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In this section, we detail the derivation of the Euler–Lagrange equations. We first form the
constrained Lagrangian functional

Lc(u, ↵,�) := J(u) + hK(u), ↵iX + � · (C(u) � c0) (S1)

where the function ↵ : ⌦ ! R and the vector � = (�1, · · · , �k) 2 Rk are the Lagrange
multipliers. Taking the first variation of the constrained Lagrangian with respect to u, we

obtain

�Lc

�u

(v) := lim
"!0

1

"

[L(u + "v, ↵,�) � L(u, ↵,�)]

= dJ(u;v) + hK(v), ↵i +
kX

i=1

�idCi(u;v)

= hJ 0(u),vi + hK†(↵),vi +
kX

i=1

�ihC 0
i(u),vi

= hJ 0(u) + K†(↵) +
kX

i=1

�iC
0
i(u),vi (S2)

Since the first variation �Lc/�u must vanish for all v, we obtain

J

0(u) + K†(↵) +
kX

i=1

�iC
0
i(u) = 0 (S3)

Similarly, the first variations of the Lagrangian Lc with respect to the Lagrange multipliers
↵ and � read

�Lc

�↵

(↵̃) = hK(u), ↵̃iX ,

�Lc

��

= C(u) � c0 (S4)

Since they must vanish for all ↵̃, we obtain the constraints K(u) = 0 and C(u) = c0.

section S1. Derivation of the Euler-Lagrange equation



with the Kolmogorov forcing f(x) = sin(kfy)e1 for some forcing wave number kf = (0, kf ).
In two dimensions, a divergence free velocity field u : ⌦ ! R2 admits the following Fourier
series expansion

u(x, t) =
X

k2Z2

a(k, t)

k

✓
k2

�k1

◆
e

îk·x (S6)

where k = (k1, k2), k = |k| and î =
p
�1 (see Ref. (3 )). Since the velocity field is real-

valued, we have a(�k) = �a(k).
For the Kolmogorov forcing, the energy input rate satisfies

I(u(t)) = �Im[a(kf , t)] = �r(kf , t) sin (�(kf , t)) (S7)

where Im denotes the imaginary part and a(k, t) = r(k, t) exp(̂i�(k, t)) is the Fourier coe�-
cient with phase �(k, t) 2 (�⇡, ⇡] and amplitude r(k, t) 2 R+. For simplicity, we may omit
the dependence of these variables on time t. For reasons that will become clear in the next
section, we refer to the Fourier mode a(kf , t) as the mean flow.
Examining equation (S7), the energy input I may grow through two mechanisms:

S2.1 Preliminaries

Recall the Navier–Stokes equations

@tu = �u ·rrru�rrrp + ⌫�u + f (S5a)

rrr · u = 0 (S5b)

section S2. The Navier-Stokes equation

(1) The phase �(kf ) approaching �⇡/2,

(2) The amplitude r(kf ) growing.
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The evolution of the energy input I = �Im[a(kf )] = �r(kf ) sin[�(kf )], the
phase �(kf ) of the mean flow and the amplitude r(kf ) of the mean flow along a typical
trajectory of the Kolmogorov flow at Re = 40. Note that the phase of the external force is
�⇡/2. The forcing wave number is kf = (0, 4).

Noting that the phase of the external forcing is also �⇡/2, scenario (1) corresponds to an
alignment between the phases of the external force and the mean flow a(kf ). It is therefore
tempting to attribute the intermittent bursts of the energy input I to the intermittent
alignments between the forcing f and the velocity field u. This postulate, however, does
not stand further scrutiny. Figure S1 shows the phase �(kf , t) of the mean flow along a
typical Kolmogorov trajectory u(t). This phase oscillates around �⇡/2 for all times. Note
that �⇡/2 corresponds to perfect alignment between the mean flow and external forcing.
Figure S1 also shows the evolution of the energy input I along the same trajectory. No
positive correlation exists between intermittent growth of the mean flow energy I and the
phase of the mean flow being �⇡/2. In fact, the phase �(kf ) seems to deviate from �⇡/2
during the bursts. Contrast this with the strong correlation between the growth of the
energy input rate and the amplitude r(kf ) of the mean flow.
This observation shows that the intermittent energy input bursts are triggered through
mechanism (2), that is the growth of the amplitude r(kf ). A similar observation is made
at higher Reynolds numbers (not shown here). This growth of the mean flow amplitude,
in turn, is possible through the internal transfer of energy via nonlinear terms as discussed
below.

