Genomic Analysis of 220 CTCLs Identifies a Novel Recurrent Gain-of-function Alteration in RLTPR (p.Q575E)

Joonhee Park, Jingyi Yang, Alexander T. Wenzel, Akshaya Ramachandran, Wung J. Lee, Jay C. Daniels, Estela Martinez-Escala, Nduka Amankulor, Barbara Pro, Joan Guitart, Marc L. Mendillo, Jeffrey N. Savas, Titus J. Boggon, and Jaehyuk Choi

23 Supplementary Tables 14 Supplementary Figures

Table of Contents

Supplemental Table S1. Description of excluded samples from original studiesp.5
Supplemental Table S2. Description of CTCL genetic studies used in analysisp.6
Supplemental Table S3. Summary of the primers sequences
Supplemental Table S4. Study description according to patient CTCL subtype characterization
Supplemental Table S5. Genes with a statistically significant burden of gene mutations as assessed by MutSig CV
Supplemental Table S6. Hotspot mutations that occur at the same amino acid more often than expected by chance alone
Supplemental Table S7. Damaging mutations that occur more often than expected by chancep.12
Supplemental Table S8. Description of T cell lymphoma genetic studies (non-CTCL) used in scheme of RHOA distribution and pan-T cell lymphoma analysisp.13
Supplemental Table S9. CTCL mutations that are statistically significant hotspot mutations in a pan-T cell lymphoma analysisp.14
Supplemental Table S10. CTCL mutations in T cell lymphoma oncogenes
Supplemental Table S11. Damaging mutations in putative tumor suppressors in T cell lymphomasp.16
Supplemental Table S12. CTCL mutations that are hotspot mutations in COSMIC p.17
Supplemental Table S13. Damaging mutations in canonical tumor suppressorsp.19
Supplemental Table S14. Damaging mutations in recurrent focal deletionsp.20
Supplemental Table S15. Recurrent amino acid alterations in recurrent focal amplificationsp.23
Supplemental Table S16. Oncogenic mutations previously functionally validated in CTCLp.24
Supplemental Table S17. Mutations distribution according to patient CTCL subtype in 55 of putative driver genes
Supplemental Table S18. Identification of differentially expressed genes in PMA/Ionomycin treated Jurkat cells (RLTPR (p.Q575E) compared to WT RLTPR)p.27
Supplemental Table S19. Identification of differentially expressed genes in unstimulated Jurkat cells (RLTPR (p.Q575E) compared to WT RLTPR)p.30
Supplemental Table S20. Identification of differentially expressed genes in RLTPR (p.Q575E) overexpressed Jurkat cells after PMA/Ionomycin treatmentp.31

Supplemental Table S23. Identification of enriched transcription factor binding sites in genes upregulated in RLTPR (p.Q575E) overexpressed Jurkat cells compared to WT after PMA/Ionomycin treatment......p.40

Supplemental Figure S1. 6 approaches to identify the putative driver genes in Supplemental Figure S2. Identification of genes with a statistically significant burden of somatic point mutations......p.42 Supplemental Figure S3. Identification of putative driver genes with mutational Supplemental Figure S4. Identification of putative driver gene mutations found in other mature T cell lymphomas......p.44 Supplemental Figure S5. Identification of CTCL mutations in consensus cancer genes.p.45 Supplemental Figure S6. Identification of genes with mutational signatures characteristic of oncogenes and tumor suppressors on recurrent copy number variantsp.46 Supplemental Figure S7. Identification of target genes on narrow recurrent copy number variants.....p.47 Supplemental Figure S8. Distribution of Mutations in CTCL. Supplemental Figure S9. Mapping of RHOA mutations found in T cell lymphomas ... p.49 Supplemental Figure S10. Lentiviral transduction of Jurkat cells with lentivirus Supplemental Figure S11. Identification of a novel RLTPR isoform in human CD4+ T and CTCL cells.....p.52 Supplemental Figure S12. Volcano plot analysis of RNA expression in Jurkat cells with and without stimulation by the TCR pharmacological mimics (PMA/ionomycin)......p.54 Supplemental Figure S13. OPOSSUM Analysis for detection of over-represented conserved transcription factor binding sites at promoters of genes upregulated in stimulated RLTPR (p.Q575E) cells.....p.55 Supplemental Figure S14. Model by which RLTPR p.Q575E potentiates T cell receptordependent NF-κB signalingp.56

Study	# of samples in original paper	# of samples included	Excluded samples
Choi et al 1	40	40	-
Ungewickell et al ²	11	11	-
McGirt et al ³	5	5	-
Vaque et al 4	11	10	case 11*
Kiel et al ⁵	66	55	H01, D02, G01, SS1, SS12, SS19, SS44, SS54, SS58, SS59, SS75**
Wang et al ⁶	37	37	-
Almeida et al ⁷	42	40	SS_L15, SS_L9***
Woollard et al ⁸	10	10	-
Prasad et al ⁹	12 †	12	-

Supplemental Table S1. Description of excluded samples from original studies.

† 12 samples which were available in supplementary table were used in analysis.

* 1 sample without mutation in original paper is excluded

** 11 samples were excluded because they had over 5 single nucleotide variants shared with other samples in their or other datasets raising the possibility they are derived from the same patient.

*** After submitting the mutations through our pipeline, two samples had no mutations remaining.

Study	# of samples	Patient characterization	Sequencing type	Somatic mutation	Reports of synonymous mutations
Choi et al ¹	40	SS	Whole exome	yes	yes
Ungewickell et al ²	11	MF and SS	Whole exome	yes	no
McGirt et al ³	5	MF	Whole genome	yes	yes
Vaque et al 4	10	MF and SS	Targeted	yes	no
Kiel et al ⁵	55	SS	Whole exome	no	no
Wang et al ⁶	37	SS	Whole exome	yes	yes
Almeida et al ⁷	40	SS, MF and other CTCL	Whole exome	yes	no
Woollard et al ⁸	10	SS	Whole exome	yes	no
Prasad et al ⁹	12	SS	Whole exome	yes	yes

Supplemental Table S2. Description of CTCL genetic studies used in analysis.

MF, Mycosis fungoides; SS, Sezary syndrome; CTCL, cutaneous T cell lymphoma

-					•	-		-		
SII	n	nlemental	Table	<u>S3</u>	Summar	v of	the	nrimers	SAU	lliences
u	M	picificitui	IUNIC	00.	Gaimai	y 01	ui c	princi 5	900	14011000

Primer	Sequence
RLTPR cloning Forward	GAAGATTCTAGAGCTAGCGAATTCACCATGGC CCAGACCCCCGAC
RLTPR cloning Reverse	GATTGGGGCCGCCGCGGATCCTCAGG
RLTPR p.Q575E mutagenesis Forward	TGCACCGGATTGTCGAGCTCATGCAGGAC
RLTPR p.Q575E mutagenesis Reverse	GTCCTGCATGAGCTCGACAATCCGGTGCA
RLTPR qPCR Forward	CTGGAGCGGGGAGAAACA
RLTPR qPCR Reverse	CATCTGAGCCAGCTTTCTTG
IL-2 qPCR Forward	CAAACCTCTGGAGGAAGTGC
IL-2 qPCR Reverse	GGTTGCTGTCTCATCAGCAT
GAPDH qPCR Forward	GAAGGTGAAGGTCGGAGTC
GAPDH qPCR Reverse	GAAGATGGTGATGGGATTTC
ARHGEF3 cloning Forward	GAAGATTCTAGAGCTAGCGAATTCACCATGGT GGCCAAGGATTAC
ARHGEF3 cloning Reverse	GCAGATCCTTGCGGCCGCGGATCCTCAGACG TTACTTTCACCGTG
ARHGEF3 p.R84H mutagenesis Forward	GAGGATGTCAGGGTGGCTCTCACTGCG
ARHGEF3 p.R84H mutagenesis Reverse	CGCAGTGAGAGCCACCCTGACATCCTC
ARHGEF3 p.L269E mutagenesis Forward	TGCCTCAAGATTTCTCGGAGCTCCAGAGGGTA TTTTACCAGGC
ARHGEF3 p.L269E mutagenesis Reverse	GCCTGGTAAAATACCCTCTGGAGCTCCGAGAA ATCTTGAGGCA
CSNK1A1 cloning Forward	GAAGATTCTAGAGCTAGCGAATTCACCATGGC GAGTAGCAGCGGC
CSNK1A1 cloning Reverse	CGCAGATCCTTGCGGCCGCGGATCCTTAGAAA CCTTTCATGTTAC
CK1a p.S27C Forward	GATGTCCCCGAAGCAGCCAGACCCGAT
CK1a p.S27C Reverse	ATCGGGTCTGGCTGCTTCGGGGGACATC
$CK1\alpha$ p.S27F Forward	AGATGTCCCCGAAGAAGCCAGACCCGATC
CK1a p.S27F Reverse	GATCGGGTCTGGCTTCTTCGGGGGACATCT
CSNK1A1 qPCR Forward	ATGGCGAGTAGCAGCGGCTC
CSNK1A1 qPCR Reverse	CGTATGTGGGGGGATGCCAAC
RLTPR p.Q575E gDNA sanger sequencing	GGTGATACAAGACTTAGTGTG

Forward

RLTPR p.Q575E gDNA sanger sequencing Reverse *RLTPR* Exon 14 Forward *RLTPR* Exon 14 Reverse *RLTPR* Exon 36 Forward *RLTPR* Exon 36 Reverse

GTTGTTCCTCAAGAGACAGG

GTTGACACCGCGAGGAAT

TGAGGTCCAGGTGCAGGT

GTGTCTGCTGACCCTTCCTG

AGATCCTAGGCTTGGGGATG

Study	Patient characterization	# of samples	# of SS	# of MF	# of CTCL-NOS
Choi et al	SS	40	40	0	0
Kiel et al	SS	55	55	0	0
Wang et al	SS	37	37	0	0
Woollard et al	SS	10	10	0	0
Prasad et al	SS	12	12	0	0
Ungewickell et al	MF and SS	11	5	6	0
Vaque et al	MF and SS	10	4	6	0
Almeida et al	SS, MF and CTCL-NOS	40	23	8	9
McGirt et al	MF	5	0	5	0

Supplemental Table S4. Study description according to patient CTCL subtype characterization.

