Stephen E. Kearsey, Nagore De León, Ignacio Soriano, Robertus Antonius Maria de Bruin, Antony M. Carr, and Timothy C. Humphrey

Supplementary information

Α WT log set2∆ log 2C 2C Β % cells binucleate cdc25-22 set2∆cdc25-22 Time after release (minutes) С % cells septated cdc25-22 set2∆cdc25-22 Time after release (minutes)

Figure S1 set2 Δ cells exhibit significant S-phase delay in synchronised cell culture, related to Figure 1. (A) A wild-type or set2 Δ strain was grown in YES medium to early log phase (OD 0.2-0.5) at 32°C. Cells from wild-type (WT) or set2 Δ cells were fixed with 70% ethanol, and examined by flow cytometry determining DNA contents of the cells. (B) Cell cycle analysis of *cdc*25-22 and *set2\Delta cdc*25-22 cells following release from *cdc*25-22 block (35.5°C; 4.25 hours). Percentage of binucleate cells following release from *cdc*25-22 block. (C) Percentage of septated cells following release from *cdc*25-22 block.

With	Subtelomeric	Тор 10	Тор 100	Тор 200
normalisation	number of oris	percentage	average	average
		average (%)	(%)	(%)
WT-18°C	40	80.92215	84.38209	76.12337
WT-34°C	38	87.34496	88.9758	81.36208
<i>set2∆</i> -18°C	39	75.60882	79.5611	70.82381
<i>set2∆</i> -34°C	41	83.43062	85.93798	77.78305
Without	Subtelomeric	Тор 10	Top 100	Тор 200
normalisation	number of oris	percentage	average	average
		average (%)	(%)	(%)
WT-18°C	40	35.85002	37.31833	33.72313
WT-34°C	38	57.22798	58.25121	53.18669
cot 21 18°C	30	33 88088	35 65498	31 76588

set2∆-34°C

41

Figure S2 Analysis of origins usage at sub-telomeric regions or origin efficiency of the whole genome in vegetative wild-type and *set2* Δ cells at 18°C or 34°C, related to Figure 2.

56.5458

58.22781

52.72425

Figure S3 Replication factors are misregulated in set2 \triangle cells, related to Figure 4.(A) Western blot analysis of Cdc18-TAP levels following release from a *cdc25-22* block (35.5°C; 4.25 hours) in *cdc25-22* and *set2\triangle cdc25-22* cells. FACS analysis of *cdc25-22* and *set2\triangle cdc25-22* cells following release from a *cdc25-22* block. (B-C) Similar experiments were carried out as described in (A).

Figure S4 Replication factors are misregulated in set2 Δ cells, related to Figure 4. Wild-type and set2 Δ cells were arrested in EMM-N for 16 h at 25°C and then released into EMM+N. Samples for RNA extraction were collected at 0-5 hours after release from G1 arrest. RNA was extracted with Qiagen RNeasy kit and relative transcript levels of cdc18 (A), cdt1 (B) and cdc22 (C) were established by RTqPCR.

Figure S5 Ectopic expression of *cdc18* and *cdt1* does not rescue the cell cycle defect of *set2* Δ cells, related to Figure 4. *cdc25-22* or *set2* Δ *cdc25-22* cells were grown with (+thiamine) or without (-thiamine for 16 hours) ectopic expression of *cdc18* and *cdt1* from a REP81X plasmid, synchronised at G2/M using the *cdc25-22* block (35.5°C; 4.25 hours) and samples for flow cytometry taken every 30 minutes following release from *cdc25-22* block.

Figure S6 tos4 Δ cells progress normally through S phase, related to Figure 3. (A) Cell cycle analysis of *cdc25-22* and *tos4\Delta cdc25-22* cells following release from *cdc25-22* block (35.5°C; 4.25 hours). (B) Percentage of cells binucleate following release from *cdc25-22* block. (C) Percentage of cells septated following release from *cdc25-22* block.

Pai et al Supplementary Figure 7

Β

set2 Δ

С

D

 $chk1\Delta$

 $cds1\Delta$

rad3∆

Bleocin

Figure S7 Set2 is not required for checkpoint activation in response to DNA damage and replication stress, related to Figure 6. (A) Serial dilution of a wild-type and set2 Δ strains were spotted onto YES medium containing different concentration of HU as indicated. Plates were incubated at 30°C for 2-3 days (B) Cds1-TAP or set2A Cds1-TAP cells were grown in YES medium with or without 10 mM HU at 32°C. Western blotting of 2h HU-treated or untreated cell extracts for Cds1-TAP. α -tubulin was used as a loading control. (C) Western analysis of Chk1 or Crb2 phosphorylation following 1h treatment with 5µg/ml bleomycin at 26°C in wild-type or set2∆ cells. Asterisk indicates unspecific bands. (D) Each fixed culture from WT, set2 Δ chk1 Δ , cds1 Δ , or rad3^Δ strain was stained with DAPI and analysed by fluorescence microscopy showing nuclear morphology for each strain. Red arrows indicate the cut phenotype in the samples collected after 2h Bleocin treatment at 26°C.