fig. S1. Evolution of the energy input solutions.
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S2.2 Nonlinear triad interactions

The velocity field u(x, t) can be written in the general Fourier-type expansion

u(x, t) = u(x, t) +
1X

j=1

↵j(t)vj(x) (S8)

where u is the statistical mean and {vj} is a set of prescribed functions that form a complete
basis for the function space X (= L

2(⌦)). Under certain assumptions which are met by the
Navier–Stokes equation (S5), the energy is injected into the mean flow u by the external
forcing f (see Refs. ( )). The nonlinear term u ·rrru, coupling the mean flow and the
modes vj , redistributes the injected energy to all modes vj . This nonlinear term conserves
the total energy of the system. At the same time, each mode dissipates energy due to
the viscous term ⌫�u (see fig , for an illustration). A convenient choice of the basis
{vj} is problem dependent. Here, we choose the conventional Fourier basis as described in
equation (S6). In case f is the Kolmogorov forcing, the symmetries of the system dictate
u(x, t) = ↵0(t)f(x) = ↵0(t) sin(kfy)e1 (see, e.g., ( ))8 .
In order to make the above statements more explicit, we write the Navier–Stokes equation
in the Fourier space. Following ( ), we have

@tûi(k) = �îPij(k)
X

p+q=k

qmûm(p)ûj(q) � ⌫k

2
ûi(k) + f̂i(k) (S9)

where the hat signs denote the Fourier transform, Pij(k) = �ij � kikj/k

2 is the Leray
projection onto the space of diverge-free vector fields and the convention of summation over
repeated indices is used. Equation (S9) can be written more explicitly as

@tû1(k) = � î

X

p+q=k

qmûm(p)

✓
1 � k

2
1

k

2

◆
û1(q) � k1k2

k

2
û2(q)

�
� ⌫k

2
û1(k) + f̂1(k) (S10a)

@tû2(k) = � î

X

p+q=k

qmûm(p)


�k1k2

k

2
û1(q) +

✓
1 � k

2
2

k

2

◆
û2(q)

�
� ⌫k

2
û2(k) + f̂2(k)

(S10b)

fig. S2. Triad interactions.
 Schematic representation of the triad interactions of the Navier–Stokes equation.
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Recall the Fourier expansion (S6) which implies û1(k) = k2a(k)/k and û2(k) = �k1a(k)/k.
Upon substitution in equation (S10b) and noting that

qmûm(p) =
q1p2 � q2p1

p

a(p)

and

f̂1(k) =
1

2
e

�î⇡
2
�

k,kf +
1

2
e

+î⇡
2
�

k,�kf , f̂2(k) = 0

we obtain

ȧ(k) = �î

X

p+q=k

(q1p2 � q2p1)(k1q1 + k2q2)

p q k

a(p)a(q) � ⌫k

2
a(k) +

1

2
e

�î⇡
2
�
�

k,kf + �

k,�kf

�

(S11)
We rewrite the above equation more compactly

ȧ(k) = î

X

p+q=k

µ(p, q)(k · q)

p q k

a(p)a(q) � ⌫k

2
a(k) +

1

2
e

�î⇡
2
�
�

k,kf + �

k,�kf

�
(S12)

where k · q = k1q1 + k2q2 and µ(p, q) := p1q2 � p2q1 is the two-form measuring the surface
area of the parallelogram with sides p and q. Writing the modes in terms of their amplitudes
and phases, a(k) = r(k) exp[̂i�(k)], and using equation (S12), we obtain

ṙ(k) =
1

2
cos

h
⇡

2
+ �(k)

i �
�

k,kf + �

k,�kf

�
� ⌫k

2
r(k)

+
X

p+q=k

µ(p, q)(k · q)

p q k

r(p)r(q) sin [�(k) � �(p) � �(q)] (S13a)

�̇(k) = � 1

2

1

r(k)
sin

h
⇡

2
+ �(k)

i �
�

k,kf + �

k,�kf

�

+
X

p+q=k

µ(p, q)(k · q)

p q k

r(p)r(q)

r(k)
cos [�(k) � �(p) � �(q)] (S13b)