Supplemental Table S5. Genes with a statistically significant burden of gene mutations as assessed by MutSig CV

Gene	# of nonsynonymous mutations	# of synonymous mutations	P value	Adjusted <i>P</i> value*
TP53	22	0	0	0
FAS	6	0	2.39E-06	2.26E-02
CCR4	5	0	5.27E-06	3.31E-02

* *P* value adjusted for multiple hypothesis testing.

Gene	Amino acid change	# of total mutations	# of recurrent mutations*	Adjusted P value**
PLCG1	p.S345F	22	8	3.38E-24
RLTPR	p.Q575E	7	7	5.91E-20
CCR4	p.Y331X	7	4	1.09E-07
PLCG1	p.R48W	22	4	1.09E-07
RHOA	p.N117I; p.N117K	10	4	1.09E-07
PLCG1	p.E1163K	22	3	8.15E-04
CD28	p.F51V; p.F51I	9	3	8.15E-04
CARD11	p.D357N; p.D357E; p.D357A	13	3	8.15E-04
SMARCB1	p.Q368X	7	3	8.15E-04
CARD11	p.S615F	13	3	8.15E-04
MAPK1	p.E322A; p.E322K	3	3	8.15E-04
STAT5B	p.N642H	8	3	8.15E-04

Supplemental Table S6. Hotspot mutations that occur at the same amino acid more often than expected by chance alone.

Rate of background mutations were determined for each gene and adjusted according to gene expression analysis.

* Recurrent mutations are defined as mutations at the same amino acid.

** Bonferroni correction was applied to adjust for multiple hypothesis testing.

Gene	# of damaging mutations	Adjusted <i>P</i> value*
TP53	18	4.39E-45
CCR4	6	1.83E-10
SMARCB1	5	1.25E-07
ARID1A	7	1.36E-07
TET2	7	1.60E-07
CREBBP	5	1.05E-03
ZEB1	4	4.95E-03
FAS	3	6.85E-03
NCOR1	4	5.62E-02

Supplemental Table S7. Damaging mutations that occur more often than expected by chance

Damaging mutations include splice-site mutations, truncating nonsense mutations, and frameshift mutations.

Rate of background damaging mutations were determined by gene expression analysis.

The expected number of damaging mutations per gene was adjusted to gene length.

* Bonferroni correction was applied to adjust for multiple hypothesis testing.

Supplemental Table S8. Description of T cell lymphoma genetic studies (non-CTCL) used in scheme of RHOA distribution and pan-T cell lymphoma analysis.

Study	Patient characterization	# of samples	Sequencing type
Yoo et al * ^{,† 10}	ΑΙΤΙ	5	Whole exome*
	/ 11 E	9	RNAseq [⊤]
Nagata et al ^{† 11}	ATLL	203	Target
Vallais at al $^{+12}$	AITL	72	Target
valiois et al	PTCL-NOS	13	Target
Kataoka et al* ¹³	ATLL	81	Whole exome
Sakata-Yanagimoto et al* ¹⁴	AITL, PTCL-NOS	6	Whole exome
Palomero et al* 15	AITL, PTCL-NOS, nasal- type NKTCL, EATL	12	Whole exome
Crescenzo et al* 16	ALK ⁻ ALCL	23	Whole exome
Roberti et al* ¹⁷	EATL	15	Whole exome

† Studies and data were used in distribution of RHOA mutations.

* Studies and data were used in pan-T cell lymphoma analysis.

AITL, Angioimmunoblastic T cell lymphoma; ATLL, Adult T-cell leukemia/lymphoma; PTCL-NOS, Peripheral T-cell lymphoma not otherwise specified; ALK⁻ ALCL, Anaplastic large cell lymphoma without anaplastic lymphoma kinase; nasal-type NKTCL, nasal-type Natural killer/T-cell lymphoma; and EATL, Enteropathy-associated T-cell lymphoma

Gene	Recurrent mutation*	TCL	CTCL	Adjusted <i>P</i> value**
CCR4	p.Y331X; p.Y331N	12	4	1.39E-59
PRKCB	p.D427N	15	1	1.39E-59
PLCG1	p.R48W	11	4	5.26E-55
PLCG1	p.S345F	4	8	1.84E-41
STAT3	p.Y640F	9	2	5.08E-37
STAT5B	p.N642H	5	3	5.75E-24
CD28	p.F51V; p.F51I	3	3	1.50E-15
CARD11	p.E626K	5	1	1.50E-15
JAK3	p.A573V	3	2	1.87E-11
SMARCB1	p.Q368X	1	3	1.86E-07
PLCG1	p.S520F	2	2	1.86E-07
CSNK1A1	p.S27F; p.S27C	2	2	1.86E-07
STAT5B	p.V712E	3	1	1.86E-07
JAK3	p.M511I	3	1	1.86E-07
CARD11	p.D401N	1	2	1.39E-03
TRRAP	p.S722F	2	1	1.39E-03
RARA	p.G303S	2	1	1.39E-03

Supplemental Table S9. CTCL mutations that are statistically significant hotspot mutations in a pan-T cell lymphoma analysis

TCL, Number of mutations in T cell lymphomas (other than CTCL). These include ATLL, AITL, PTCL-NOS, EATL, nasal-type NK/T cell lymphoma, ALK⁻ ALCL.

CTCL, Number of mutations in CTCLs

The list only includes mutations that are also seen in the CTCL cohort.

Rate of background mutations were determined for each gene and adjusted according to gene expression analysis.

* Recurrent mutations are defined as mutations that induce a nonsynonymous amino acid substitution at the same amino acid.

** Bonferroni correction was applied to adjust for multiple hypothesis testing.

; If the same amino acid position is subject to multiple amino acid substitutions, these amino acids are separated by a ;.

Gene	Hotspot mutations*
<i>VAV1</i> ¹³	p.R797G;p.R797N, p.R798Q; p.R798P
PRKCB ¹³	p.D427N
<i>JAK3</i> ¹⁷	p.A573V
STAT5B ¹⁷	p.N642H

Supplemental Table S10. CTCL mutations in T cell lymphoma oncogenes

*List of hotspot mutations shared by CTCL with putative oncogenes in other T cell lymphomas.

Supplemental Table S11. Damaging mutations in putative tumor suppressors in T cell lymphomas.

Gene	Damaging mutations				
<i>CD58</i> ¹⁵	p.S75fs				
DNMT3A ¹⁵	p.W305X, p.Y584X, c.1409_1409delinsTT				

Gene	Amino acid change	# of mutations in COSMIC at amino acid position	Functionally validated	Candidate	Targetable
KRAS	p.G13D	5057	Y		Y
TP53	p.R273H	747			
TP53	p.R248W	684	Y		Y
U2AF1	p.S34F	196	Y		Y
BRAF	p.K601E	140	Y		Y
TP53	p.H179Y	117			
STAT3	p.Y640F	92	Y		Y
TP53	p.P250S	57			
STAT5B	p.N642H	55	Y		Y
TP53	p. R273P	40			
BRAF	p.D594N	39	Y		Y
NRAS	p.G13C	34	Y		Y
TMPRSS13	p.Q78R	31			
TMPRSS13	p.A77G	31			
TP53	p.T155N	30			
PLCG1	p.S345F	25	Y		Y
JAK3	p.M511I	23	Y		Y
BCOR*	p.N1425S	19		Y	
TRRAP	p.S722F	19			
KRT8	p.S31A	18			
JAK3	p.A573V	17	Y		
QRICH2	p.G634S	16			

Supplemental Table S12. CTCL mutations that are hotspot mutations in COSMIC

17

<i>MAP2K1**</i> p.E203K 12 Y	Y
------------------------------	---

Y refers to yes

* This amino acid alteration has been reported to be a likely gain-of-function recurrent amino acid alteration in endometrial and uterine carcinomas.^{18,19}

** Although there were fewer than 15 instances of *MAP2K1* p.E203K, it has been listed since it is a functionally validated amino acid alteration found in melanomas and lung cancers.²⁰

Gene	# of damaging mutations
TET2	7
ARID1A	6
KMT2D	3
KDM6A	2
NF1	1
KMT2C	1
PIK3R1	1

Supplemental Table S13. Damaging mutations in canonical tumor suppressors

Canonical tumor suppressors reflect the consensus cancer genes¹⁸ wherein >20% of the mutations are damaging mutations in COSMIC.