Strain	Genotype	Source
TH 451	chk1::ura4 ade- leu1-32 h+	Lab stock
TH 758	cds1::ura4 ura4-D18 leu1-32 h-	Lab stock
TH 1543	cdc25-22 leu1-32 ade6-D1, ura4-D18 his3D h+	Lab stock
TH 2094	arg3-D4, ade6-D1, ura4-D18, leu1-32, his3-D1 h-	Lab stock
TH 3645	spd1::hygroR ura4-D18 leu1 ade6-704 h-	Olaf Nielsen
TH 3271	set2::ura4+ ade6-210 arg3-D4 his3-D1 leu1-32 ura4-D18 h-	Robin Allshire
TH 6236	set2::kanMX ade6-210 leu1-32 ura4-D18 h-	Robin Allshire
TH 6237	set2::kanMX ade6-210 leu1-32 ura4-D18 h+	Robin Allshire
TH 6707	set2::ura4 cdc25-22	This study
TH 6877	972 h-	Lab stock
TH 6932	tos4::KanMX cdc25-22	This study
TH 6919	set2::kanMX	Robin Allshire
TH 6999	set2::ura4 cdc25-22, pREP81x-cdt1 pREP81x-cdc18	This study
TH 7002	cdc25-22 leu1-32 ade6-D1, ura4-D18 his3D pREP81x-cdt1 pREP81x-	This study
TH 7133	set2::set2-R255G-ura4	Lab stock
TH 7952	set2::kanMX chk1::ura4	This study
TH 8459	set2::kanMX spd1::HygroR	This study
TH 8590	crb2-YFP-leu+ crb2::ura4 set2::kanMx	This study
TH 8658	cds1::kanMX set2::kanMX	This study
TH 8659	rad3::kanMX set2::kanMX	This study
TH 8664	set2::kanMX yox1:: kanMX	This study
TH 8662	cdc18-TAP::kanMX	Stephen Kearsey
TH 8669	set2:: kanMX cdc18-TAP::kanMX	This study
TH 8672	cdt1-TAP-KanMX	Stephen Kearsey
TH 8726	set2::kanMX cdc22-D57N	This study
TH 8727	cdc22-CFP:: kanMX	Stephen Kearsey
TH 8729	set2:: kanMX cdc22-CFP:: kanMX	This study
IM 655	rnh201::KanMX cdc20-M603F::lox ade6-704 leu1-32 ura4-D18 h-	Tony Carr

Table S1, related to Figure 1-7. Strains used in this study

IM 856	rnh201::KanMX cdc6-L591G:lox ade6-704 leu1-32 ura4-D18 h-	Tony Carr
YAK250	set2::kanMx rnh201::HYG, cdc20-M603F ade6-704 leu1-32 ura4-D18 h-	Tony Carr
YAK251	set2::kanMx rnh201::HYG, cdc6-L591G ade6-704 leu1-32 ura4-D18	Tony Carr
RBP43	Res1-13myc:: kanMX, leu1-32, ura4-D18	Rob de Bruin
RBP751	Res1-13myc:: kanMX, set2::ura4, ade6-210, arg3-D4, his3-D1, leu1-32 ura4-D18	Rob de Bruin
MG83	ura4::adh-dmNK-NAT-adh-hENT1 ura4-aim	Edgar Hartsuiker

Table S2, related to Figure 3, Figure 4 and Figure 7. Primers used in this study

		FW	RV
cdc18	RTqPCR	GTAGGCATGCAATTGAACTTGCGG	TCATAGCAGATGTCGCTCGGACAA
cdt1	RTqPCR	ACCGTATGGCCAGAGTCATTTGCT	AATTCAATGGAGCGGGAGAAGGCT
cdc22	RTqPCR	TGCAACGTGTTGAACGTAACGAGC	AGGTAATGAACGACGACCACGGTT
tos4	RTqPCR	TTCTGCAGTGAGAAGAGAGCCACT	AACCGTGGATAGGACATGGTCACA
nrm1	RTqPCR	GGGAAAGGCCAACAAACGAAGTGT	ATCGAACCGCAATCGGTGAAATCG
act1	RTqPCR	CGCCGAACGTGAAATTGTTCGTGA	TCAAGGGAGGAAGATTGAGCAGCA
cdc18	ChIP qPCR	GGCATTTCATATCTTTGAGGATGAGTCGT	ATGTCGCGTTCAACTCTACGTGTC
cdt1	ChIP qPCR	TTTCAGAGAGCCTGAACTTGG	CTCCTTTGCTCTGCGAGATATTA
cdc22	ChIP qPCR	ACTTAAAGTTCGGATGACGCGACG	GTTTGTAAGGTGGTAAATACCGGG
tos4	ChIP qPCR	CACTGGGTTACTCTCGTTTCTT	CCTGGGTATAAACACGCTATGA
byr3	ChIP qPCR	TGGCAAGTTGTTGTGCTTCTTCCG	TAACAAGCACATGGTGGCACTTGG
rps17	ChIP qPCR	GCACCTGGTTTGTTGTTGGTTG	TTCGTAACCTCCGTCGCTTCTGTT