Note that a(�k) = �a(k) implies �(�k) = ⇡ � �(k).
We now focus on the amplitude of the mean flow r(kf ) (and its corresponding conjugate
at k = �kf ). The negative definite term �⌫k

2
fr(kf ) representing the dissipation acts

to decrease the mean flow amplitude. This decay is counteracted by the external forcing
1
2 cos

⇥
⇡
2 + �(kf )

⇤
. Recall from fig that the phase �(kf ) oscillates around �⇡/2 for

all times, implying cos
⇥
⇡
2 + �(kf )

⇤
> 0. The complications arise from the summation term

in (S13a) which couples the mean flow to all other modes that form the wave vector triads,
p+ q = kf . The contribution from these other modes depends on the amplitudes, r(p) and
r(q), and the relative phases �(kf )��(p)��(q). Even the modes that do not form a triad
with kf , a↵ect the mean flow amplitude indirectly through their coupling to the modes that
do form a triad with kf (see the schematic fig S2).

S2.3 Derivation of Euler-Lagrange equation for Navier–Stokes

We first derive the functional J corresponding to the Navier–Stokes equation and the energy
input rate I. For the function space X we set X = L

2(⌦) assuming that the state u belongs

. S1
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to the space of square integrable vector fields. By definition, we have J(u) = dI(u;N (u))
which implies

J(u) =
1

|⌦|

Z

⌦
(�u ·rrru�rrrp + ⌫�u + f) · fdx

=
1

|⌦|

Z

⌦
[u · (u ·rrrf) + ⌫u · �f ] dx +

1

|⌦|kfk
2
2 (S14)

where we used integration by parts. The term involving the pressure p vanishes since the
forcing is divergence free, rrr · f = 0. Since kfk2 is constant, we can safely omit the second
term and let

J(u) =
1

|⌦|

Z

⌦
[u · (u ·rrrf) + ⌫u · �f ] dx

Next we compute the Gâteaux di↵erential of J . By definition, we have

dJ(u;v) =
1

|⌦|

Z

⌦
[v · (u ·rrrf) + u · (v ·rrrf) + ⌫ v · �f ] dx

=
1

|⌦|

Z

⌦

⇥�
rrrf +rrrf

>�
u + ⌫�f

⇤
· v dx

On the other hand, by Riesz representation theorem, we have dJ(u;v) = hJ 0(u),viL2 which
implies

J

0(u) =
1

|⌦|
⇥�
rrrf +rrrf

>�
u + ⌫�f

⇤
(S15)

Similarly, the Gâteaux di↵erential of the constraint C(u) = hAu, AuiL2
/(2|⌦|) is given

by

dC(u;v) =
1

|⌦| hAu, AviL2 =
1

|⌦| hA
†
Au,viL2 = hC 0(u),viL2 (S16)

implying C

0(u) = A

†
Au/|⌦|. Finally, the adjoint of the divergence operator, K = rrr·, with

respect to the L

2 inner product is the gradient operator, K† = �rrr. Substituting the above
in the Euler–Lagrange equation (S3) and (S4), we obtain

�
rrrf +rrrf

>�
u + ⌫�f �rrr↵ + �A

†
Au = 0 (S17a)

rrr · u = 0 (S17b)

1

|⌦|

Z

⌦

|Au|2

2
dx = c0 (S17c)

A few remarks about equations (S17) are in order: (i) The PDE (S17a) is inhomoge-
neous due to the term ⌫�f = �⌫k

2
f sin(kfy)e1. (ii) The equations are nonlinear in the

constraint (S17c). (iii) With the Kolmogorov forcing f = sin(kfy)e1, the translations
u(x, y) 7! u(x + `, y), with ` 2 R, are a symmetry transformation of equations (S17). That
is, if u(x, y) solves (S17), so does ũ(x, y) = u(x + `, y) for all ` 2 R.