Cytoband	Wide peak boundaries	% of CTCLs with deletions	# of genes in peak	Candidate gene	Candidate gene by damaging mutation burden	# of damaging mutations
1p36.11	chr1:26673679- 27110886	57.50%	7	<u>ARID1A</u>	ARID1A	7
9p21.3	chr9:21849450- 21996041	40.00%	1	<u>CDKN2A*</u>	CDKN2A	1
10p11.22	chr10:31205853- 32136797	60.00%	1	<u>ZEB1</u>	ZEB1	4
10q24.32	chr10:104131016- 104230563	67.50%	7	<u>NFKB2</u>	NFKB2	1
2p23.3	chr2:24949121- 25818354	37.50%	4	<u>DNMT3A</u>	DNMT3A	3
11q22.3	chr11:107234547- 107759139	30.00%	5	ATM*	None	NA
2q37.3	chr2:239018134- 242951149	20.00%	38	PDCD1	PDCD1	2
19p13.3	chr19:1-55701376	42.50%	1078	STK11	JUNB/NCAN/ZBTB7A	2
9q21.32	chr9:80386282- 90795694	32.50%	33	DAPK1	None	NA
13q14.2	chr13:47731103- 56619937	30.00%	40	RB1	SETDB2	1
19p13.3	chr19:2029483- 3927502	32.50%	53	GADD45B	ZFR2	1
12p13.2	chr12:9777007- 14468100	17.50%	64	CDKN1B	CLEC1A	1
6q23.3	chr6:138243081- 138525040	25.00%	2	TNFAIP3	TNFAIP3	2
10q21.2	chr10:63698286- 64053033	52.50%	2	ZNF365*	None	NA
10q26.3	chr10:127512506-	55.00%	46	MGMT	DOCK1	1

Supplemental Table S14. Damaging mutations in recurrent focal deletions.

	135374737					
7p21.1	chr7:15566451- 36519345	27.50%	107	NFE2L3	ITGB8/STK31	1
9q31.1	chr9:96260592- 105897449	25.00%	58	XPA	PLPPR1/TMEM246	1
6q25.2	chr6:153645511- 170899992	20.00%	73	CCR6	FNDC1	2
12q21.33	chr12:87113009- 111341205	20.00%	160	SOCS2	NR1H4	2
6q21	chr6:106661861- 112488015	17.50%	42	TRAF3IP2	FYN/SMPD2	1
16q22.1	chr16:66074546- 66236753	15.00%	2	CTCF*	None	NA
10q26.11	chr10:120779987- 124142656	55.00%	19	BAG3	TACC2	2
10q23.31	chr10:90763175- 90964816	40.00%	2	<u>FAS</u>	FAS	3
11p13	chr11:31441250- 35596790	20.00%	28	WT1	CAT/CCDC73	1
6q25.1	chr6:149953508- 150112805	22.50%	3	LATS1*	None	NA
16q24.2	chr16:86667813- 88154820	12.50%	21	BANP	None	NA
13q12.13	chr13:1-40031653	17.50%	101	BRCA2	GPR12/ RFXAP	2
1p22.1	chr1:71317019- 96960088	15.00%	106	RPL5	ARHGAP29/BCAR3/SYDE2	1
8p23.1	chr8:1-146274826	40.00%	644	EGR3	CHD7/RIMS2/PREX2/CSMD3/ UNC5D	2

Candidate gene refers to previously identified candidate genes.¹

Candidate genes by damaging mutations refers to the genes harboring the highest number of damaging mutations in each interval. If there are more than one gene in each interval with the same number of damaging mutations, these genes are all listed, separated by a /.

of damaging mutations indicates the sum of the truncating nonsense mutations, frameshift mutations, and splice-site mutations.

Underlined genes refer to candidate target genes that have been previously shown to be the target gene in those regions because they harbor significantly more localizing mutations than other genes in that interval. Localizing mutations were defined as focal copy number mutations and point mutations.¹

* refers to genes previously identified by GRAIL analysis to reside on narrow recurrent chromosomal deletions (<20 genes in the confidence interval). *BAG3* was excluded because of the damaging mutation data suggests that *TACC2* may be the target gene of 10q26.11 deletions.

Genes in bold refers to genes with damaging mutations residing on minimal common regions shared by all copy number mutations that overlap with the indicated confidence interval.

Cytoband	Wide peak boundaries	% of CTCLs with amplifications	# of genes in peak	Candidate gene	Candidate gene by hotspot analysis	# of hotspot mutations
10p15.1	chr10:5882522-7245908	30.00%	9	PRKCQ*	None	NA
10p12.33	chr10:15250463-18469816	22.50%	21	TRDMT1	None	NA
7p22.2	chr7:1-4248090	22.50%	34	CARD11	CARD11	5
9p24.2	chr9:2612161-5512649	12.50%	20	JAK2*	None	NA
6p25.3	chr6:1-1258328	5.00%	5	IRF4	IRF4	2
7q34	chr7:127929037-158821424	17.50%	222	BRAF	PTPRN2	2
17q11.2	chr17:21750215-37983285	62.50%	283	STAT5B	STAT5B	3

Supplemental Table S15. Recurrent amino acid alterations in recurrent focal amplifications

Candidate gene refers to candidate genes identified in a previous analysis.¹

* refers to genes previously identified by GRAIL analysis to reside on narrow recurrent chromosomal amplifications (<20 genes in the confidence interval).

Bold refers to genes with recurrent amino acid alterations residing in each GISTIC confidence interval.

of hotspot mutations indicate the number of mutations that occur at the identical amino acid position in the CTCL cohort (n=220 patients).

Supplemental Table S16. Oncogenic mutations previously functionally validated in CTCL.

Genes	Nonsynonymous mutations [†]
TNFRSF1B ²	p.S254C, p.G256C (2), p.F258C, <u>p.T377I</u>
JAK1 ⁵	p.R659C, <u>p.L710V</u>
JAK3 ^{3,5,7}	<u>p.A573V</u> (2), p.M511I (2), p.V678L, p.S989I, p.Y1023H
PLCG1 ⁴	p.R48W (4), p.D342N, <u>p.S345F</u> (9), <u>p.S520F</u> (2), p.G772V, p.E989K,
FLCGT	p.L1035V, p.E1163K (3)
CARD11 ⁷	p.D357A*/E/N, p.M360K, p.Y361C, p.D401N (2), p.A598T*, <u>p.S615F</u> (3),
UNITE IT	<u>p.E626K</u> , p.R891P
MAPK1 ⁷	<u>p.E322A/K</u> (2)
PRKG1 ⁷	<u>p.E17K</u> , <u>p.R21Q</u> , p.T298I*, p.T327N*, p.G642E
	p.V28G, p.F31S, p.S38N, p.T53A*, <u>p.F62I^{††}, p.K90E</u> , p.W148X, p.S270N,
FUIT	p.V434I*

Underlined mutations were functionally validated in previous CTCL studies. If the amino acid alterations occur at the same position, each amino acid substitution is separated by a /.

† Numbers in parenthesis indicate number of mutations in CTCL if they were discovered in more than 1 patient.

†† p.F62V was validated.

* Refers to amino acid alterations found only in samples without matched normal controls.

	SS (186)	MF (25)	Dvoluo*
Genes	# of total mutations	# of total mutations	Pvalue
TP53	31	1	0.137
PLCG1	18	4	0.306
CARD11	12	1	1
ARID1A	12	3	0.399
TRRAP	11	0	0.369
POT1	10	0	0.612
DNMT3A	10	0	0.612
TET2	9	0	0.603
RHOA	9	1	1
CD28	8	0	0.600
ZEB1	8	0	0.600
RLTPR	7	0	1
CREBBP	7	0	1
NCOR1	7	0	1
STAT5B	7	1	1
KMT2D	6	1	0.592
BCOR	6	0	1
CCR4	6	1	0.592
FAS	6	0	1
KMT2C	5	0	1
RARA	5	0	1
TNFRSF1B	5	0	1
PRKG1	4	1	0.471
PTPRN2	4	1	0.471
NFKB2	4	0	1
ATM	3	1	0.399
SMARCB1	3	2	0.108
CTCF	3	0	1
JAK3	3	2	0.108
VAV1	3	1	0.399
NF1	3	0	1
ZNF365	2	0	1
IRF4	2	0	1
PDCD1	2	0	1
PRKCQ	2	0	1

Supplemental Table S17. Mutations distribution according to patient CTCL subtype in 55 of putative driver genes.