In this section, we outline the Newton iterations for solving the system (S17). Define

F(u, ↵, �) =

0

@

�
rrrf +rrrf

>�
u + ⌫�f �rrr↵ + �A

†
Au

rrr · uR
⌦ |A(u)|2dx� 2|⌦|c0

1

A (S18)

The zeros of F coincide with the solutions of (S17). We find these zeros numerically using
damped Newton iterations

un+1 = un + ✏ũ, ↵n+1 = ↵n + ✏↵̃, �n+1 = �n + ✏�̃ (S19)

At each iteration, the Newton direction (ũ, ↵̃, �̃) is obtained as the solution of the linear
equation

L(un, ↵n, �n; ũ, ↵̃, �̃) = �F(un, ↵n, �n) (S20)

where L(u, ↵, �; ·, ·, ·) is the Gateaux di↵erential of F at (u, ↵, �) and is given explicitly as

L(u, ↵, �; ũ, ↵̃, �̃) =

0

@

�
rrrf +rrrf

>�
ũ�rrr↵̃ + �̃A

†
Au + �A

†
Aũ

rrr · ũ
2
R
⌦ A(u) · A(ũ)dx

1

A (S21)

The solution of the linear PDE (S20) is approximated by the generalized minimal residual
(GMRES) algorithm (40). At each iteration, the step size ✏ 2 (0, 1] is adjusted to achieve
maximal decrease in the error kF(un+1, ↵n+1, �n+1)kL2 (41). The standard Newton itera-
tions correspond to ✏ = 1.

4 Sensitivity to parameters

Recall that the constraint
R
⌦ |rrru|2dx/(2|⌦|) = c0 enforces a constant energy dissipation

rate. This constraint is motivated by the fact that, away from extreme bursts, the energy
dissipation rate D exhibits small oscillations around its mean value. Nonetheless, D is
not exactly constant, prompting the question whether the optimal solution is robust with
respect to small perturbations to the constant c0.
To examine this robustness, we have computed the optimal solution for a wide range
of parameters c0. We find that the optimal solution is in fact robust even with respect to
relatively large variations in the parameter c0. Figure S3, for instance, shows the optimal
solution for three di↵erent values of c0 at Re = 40 and 100 (the results are similar for
Re = 60 and 80).
The insensitivity of the optimal solution with respect to the constant c0 also implies that
the equality constraint

R
⌦ |rrru|2dx/(2|⌦|) = c0 can be replaced with an inequality constraint

of the form c1 
R
⌦ |rrru|2dx/(2|⌦|)  c2. For a wide range of values for c2 > c0 > c1 > 0,

the optimal solutions corresponding to the two constraints will be similar.

We approximate the conditional PDFs using the following steps. For any two observables
� and �, we assume that their joint probability density function p�,� exists such that

P(�1  �  �2, �1  �  �2) =

Z �2

�1

Z �2

�1

p�,�(�0
, �

0)d�

0d�

0 (S22)

section S3. Newton iterations

section S .

section S5. Computing the probability of extreme events
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The global optimal solutions with c0 = 0.5, 1 and 2 at Re = 40 and Re = 100.

Similarly, we also assume that the observable � has a probability density p�. Once the
PDF p� and the joint PDF p�,� are approximated using direct numerical simulations, the
conditional PDF p�|� can be evaluated by the Bayesian formula

p�|� =
p�,�

p�

Computation of the extreme event probability Pee from the conditional probability is
straightforward. Let �e denote the threshold such that � > �e denotes an extreme event.
Then by definition, we have

Pee (�0) = P
�
� > �e

��
� = �0

�
=

Z 1

�e

p�|�(�0|�0)d�

0 (S23)

where �

0 is a dummy integration variable. In the present paper, the variable � is the
indicator |a(1, 0)| and the variable � is the future maximum of the energy dissipation rate,
�(t) = Dm(t) = max⌧2[t+ti,t+tf ] D(u(⌧)). At each Reynolds number, the joint probability
p�,� is approximated from the 100, 000 computed data points on a 20 ⇥ 30 grid over the
(�, �) plane.

In this section, we present the numerical results for Reynolds numbers Re = 40, 60, 80 and
100. The relevant parameters and variables are summarized in table S1. At each Reynolds
number, the statistics are computed from long trajectory data of length 10, 000 time units.
The states (i.e. the velocity fields u) are saved along these trajectories at every 0.1 time
units, amounting to a combined 100, 000 distinct states at each Reynolds number. Before
recording any data, we evolved random initial conditions for 500 time units to ensure the
decay of transients.

section S6. Supporting computational results

fig. S3. Sensitivity of the optimal solutions.
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The joint PDF of the energy input rate I, Re[a(1, 0)] and Im[a(1, 0)] at Re = 40 (a),
Re = 60 (b) Re = 80 (c) Re = 100 (d). The PDFs show that small values of |a(1, 0)|
correlate strongly with the large values of the energy input rate I.

fig.      S4.     Joint     PDFs         for      higher      Reynolds      numbers.