KDM6A	2	0	1
ARHGEF3	2	0	1
RFXAP	2	0	1
CSNK1A1	2	0	1
TNFAIP3	2	0	1
PIK3R1	2	0	0.399
SETDB2	1	0	1
JAK1	1	1	0.223
STAT3	1	1	0.223
CD58	1	0	1
PRKCB	1	0	1
BRAF	1	0	1
KRAS	1	0	1
NRAS	1	0	1
LATS1	1	0	1
U2AF1	0	1	0.119
MAPK1	0	3	0.001
MAP2K1	0	1	0.119
CDKN2A	0	0	1
JAK2	0	0	1

Number in parenthesis represents the number of patients in each CTCL subtype * *P* value was determined by Fisher's exact test compared between SS and MF.

	log ₂ Fold change	P value	Adjusted <i>P</i> value
TTC40	2.654820607	7.07E-29	9.57E-25
IL3	1.751125554	5.09E-18	3.44E-14
PRG2	1.899816619	7.87E-16	3.55E-12
LTA	1.583531369	1.37E-15	4.63E-12
MAF	-1.63072702	7.85E-15	2.12E-11
IL1RL1	1.701563936	1.70E-12	3.84E-09
CPNE8	1.667188189	1.33E-11	2.38E-08
STAT5A	1.452137765	1.41E-11	2.38E-08
ACSL1	1.060028015	1.29E-10	1.93E-07
TIFA	0.979366913	1.90E-10	2.57E-07
VCAM1	1.499637999	2.70E-10	3.32E-07
PRCP	1.047945181	6.90E-10	7.77E-07
CD83	1.058629302	9.62E-10	9.36E-07
SNX30	-0.984386942	9.68E-10	9.36E-07
RUNX1	-1.074634003	1.69E-09	1.53E-06
GBP5	0.900572153	1.98E-09	1.67E-06
ICAM1	1.452103943	2.81E-09	2.23E-06
SELE	1.413677318	3.72E-09	2.80E-06
RGCC	-0.942395782	5.93E-09	4.22E-06
TNFSF15	1.340778523	1.06E-08	7.19E-06
JADE2	0.981004298	1.59E-08	1.03E-05
LPAR5	-1.004974551	2.84E-08	1.73E-05
TGFBR3	1.284304288	2.94E-08	1.73E-05
HEG1	0.895888749	3.81E-08	2.15E-05
KLF2	-1.24841969	4.98E-08	2.69E-05
PTGIR	1.325054948	5.93E-08	3.09E-05
TNRC6C-AS1	-0.97784547	6.57E-08	3.29E-05
RGS16	1.239835572	7.13E-08	3.45E-05
FMNL3	0.926907075	8.28E-08	3.86E-05
PPP4R4	1.196556579	9.64E-08	4.35E-05
PRKCH	-0.819690124	1.22E-07	5.33E-05
ANP32A	0.719242514	1.41E-07	5.94E-05
CXCL3	1.252553756	1.58E-07	6.49E-05
FAM129A	1.245653946	1.70E-07	6.76E-05
IKBKE	0.826769334	2.07E-07	8.01E-05
FAS	1.006747122	2.72E-07	9.67E-05

Supplemental Table S18. Identification of differentially expressed genes in PMA/ionomycin treated Jurkat cells (RLTPR (p.Q575E) compared to WT RLTPR).

NOG	-1.266716805	2.67E-07	9.67E-05
SIGLEC6	-1.221227256	2.70E-07	9.67E-05
ANKH	-0.70347971	3.06E-07	0.000104816
CSF2	1.149925905	3.16E-07	0.000104816
DENND5A	1.069873079	3.18E-07	0.000104816
IER5L	-1.040561759	3.62E-07	0.000113455
KCTD11	-0.963865024	3.77E-07	0.000113455
SEMA4D	-0.740408009	3.70E-07	0.000113455
SERPINA1	1.242847502	3.59E-07	0.000113455
NDST3	-0.975804322	4.16E-07	0.000122234
MMP9	1.167954124	4.36E-07	0.000125448
SMS	0.740734034	4.50E-07	0.000126901
EEF1A2	0.974633247	5.22E-07	0.000144144
LOC101926963	1.010619416	6.17E-07	0.000163968
SNX11	0.816270163	6.18E-07	0.000163968
TMC6	-0.90142964	6.86E-07	0.000178441
CD248	-1.108290592	7.27E-07	0.000185552
CADM1	0.897947714	8.04E-07	0.000199282
CD28	-0.84902247	8.25E-07	0.000199282
IRX5	0.778602948	8.19E-07	0.000199282
SATB1	-0.716608889	8.87E-07	0.000210556
KIF25-AS1	1.204969691	9.20E-07	0.000214501
DENND4A	0.889738589	1.00E-06	0.00022975
JAZF1	0.979620038	1.06E-06	0.000238443
NCOA7	0.85617053	1.28E-06	0.000283966
BTBD11	-0.818906954	1.36E-06	0.000295781
NDRG1	-0.748866107	1.38E-06	0.000296473
CBFA2T3	-0.787686455	1.52E-06	0.00032032
IKZF3	0.907195093	1.87E-06	0.000389746
CHRNA6	1.172425398	1.95E-06	0.000396425
RHOV	1.148852716	1.96E-06	0.000396425
CCR4	0.856913581	2.05E-06	0.000407256
IFIH1	0.863423957	2.22E-06	0.000435067
TNC	1.154784	2.57E-06	0.000496747
UBASH3B	-0.893553282	3.21E-06	0.000612438
MICAL2	-0.747769865	3.43E-06	0.000636649
RASGRP1	0.847064	3.43E-06	0.000636649
TM2D3	0.849736646	3.54E-06	0.000647614
BCL2L1	0.858260994	4.33E-06	0.000776178
CXorf40B	0.871850323	4.36E-06	0.000776178

CD74	1.087615452	5.37E-06	0.000943083
UXS1	0.979255903	5.51E-06	0.000955853
RGS3	-0.791107441	5.66E-06	0.000958045
SHISA2	-0.843870841	5.66E-06	0.000958045
C16orf54	-0.77719779	5.79E-06	0.00096765
CCL1	1.084666888	6.91E-06	0.001139865
JAM2	1.064763303	7.29E-06	0.001174664
NHSL2	0.972044985	7.22E-06	0.001174664
FAM63B	-0.810618599	7.73E-06	0.001209838
MATN2	1.066589203	7.74E-06	0.001209838
RNF166	-0.750219299	7.78E-06	0.001209838
KCNQ3	0.916352369	8.67E-06	0.001332679
ITIH5	1.087422314	1.03E-05	0.001560994
CD40	1.038826593	1.09E-05	0.001636953
CCDC6	0.757551683	1.14E-05	0.001699865
ARHGAP31	0.829804623	1.20E-05	0.001761419
GDF10	-1.07755773	1.23E-05	0.001791055
FOXO1	0.757201673	1.27E-05	0.001835045
SULT1B1	-1.03269465	1.36E-05	0.001939766
TNF	0.943851305	1.39E-05	0.001954196
ATP8B3	-0.745605385	1.55E-05	0.002161567

Differential gene expression was determined by DESeq2 with default settings. For sake of clarity, top 100 genes by adjusted P value are shown.

Supplemental	Table	S19.	Identification	of	differentially	expressed	genes	in
unstimulated J	urkat c	ells (F	RLTPR (p.Q575	E) c	ompared to W	T RLTPR)		

	log ₂ Fold change	P value	Adjusted <i>P</i> value
RMRP	0.048039	0.031401	0.999999
RPPH1	0.039435	0.041014	0.999999
THOC7-AS1	0.024926	0.060702	0.999999
LSP1	-0.091245	0.063349	0.999999
ONECUT1	0.090442	0.072623	0.999999
CDH4	-0.091964	0.078526	0.999999
AGRP	-0.018412	0.084164	0.999999
EPHB2	-0.093191	0.084799	0.999999
HCCAT3	-0.018294	0.085070	0.999999
GAA	-0.105849	0.086630	0.999999
FAM188B	-0.017929	0.088298	0.999999
PDGFRB	-0.054604	0.088662	0.999999
ISM1	0.094224	0.089461	0.999999
GJC3	-0.021092	0.089963	0.999999
IFIH1	0.100018	0.094374	0.999999
SNORA15	-0.022560	0.095599	0.999999
NEFL	0.064962	0.098413	0.999999
NOX1	0.061767	0.098779	0.999999
NPPA-AS1	-0.040710	0.099489	0.999999

Differential gene expression was determined by DESeq2 with default settings. We show genes with a P value of < 0.1. No genes had an adjusted P value < 0.99999.

	log ₂ Fold change	P value	Adjusted P value
TNF	6.70845	7.81E-137	1.22E-132
BCL2A1	8.26175	1.63E-127	8.51E-124
EGR1	7.14825	1.59E-127	8.51E-124
CD69	6.97668	4.38E-123	1.71E-119
NR4A1	5.29725	2.92E-114	9.14E-111
IL2RA	5.80012	1.77E-108	4.60E-105
CSF2	8.23231	1.33E-106	2.97E-103
IL3	8.29212	2.70E-106	5.27E-103
LTB	6.06968	2.81E-105	4.87E-102
CCL4	8.48354	8.04E-105	1.26E-101
EGR3	6.95425	3.03E-102	4.31E-99
IL21R	6.78811	1.84E-97	2.39E-94
CD83	3.54276	3.05E-97	3.67E-94
NFKBIA	4.17087	3.06E-95	3.42E-92
BIRC3	4.69011	1.78E-93	1.85E-90
XCL1	7.90832	1.44E-92	1.41E-89
NR4A3	6.03418	5.02E-90	4.61E-87
RGS16	6.32293	1.34E-85	1.16E-82
CXCL8	7.99861	2.19E-85	1.80E-82
EGR2	6.25338	4.74E-83	3.71E-80
DUSP2	4.78691	2.99E-82	2.22E-79
IER3	4.63580	3.75E-81	2.66E-78
CCL3	8.00003	4.27E-77	2.90E-74
LTA	6.23422	8.07E-77	5.25E-74
RELB	4.77533	8.72E-76	5.45E-73
TRAF1	5.31246	1.15E-74	6.90E-72
GBP5	3.98982	1.56E-74	9.05E-72
ARHGAP31	3.68127	3.06E-73	1.71E-70
CCL20	7.39828	2.81E-72	1.52E-69
XCL2	5.88155	1.78E-69	9.29E-67
NFKB2	4.34810	1.88E-69	9.45E-67
ZFP36L1	3.68835	1.10E-66	5.37E-64
C3	7.08505	6.55E-65	3.10E-62
CRTAM	6.73619	9.18E-65	4.22E-62
HIVEP3	2.95764	9.98E-65	4.46E-62
TRIB1	5.00000	4.57E-64	1.98E-61

Supplemental Table S20. Identification of differentially expressed genes in RLTPR (p.Q575E) overexpressed Jurkat cells after PMA/Ionomycin treatment.

STAT5A	3.87977	1.16E-63	4.91E-61		
IL18R1	4.99447	9447 2.21E-63			
VCAM1	7.18410	7.13E-62	2.86E-59		
IL4I1	6.43485	1.03E-61			
SPRY4	3.85151	3.85151 2.64E-61			
BCL6	3.99510	1.51E-60	5.61E-58		
TNFRSF9	7.16964	1.03E-57	3.75E-55		
PMEPA1	-3.73913	2.59E-57	9.20E-55		
BTG2	3.54986	2.31E-55	8.02E-53		
MMP9	4.84347	3.47E-55	1.18E-52		
STAT4	3.55837	5.77E-55	1.92E-52		
MB	6.53428	1.91E-54	6.22E-52		
TNFRSF18	4.28284	7.94E-54	2.53E-51		
SERINC5	-2.70573	9.31E-54	2.91E-51		
REL	3.38231	2.87E-53	8.78E-51		
TNFSF15	4.73944	1.09E-52	3.28E-50		
HCAR1	6.17348	1.29E-52	3.81E-50		
TNFSF14	5.87970	2.04E-51	5.89E-49		
BTG1	3.19480	1.50E-50	4.27E-48		
LOC101926963	4.10806	2.64E-49	7.36E-47		
PDGFA	3.01825	3.56E-49	9.77E-47		
DUSP10	4.01449	2.26E-48	6.08E-46		
ZC3H12A	3.00353	5.07E-48	1.34E-45		
ITK	2.86256	1.90E-46	4.96E-44		
MYO7B	-2.88877	7.75E-45	1.99E-42		
SDC4	6.27169	4.87E-43	1.23E-40		
EVI2A	3.26092	8.39E-43	2.08E-40		
ENTPD2	4.85369	2.51E-42	6.12E-40		
HIVEP2	2.74772	4.44E-42	1.07E-39		
MYEOV	6.09105	2.25E-41	5.33E-39		
CCND1	2.95279	3.67E-41	8.57E-39		
EBI3	6.24157	7.46E-41	1.69E-38		
TTC40	5.77296	7.47E-41	1.69E-38		
PHLDA1	3.00623	9.80E-41	2.19E-38		
NFKB1	2.53821	1.01E-40	2.22E-38		
EDARADD	2.74617	2.19E-40	4.76E-38		
TNFRSF4	3.57407	8.96E-40	1.92E-37		
TNFAIP3	3.43137	1.24E-39	2.62E-37		
TGFBR3	4.59799	4.91E-39	1.02E-36		
RUNX1	-2.21553	5.21E-39	1.07E-36		

SELPLG	-3.79431	1.02E-38	2.06E-36
POU2F2	2.79719	4.00E-38	8.01E-36
PPP1R16B	2.88067	2.63E-37	5.20E-35
CMPK2	-2.36334	7.88E-37	1.54E-34
PRSS35	5.61465	1.40E-36	2.71E-34
LYST	2.59715	2.75E-36	5.24E-34
APOBEC3G	3.23661	4.07E-36	7.66E-34
DUSP6	3.88445	4.35E-35	8.09E-33
RHOU	-2.84376	8.43E-35	1.55E-32
SGK1	3.43098	2.24E-34	4.06E-32
CDKN1A	2.88453	3.46E-34	6.15E-32
NCEH1	2.25343	3.47E-34	6.15E-32
3-Sep	-2.53890	9.49E-34	1.67E-31
ZFP36L2	-2.20856	4.74E-33	8.23E-31
BCL2L11	2.34703	9.09E-33	1.56E-30
NOTCH3	-2.77119	9.58E-33	1.63E-30
LRRC8B	2.24462	1.30E-32	2.19E-30
RAB3D	-2.53979	1.77E-32	2.93E-30
GPR17	-4.07111	2.82E-32	4.59E-30
JAM2	3.95967	2.82E-32	4.59E-30
SDCBP	2.01415	5.30E-32	8.54E-30

Unstimulated RLTPR (p.Q575E) Jurkat cells represent the controls.

Differential gene expression was determined by DESeq2 with default settings. We show genes with adjusted R value of < 0.1

We show genes with adjusted P value of < 0.1

For sake of clarity, top 100 genes by adjusted *P* value are shown.

	log ₂ Fold change	P value	Adjusted P value
EGR1	7.722852929	2.14E-264	3.36E-260
CD69	6.597143158	4.97E-183	3.89E-179
HIVEP3	3.169956207	3.12E-172	1.63E-168
EGR3	8.027018541	1.71E-156	6.70E-153
EGR2	7.034406276	3.46E-108	1.08E-104
SLA	2.512935553	7.03E-108	1.83E-104
GBP5	3.14173557	1.62E-96	3.62E-93
TRIB1	5.114136437	1.98E-93	3.88E-90
PMEPA1	-3.922808957	1.16E-90	2.01E-87
DUSP2	4.372912312	1.80E-89	2.82E-86
ST8SIA4	2.545889055	4.02E-84	5.72E-81
PPP3CA	2.317481813	4.08E-79	5.33E-76
CXCL8	6.656973869	5.54E-78	6.67E-75
XCL1	6.795614701	2.22E-74	2.48E-71
DUSP6	4.105458933	5.34E-70	5.58E-67
IER2	2.424165228	8.56E-69	8.37E-66
ZFP36L1	3.802236181	5.49E-67	5.06E-64
PPP1R16B	3.085261616	2.62E-64	2.28E-61
ITK	2.596810294	1.09E-62	8.96E-60
RELB	4.118973891	2.98E-62	2.33E-59
IER3	4.305634904	1.71E-61	1.28E-58
CRTAM	5.795501563	2.69E-59	1.92E-56
PVRL1	-1.885891494	3.63E-59	2.47E-56
SLC2A3	2.837613853	5.99E-59	3.91E-56
CCL1	4.43770143	2.46E-56	1.54E-53
ZFP36L2	-2.109825935	1.23E-55	7.42E-53
MAF	3.347610408	1.89E-54	1.10E-51
EDARADD	2.582715276	3.73E-53	2.09E-50
CLEC2B	2.858364982	4.37E-52	2.28E-49
NTRK1	3.906090317	4.24E-52	2.28E-49
IL3	5.70050141	2.65E-51	1.34E-48
SPRY4	3.901056063	1.41E-48	6.88E-46
LTA	3.995204166	1.57E-46	7.47E-44
LRP10	1.862461378	2.45E-46	1.13E-43
HCAR1	5.606736208	8.38E-46	3.75E-43
NFKB2	3.32958761	3.43E-45	1.49E-42

Supplemental Table S21. Identification of differentially expressed genes in RLTPR WT overexpressed Jurkat cells after PMA/Ionomycin treatment.

ACSL6	-2.206043955	5.33E-45	2.26E-42
CCL4	5.809360867 7.10E-45		2.93E-42
XBP1	1.379486305 8.62E-45		3.46E-42
GCNT4	2.44027959	7.64E-44	2.99E-41
NKD2	<i>D2</i> -2.557511117 1.62E-43		6.19E-41
NFATC1	1.920326795	2.73E-43	1.02E-40
FAM53B	-1.731632049	7.26E-43	2.64E-40
RAB3D	-2.302226261	1.76E-42	6.27E-40
TNFSF14	5.106800149	2.64E-42	9.19E-40
IL411	4.954427177	6.60E-42	2.25E-39
HIVEP2	2.545743285	1.43E-41	4.75E-39
LRRC8B	2.202781931	5.02E-39	1.64E-36
BCL11B	-2.137726782	5.81E-39	1.86E-36
ENTPD2	4.459343085	8.01E-39	2.51E-36
PTGER4	1.789752889	1.12E-38	3.43E-36
EVI2A	3.473087699	2.06E-38	6.20E-36
CD83	2.362950194	1.27E-37	3.76E-35
MICAL2	2.446154151	1.32E-37	3.83E-35
JUNB	2.217467166	2.24E-37	6.38E-35
MPZL3	2.17016195	2.73E-37	7.63E-35
FOS	3.859043711	8.34E-37	2.29E-34
PER1	1.397162318	2.01E-36	5.44E-34
EGR4	4.554262216	1.13E-35	2.99E-33
SLAMF6	1.654978216	1.71E-35	4.48E-33
DNAJB11	1.515501285	2.33E-35	5.97E-33
TGFBR2	2.47138998	4.09E-35	1.03E-32
MGAT4A	-1.680920438	4.77E-35	1.19E-32
RLTPR	2.505532029	8.60E-35	2.10E-32
HUNK	-1.958991455	1.25E-34	3.01E-32
APOBEC3G	2.612466748	2.69E-34	6.38E-32
LAX1	1.996622806	5.22E-34	1.22E-31
SEC31B	-1.581721922	5.80E-34	1.34E-31
HBEGF	2.795123692	6.34E-34	1.44E-31
3-Sep	-2.0821549	7.41E-34	1.66E-31
RAB8B	1.831090788	1.08E-33	2.38E-31
ELF1	1.370574493	1.23E-33	2.67E-31
PRDM8	2.617216221	1.95E-33	4.18E-31
SOX12	-1.777218518	2.39E-33	5.06E-31
HRH2	4.984817208	2.71E-33	5.66E-31
GPR84	2.515651042	7.66E-33	1.58E-30