Simulation parameters including the Reynolds number Re, the resolution N ⇥N ,
the mean E[D] and the standard deviation

p
E[D2] � E[D]2 of the energy dissipation rate

D. The eddy turn-over time te and the prediction time ti are reported in terms of non-
dimensional time units. The percentage of hits, correct rejections and the false positives and
negatives of the extreme event predictions are also reported. The rate of successful predic-
tions (RSP) and the rate of successful rejections (RSR) are computed from formula (S24)
and (S25).

Re 40 60 80 100
N 128 256 256 256

E[D] 0.1168 0.1159 0.1010 0.0903p
E[D2] � E[D]2 0.0384 0.0465 0.0369 0.0295

te 0.46 0.38 0.35 0.33
ti 1.0 1.0 1.0 1.0
tf 2.0 2.0 2.0 1.5

Hits 5.60% 17.7% 15.3% 11.3%
Correct Rejection 93.3% 77.8% 78.5% 81.7%
False Negatives 0.26% 2.3% 3.5% 4.3%
False Positives 0.85% 2.1% 2.6% 2.6%

RSP 95.6% 88.4% 81.2% 72.3%
RSR 99.1% 97.4% 96.8% 96.9%

The Navier–Stokes equations are solved numerically with a standard pseudo-spectral
code with N ⇥ N Fourier modes and 2/3 dealiasing (4 ) and a forth-order Runge–Kutta
scheme for the temporal evolution. For Re = 60, 80 and 100, we use 256⇥256 Fourier modes
to fully resolve the velocity fields. At Re = 40, however, this resolution is unnecessarily high
and hence we use 128 ⇥ 128 modes.

Figure S4 shows the joint PDFs of the mode a(1, 0) versus the energy input I. At all
Reynolds numbers the joint PDFs have a cone shape reflecting the fact that small values of
|a(1, 0)| correspond to large values of the energy input rate.

As in Re = 40, we use the evolution of |a(1, 0)| to predict an upcoming burst of the energy
dissipation D. Figure S5 shows the computational results at higher Reynolds numbers. For
Re = 60, 80 and 100, we set the threshold De for the extreme energy dissipation to be the
mean plus one standard deviation of the energy dissipation. The measured mean E[D] and
standard deviation

p
E[D2] � E[D]2 are reported in able S1. The corresponding extreme

dissipation thresholds De are marked by vertical red dashed lines in the middle panel of
fig . The horizontal dashed line marks the critical � 0 for which Pee = 0.5, that is 50%
probability of an upcoming extreme event.

We recall from the main body of the paper that the four quadrants in the conditional
PDFs (middle column of fig S5) correspond to:

(I) Correct rejection (Pee < 0.5 and Dm(t) < De): Correct prediction of no upcoming
extremes.

(II) False positives (Pee > 0.5 but De(t) < De): The indicator predicts an upcoming
extreme event but no extreme event actually takes place.

(III) Hit (Pee > 0.5 and Dm(t) > De): Correct prediction of an upcoming extreme.

table S1.     Simulation         parameters.

.  S5
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The prediction of intermittent bursts of the energy dissipation rate D at Reynolds
numbers Re = 40, 60, 80 and 100. Left column: Time series of the energy dissipation along
a typical trajectory. Middle column: The conditional density p(Dm|�). Right column:
Probability of extreme events Pee.

(IV) False negatives (Pee < 0.5 but Dm(t) > De): An extreme event takes place but the
indicator fails to predict it.

Table S1 also shows the results of the extreme event prediction. In order to quantify the
success of these predictions, we define

Rate of Successful Predictions (RSP) =
Hits

Hits+False Negatives
(S24)

which measures the ratio of the number of extreme events that were successfully predicted
to the total number of extreme events. Similarly, the quantity,

Rate of Successful Rejections (RSR) =
Correct Rejections

Correct Rejections+False Positives
(S25)

measures the ratio of the number of non-extreme events that were correctly rejected to the
total number of non-extreme events.

movie S1.

 

The prediction of an extreme event in the Kolmogorov flow. The indicator value 

drops    below the       computed      ethreshold       (dashed      line.  )    indicating     an    upcoming     burst   
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   dissipation  

fig.     S5.     Prediction       of          intermittent      bursts         at        higher     Reynolds        numbers.
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