SFMBT2	1.831898276	1.63E-32	3.32E-30
HIRA	-1.306735985	2.24E-32	4.49E-30
MUC2	4.925215776	5.25E-32	1.04E-29
ARHGAP31	2.599465732	7.84E-32	1.54E-29
OCSTAMP	4.862994163	1.47E-31	2.84E-29
PITX1	-1.825411034	3.24E-31	6.20E-29
SH2B3	1.926008632	6.54E-31	1.23E-28
EDEM1	1.338296998	6.81E-31	1.27E-28
DNAJC3	1.641629573	7.11E-31	1.31E-28
NAB2	2.314508257	8.74E-31	1.59E-28
C3	4.915256885	1.52E-30	2.73E-28
UCK2	-1.353127591	1.54E-30	2.74E-28
CSF2	5.093062632	2.45E-30	4.31E-28
HDC	1.862777823	2.76E-30	4.81E-28
PHLDA1	3.029881363	2.93E-30	5.05E-28
BCL7A	-1.326482376	3.99E-30	6.79E-28
SNX30	2.001379888	6.08E-30	1.02E-27
SERINC5	-1.996358265	6.84E-30	1.14E-27
ARHGEF3	1.786189583	7.86E-30	1.30E-27
MYEOV	4.719966489	8.12E-30	1.33E-27
SGK1	2.697082414	8.92E-30	1.44E-27

Unstimulated Jurkat cells expressing WT RLTPR represent the controls.

Differential gene expression was determined by DESeq2 with default settings. We show genes with adjusted P value of < 0.1

For sake of clarity, top 100 genes by adjusted *P* value are shown.

Supplemental Table S22. Gene set enrichment analysis of RLTPR (p.Q575E) overexpressed Jurkat cells after PMA/Ionomycin activation compared to wild type.

				Adjusted
	logFC	AveExpr	P value	<i>P</i> value
HINATA_NFKB_IMMU_INF	1.028	0.028	1.42E-06	2.68E-04
ESC_V6.5_UP_EARLY.V1_UP	-0.426	0.009	1.35E-03	1.28E-01
PRC2_EDD_UP.V1_UP	-0.494	0.010	2.89E-03	1.82E-01
KRAS.LUNG_UP.V1_DN	-0.369	0.007	6.60E-03	2.46E-01
CSR_EARLY_UP.V1_UP	0.384	0.003	7.29E-03	2.46E-01
ESC_J1_UP_EARLY.V1_UP	-0.364	0.007	8.58E-03	2.46E-01
RB_P130_DN.V1_DN	0.369	-0.022	1.34E-02	2.46E-01
KRAS.AMP.LUNG_UP.V1_DN	-0.317	0.034	1.50E-02	2.46E-01
KRAS.600.LUNG.BREAST_UP.V1_DN	-0.315	0.017	1.64E-02	2.46E-01
KRAS.PROSTATE_UP.V1_UP	-0.303	0.005	1.85E-02	2.46E-01
BCAT_GDS748_UP	-0.343	-0.044	1.91E-02	2.46E-01
ALK_DN.V1_DN	-0.332	-0.009	1.94E-02	2.46E-01
IL2_UP.V1_DN	-0.296	-0.011	1.94E-02	2.46E-01
SRC_UP.V1_UP	-0.334	0.016	2.08E-02	2.46E-01
BCAT.100_UP.V1_DN	-0.363	0.001	2.09E-02	2.46E-01
ERB2_UP.V1_DN	0.407	-0.056	2.14E-02	2.46E-01
KRAS.LUNG.BREAST_UP.V1_DN	-0.297	0.025	2.30E-02	2.46E-01
PRC1_BMI_UP.V1_UP	-0.281	0.014	2.45E-02	2.46E-01
SIRNA_EIF4GI_DN	0.352	-0.042	2.49E-02	2.46E-01
CAHOY_ASTROCYTIC	0.275	-0.008	2.60E-02	2.46E-01
PIGF_UP.V1_DN	-0.313	0.008	2.78E-02	2.50E-01
LTE2_UP.V1_DN	0.285	-0.025	3.19E-02	2.74E-01
ESC_V6.5_UP_LATE.V1_UP	-0.288	-0.009	3.41E-02	2.75E-01
GCNP_SHH_UP_LATE.V1_DN	-0.304	0.027	3.49E-02	2.75E-01
NOTCH_DN.V1_DN	-0.276	-0.012	3.75E-02	2.83E-01
PIGF_UP.V1_UP	0.380	-0.039	4.28E-02	3.11E-01
E2F3_UP.V1_UP	-0.331	0.015	4.56E-02	3.19E-01
LEF1_UP.V1_UP	-0.257	0.002	5.04E-02	3.40E-01
ERB2_UP.V1_UP	-0.230	0.002	5.28E-02	3.44E-01
NOTCH_DN.V1_UP	-0.243	0.005	5.76E-02	3.57E-01
CRX_NRL_DN.V1_UP	-0.237	-0.004	5.85E-02	3.57E-01
PDGF_ERK_DN.V1_DN	-0.265	0.042	6.38E-02	3.61E-01
KRAS.PROSTATE_UP.V1_DN	-0.226	0.011	6.72E-02	3.61E-01
RAPA_EARLY_UP.V1_UP	-0.238	0.018	6.75E-02	3.61E-01
IL15_UP.V1_DN	-0.214	0.005	7.07E-02	3.61E-01

-0.301	-0.007	7.17E-02	3.61E-01
-0.210	-0.013	7.20E-02	3.61E-01
-0.229	0.036	7.34E-02	3.61E-01
0.361	0.008	7.44E-02	3.61E-01
-0.221	-0.010	7.66E-02	3.62E-01
-0.212	-0.002	8.32E-02	3.82E-01
-0.205	0.015	8.48E-02	3.82E-01
-0.207	0.008	9.39E-02	3.85E-01
-0.236	-0.011	9.47E-02	3.85E-01
0.299	0.002	9.49E-02	3.85E-01
-0.196	0.001	9.60E-02	3.85E-01
-0.195	-0.014	9.61E-02	3.85E-01
-0.217	0.010	1.02E-01	3.85E-01
0.208	-0.048	1.03E-01	3.85E-01
-0.209	0.006	1.05E-01	3.85E-01
-0.233	-0.018	1.06E-01	3.85E-01
-0.208	0.011	1.06E-01	3.85E-01
-0.214	0.001	1.10E-01	3.89E-01
0.258	-0.038	1.11E-01	3.89E-01
-0.267	0.008	1.19E-01	4.05E-01
-0.219	-0.016	1.20E-01	4.05E-01
-0.186	0.007	1.24E-01	4.07E-01
-0.189	-0.017	1.25E-01	4.07E-01
0.223	-0.026	1.28E-01	4.08E-01
-0.238	-0.015	1.31E-01	4.12E-01
0.276	0.006	1.35E-01	4.19E-01
-0.182	-0.027	1.39E-01	4.22E-01
-0.176	-0.002	1.43E-01	4.22E-01
0.256	-0.047	1.44E-01	4.22E-01
-0.165	-0.003	1.45E-01	4.22E-01
-0.209	0.012	1.49E-01	4.26E-01
-0.172	-0.012	1.51E-01	4.26E-01
-0.167	-0.011	1.60E-01	4.26E-01
-0.166	-0.013	1.60E-01	4.26E-01
0.198	0.002	1.61E-01	4.26E-01
-0.196	0.001	1.62E-01	4.26E-01
-0.246	0.037	1.62E-01	4.26E-01
-0.164	0.022	1.65E-01	4.27E-01
-0.312	0.006	1.74E-01	4.40E-01
-0.174	0.004	1.75E-01	4.40E-01
	-0.301 -0.210 -0.229 0.361 -0.212 -0.205 -0.207 -0.236 0.299 -0.196 -0.195 -0.217 0.208 -0.217 0.208 -0.209 -0.233 -0.208 -0.214 0.258 -0.267 -0.219 -0.186 -0.189 0.223 -0.238 0.276 -0.182 -0.176 0.256 -0.165 -0.209 -0.172 -0.167 -0.166 0.198 -0.196 -0.164 -0.196 -0.246 -0.164 -0.174	-0.301-0.007-0.210-0.013-0.2290.0360.3610.008-0.221-0.010-0.212-0.002-0.2050.015-0.2070.008-0.236-0.0110.2990.002-0.1960.001-0.195-0.014-0.2170.0100.208-0.048-0.2090.006-0.233-0.018-0.2080.0110.258-0.038-0.2670.008-0.219-0.016-0.1860.007-0.189-0.0170.223-0.026-0.238-0.0150.2760.006-0.182-0.027-0.165-0.003-0.2090.012-0.165-0.003-0.2090.012-0.165-0.0130.2090.012-0.166-0.0130.1980.002-0.1960.001-0.2460.037-0.1640.022-0.3120.006-0.1740.004	-0.301-0.0077.17E-02-0.210-0.0137.20E-02-0.2290.0367.34E-020.3610.0087.44E-02-0.221-0.0107.66E-02-0.212-0.0028.32E-02-0.2050.0158.48E-02-0.2070.0089.39E-02-0.236-0.0119.47E-020.2990.0029.49E-02-0.1960.0019.60E-02-0.195-0.0149.61E-02-0.2170.0101.02E-010.208-0.0481.03E-01-0.2090.0061.05E-01-0.2140.0111.10E-010.258-0.0381.11E-01-0.2670.0081.19E-01-0.219-0.0161.20E-01-0.189-0.0171.25E-010.223-0.0261.28E-01-0.238-0.0151.31E-010.256-0.0471.43E-01-0.165-0.0031.45E-01-0.165-0.0031.45E-01-0.167-0.0111.60E-01-0.166-0.0131.60E-01-0.167-0.0121.51E-01-0.166-0.0131.60E-01-0.166-0.0131.60E-01-0.166-0.0371.62E-01-0.1640.0221.65E-01-0.1640.0221.65E-01-0.1640.0221.65E-01-0.1640.0221.65E-01-0.1740.0061.74E-01

TBK1.DF_DN	0.230	-0.021	1.80E-01	4.48E-01
PKCA_DN.V1_DN	-0.156	0.031	1.83E-01	4.50E-01
MTOR_UP.V1_DN	-0.171	0.017	1.92E-01	4.59E-01
TBK1.DN.48HRS_DN	0.155	0.060	1.92E-01	4.59E-01
STK33_SKM_UP	0.194	-0.019	1.96E-01	4.59E-01
GCNP_SHH_UP_EARLY.V1_UP	0.186	-0.029	1.97E-01	4.59E-01
P53_DN.V1_DN	-0.155	-0.002	2.05E-01	4.73E-01
AKT_UP.V1_DN	-0.157	0.010	2.10E-01	4.77E-01
MTOR_UP.N4.V1_UP	0.153	-0.027	2.17E-01	4.89E-01
ESC_J1_UP_LATE.V1_DN	0.152	-0.019	2.23E-01	4.93E-01
KRAS.600_UP.V1_DN	-0.156	0.019	2.25E-01	4.93E-01
BMI1_DN.V1_DN	-0.156	-0.013	2.27E-01	4.93E-01
ATM_DN.V1_UP	-0.158	-0.006	2.41E-01	5.15E-01
CSR_LATE_UP.V1_DN	-0.135	0.017	2.42E-01	5.15E-01
LEF1_UP.V1_DN	-0.144	0.009	2.54E-01	5.33E-01
RAF_UP.V1_DN	0.132	-0.002	2.72E-01	5.64E-01
BCAT_GDS748_DN	-0.155	-0.011	2.80E-01	5.64E-01
ATF2_S_UP.V1_DN	-0.137	0.000	2.81E-01	5.64E-01
MEK_UP.V1_UP	-0.129	-0.001	2.82E-01	5.64E-01
SRC_UP.V1_DN	-0.139	-0.024	2.84E-01	5.64E-01
VEGF_A_UP.V1_UP	-0.146	0.014	2.89E-01	5.64E-01
CSR_EARLY_UP.V1_DN	-0.132	-0.020	2.90E-01	5.64E-01

Transcription factor	JASPAR ID	Target gene hits	Target gene non- hits	Back- ground gene hits	Back- ground Gene non-hits	Adjusted <i>P</i> value
RELA	MA0107.1	56	31	7171	17581	1.50E-09
NFKB1	MA0105.1	36	51	3946	20806	8.58E-07
NF-kappaB	MA0061.1	53	34	8381	16371	1.20E-05
REL	MA0101.1	60	27	10514	14238	2.90E-05
ELK1	MA0028.1	69	18	13642	11110	8.72E-05
ELF5	MA0136.1	77	10	16547	8205	1.05E-04
GABPA	MA0062.2	54	33	9355	15397	1.05E-04
SPIB	MA0081.1	79	8	17547	7205	1.87E-04
SPI1	MA0080.2	74	13	15792	8960	1.87E-04
NFE2L2	MA0150.1	38	49	5635	19117	1.87E-04
CEBPA	MA0102.2	65	22	12828	11924	2.13E-04
FEV	MA0156.1	72	15	15402	9350	4.58E-04
MZF1_5-13	MA0057.1	66	21	13425	11327	4.58E-04
EBF1	MA0154.1	58	29	11288	13464	7.35E-04
Gfi	MA0038.1	66	21	13731	11021	9.82E-04
NFATC2	MA0152.1	70	17	15176	9576	1.13E-03
ТВР	MA0108.2	54	33	10389	14363	1.28E-03
Hand1::Tcfe2a	MA0092.1	64	23	13286	11466	1.35E-03
STAT1	MA0137.2	38	49	6394	18358	1.96E-03
Nkx2-5	MA0063.1	74	13	16973	7779	2.75E-03
HOXA5	MA0158.1	76	11	17629	7123	2.75E-03

Supplemental Table S23. Identification of enriched transcription factor binding sites in genes upregulated in RLTPR (p.Q575E) overexpressed Jurkat cells compared to WT after PMA/Ionomycin treatment.

Supplemental Figure S1. 6 approaches to identify the putative driver genes in CTCL.

Supplemental Figure S1. 6 approaches to identify the putative driver genes in CTCL.

Supplemental Figure S2. Identification of genes with a statistically significant burden of somatic point mutations.

Dataset for MutSigCV analysis								
4 Studies with published synonymous and nonsynonymous mutations								
	Study	# of samples # of genes		# of mutations				
	Wang et al	37	3030	4005				
	Choi et al	40	2123	2644				
	McGirt et al	5	532	599				
	Prasad et al	12	465	500				
MutSigCV								
	Supplemental Table 5							

Supplemental Figure S2. Identification of genes with a statistically significant burden of somatic point mutations. Tumors from 94 patients across four studies were annotated with both nonsynonymous and synonymous mutations. These data were subject to MutSigCV analysis. The results are reported in supplemental Table 5. For the gene expression covariate, we utilized previously published RNA-seq data.¹

Supplemental Figure S3. Identification of putative driver genes with mutational signatures characteristic of oncogenes and tumor suppressors.

Supplemental Figure S3. Identification of putative driver genes with mutational signatures characteristic of oncogenes and tumor suppressors. We identified 1) statistically significant recurrent amino acid alterations and 2) damaging mutations used previously published algorithms.^{1,22} For this analysis, we controlled for gene expression and for gene length. *This study did not have germline controls. All samples were filtered for common germline variants which are likely to be false positive and unlikely to contribute to cancer pathogenesis. For this study, we included only missense mutations if they were seen in other studies. All damaging mutations were included in the analysis.

Supplemental Figure S4. Identification of putative driver gene mutations found in other mature T cell lymphomas.

Supplemental Figure S4. Identification of putative driver gene mutations found in other mature T cell lymphomas. (A) We performed a pan-T cell lymphoma analysis to identify all recurrent amino acid alterations that occurred more often than expected by chance alone. (B) We specifically queried our dataset for mutations in previously reported driver genes identified in other cancers. For putative oncogenes, we looked for amino acid alterations that are found in hotspots identified in other cancer types. For putative tumor suppressors, we looked for damaging mutations in our CTCL dataset.

Supplemental Figure S5. Identification of CTCL mutations in consensus cancer genes.

Supplemental Figure S5. Identification of CTCL mutations in consensus cancer genes. (A) We looked for recurrent amino acid alterations in putative oncogenes by cross-referencing our CTCL dataset with mutations found in COSMIC. (B) We looked for damaging mutations in consensus cancer genes. We examined the genes determined to be pan-cancer genes.¹⁸ We filtered these genes that harbor damaging mutations in >20% of samples, which is consistent with the consensus signature for tumor suppressors.²² We report damaging mutations in these genes from the CTCL dataset.

Supplemental Figure S6. Identification of genes with mutational signatures characteristic of oncogenes and tumor suppressors on recurrent copy number variants.

Supplemental Figure S6. Identification of genes with mutational signatures characteristic of oncogenes and tumor suppressors on recurrent copy number variants (CNV). We analyzed the statistically significant copy number abnormalities we identified previously.¹ We queried recurrent amplifications for genes with recurrent amino acid alterations, which are characteristic of oncogenes. We queried recurrent deletions for damaging mutations that occurred in genes that reside on the minimal common regions common by CNVs, which are characteristic of tumor suppressors in CTCL.

Supplemental Figure S7. Identification of target genes on narrow recurrent copy number variants.

Supplemental Figure S7. Identification of target genes on narrow recurrent copy number variants. We include here the genes that have been implicated previously on narrow copy number abnormalities using CNV data from previous study.¹ (fewer than 20 genes in the 90% confidence intervals).

Supplemental Figure S8. Distribution of Mutations in CTCL

Supplemental Figure S8. Distribution of mutations in CTCL. (A) The distribution of mutations by transitions and transversions. (B) The distribution of nonsynonymous variants per sample.

Supplemental Figure S9. Mapping of RHOA mutations found in T cell lymphomas

Supplemental Figure S9. Mapping of RHOA mutations found in T cell lymphomas. (A) CTCL mutations mapped onto the structure of RHOA in complex with GDP²³ (PDB ID: 1FTN). Switch I and Switch II loops indicated and GDP shown in stick format. (B-D) ATL, AITL and PTCL-NOS mutations mapped onto the structure of RHOA in complex with GDP²³ (PDB ID: 1FTN). Switch I and Switch II loops indicated and GDP shown in stick format.

Supplemental Figure S10. Lentiviral transduction of Jurkat cells with lentivirus expressing wild-type CK1 α , CK1 α (p.S27C), or CK1 α (p.S27F).

Supplemental Figure S10. Lentiviral transduction of Jurkat cells with lentivirus expressing wild-type CK1 α , CK1 α (p.S27C), or CK1 α (p.S27F). (A) Vector map of pCDH-CMV-CSNK1A1-EF1-copGFP. Lentivirally transduced cells express CK1 α from the Cytomegalovirus (CMV) promoter and copepod green fluorescent protein (copGFP) from elongation factor 1 α (EF1) promoter. (B) Lentivirally transduced cells were selected by sorting for cells expressing copGFP. Post-sort FACS analysis of transduced

Α

Jurkat cells shows uniform copGFP expression. Untransduced Jurkat cells were used as negative control for the absence of copGFP fluorescence. (C) Western blot analysis reveals roughly equivalent expression of CK1a across Jurkat cells, suggesting most of the CK1 α protein is derived from the endogenous gene locus and not from the lentivirus. β-actin is the loading control. Jurkat cells transduced with an empty vector served as the control. (D) qPCR confirms that CSNK1A1 mRNA levels are similar across Jurkat cohorts, suggesting lentiviral expression of CSNK1A1 is a fraction of endogenous CSNK1A1 transcript levels. P value was determined by two-sided ratio paired t-test (n.s., not significant). (E) Sanger sequencing of cDNA suggest that only 15 to 26% of the CSNK1A1 mRNA is the mutant isoform, which is encoded by the lentivirus. The remainder is the wild-type isoform, which is transcribed from the endogenous CSNK1A1 locus. P value was determined by two-sided ratio paired t-test (n.s., not significant). (F) The CSNK1A1 mRNA is uniformly upregulated by treatment for 6 hours with PMA/ionomycin, a known inducer of CMV promoter.24 These data show equivalent transcription from lentiviruses in each of the Jurkat cohorts. Jurkat cells transduced with an empty vector served as the control. P value was determined by two-sided ratio paired t-test (*P < .05, ***P < .001). (G) Sanger sequencing reveals that 40 to 74% of the CSNK1A1 mRNA in PMA/ionomycin stimulated cells is the mutant isoforms, which are encoded by the lentivirus. These data confirm that mRNA induced by PMA/ionomycin is derived from the lentivirus. P value was determined by two-sided ratio paired t-test (n.s., not significant).

Supplemental Figure S11. Identification of a novel RLTPR isoform in human CD4+ T and CTCL cells.

Supplemental Figure S11. Identification of a novel RLTPR isoform in human CD4+ T and CTCL cells. (A) Schematics of previously reported and a newly identified isoform in CD4+ T cells and CTCL cells. Each box represents exon and red dotted lines represent alternative splicing. (B) Schematic of each isoform around exon 14. Red dotted lines represent splicing events and blue bar represent the intron-spanning primers designed to amplify the region for gel electrophoresis (D) and Sanger sequencing (E). (C) Integrated genome viewer (IGV) plots of exon 14 from RNAseg of CD4+ T cells from three healthy donors and CTCL tumor cells. The red bar represents the absence of reads aligning to the indicated internal region of exon14. (D) Gel electrophoresis represents amplified PCR segment using cDNA from cDNA of isolated CD4+ T cells and primers indicated in (B). (E) Alignment of the Sanger sequencing results of RLTPR cDNA from CD4 T cells, highlighting that exon14 of new identified isoform is identical with isoform 2 which skips the central portion of exon 14. (E) Schematic of each isoform around exon 36. Red dotted lines represent splicing events and blue bar represent the intron-spanning primers designed to amplify the region for gel electrophoresis (H) and sanger sequencing (I). (G) IGV plots of exon 36 from RNAseg of CTCL cells and CD4+ T cells from three healthy controls. The red bar represents read alignments that map to exon 36. (H) Gel electrophoresis represents amplified PCR segment using cDNA from cDNA of isolated CD4+ T cells and primers indicated in (F). (I) Alignment of the Sanger sequencing results of RLTPR cDNA from CD4 T cells, highlighting that the new identified isoform has exon 36 which is identical with isoform 1.

Supplemental Figure S12. Volcano plot analysis of RNA expression in Jurkat cells with and without stimulation by the TCR pharmacological mimics (PMA/ionomycin).

Supplemental Figure S12. Volcano plot analysis of RNA expression in Jurkat cells with and without stimulation by the TCR pharmacological mimics (PMA/ionomycin). We show the volcano plots highlighting the DESeq2 results from stimulated RLTPR WT Jurkat (A) and RLTPR (p.Q575E) Jurkats compared to unstimulated controls, respectively (B). Dots which are above gray dotted line represent statistically significant events with adjusted *P* value less than 0.01. Red and blue dots represent upregulated and downregulated genes respectively.

Supplemental Figure S13. OPOSSUM Analysis for detection of over-represented conserved transcription factor binding sites at promoters of genes upregulated in stimulated RLTPR (p.Q575E) cells.

Supplemental Figure S13. OPOSSUM Analysis for detection of over-represented conserved transcription factor binding sites at promoters of genes upregulated in stimulated RLTPR (p.Q575E) cells. The plots of show adjusted *P* values as a function of Z scores.

Supplemental Figure S14. Model by which RLTPR p.Q575E potentiates T cell receptor-dependent NF- κ B signaling.

Supplemental Figure S14. Model by which RLTPR p.Q575E potentiates T cell receptor-dependent NF- κ B signaling. RLTPR acts as scaffolding protein to form signaling complex with CARMA1 and function to transmit the signal in the NF- κ B pathway. RLTPR WT can bind with CARMA1 only after stimulation.²⁵ In contrast, RLTPR p.Q575E forms a complex with CARMA1 even without stimulation. However, the complex is inert in the absence of additional signals downstream of the T cell receptor.

References

1. Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. *Nat Genet*. 2015;47(9):1011-1019.

2. Ungewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. *Nat Genet*. 2015;47(9):1056-1060.

3. McGirt LY, Jia P, Baerenwald DA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. *Blood*. 2015;126(4):508-519.

4. Vaque JP, Gomez-Lopez G, Monsalvez V, et al. PLCG1 mutations in cutaneous T-cell lymphomas. *Blood*. 2014;123(13):2034-2043.

5. Kiel MJ, Sahasrabuddhe AA, Rolland DC, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. *Nat Commun*. 2015;6:8470.

6. Wang L, Ni X, Covington KR, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. *Nat Genet*. 2015;47(12):1426-1434.

7. da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. *Nat Genet*. 2015;47(12):1465-1470.

8. Woollard WJ, Pullabhatla V, Lorenc A, et al. Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome. *Blood*. 2016;127(26):3387-3397.

9. Prasad A, Rabionet R, Espinet B, et al. Identification of Gene Mutations and Fusion Genes in Patients with Sezary Syndrome. *J Invest Dermatol*. 2016;136(7):1490-1499.

10. Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. *Nat Genet*. 2014;46(4):371-375.

11. Nagata Y, Kontani K, Enami T, et al. Variegated RHOA mutations in adult T-cell leukemia/lymphoma. *Blood*. 2016;127(5):596-604.

12. Vallois D, Dobay MP, Morin RD, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. *Blood*. 2016;128(11):1490-1502.

13. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. *Nat Genet*. 2015;47(11):1304-1315.

14. Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. *Nat Genet*. 2014;46(2):171-175.

15. Palomero T, Couronne L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. *Nat Genet*. 2014;46(2):166-170.

16. Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. *Cancer Cell*. 2015;27(4):516-532.

17. Roberti A, Dobay MP, Bisig B, et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. *Nat Commun*. 2016;7:12602.

18. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. *Nature*. 2013;502(7471):333-339.

19. Zhao S, Bellone S, Lopez S, et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. *Proc Natl Acad Sci U S A*. 2016;113(43):12238-12243.

20. Arcila ME, Drilon A, Sylvester BE, et al. MAP2K1 (MEK1) Mutations Define a Distinct Subset of Lung Adenocarcinoma Associated with Smoking. *Clin Cancer Res*. 2015;21(8):1935-1943.

21. Pinzaru AM, Hom RA, Beal A, et al. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis. *Cell Rep.* 2016;15(10):2170-2184.

22. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW. Cancer genome landscapes. *Science*. 2013;339(6127):1546-1558.

23. Wei Y, Zhang Y, Derewenda U, et al. Crystal structure of RhoA-GDP and its functional implications. *Nat Struct Biol*. 1997;4(9):699-703.

24. Wilkinson GW, Akrigg A. Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. *Nucleic Acids Res.* 1992;20(9):2233-2239.

25. Roncagalli R, Cucchetti M, Jarmuzynski N, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. *J Exp Med*. 2016;213(11):2437-2457.