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Supplementary Note 1. Electronic structure of monolayer 1T’-WTe2 

 

  

 Supplementary Figure 1: Electronic structure of 1T’-WTe2 monolayer. a，The 

crystal structure of 1T’-WTe2. Its unit cell is indicated with a black rectangle. The zigzag 

chain of the displaced W atoms is depicted with a red dashed line. b, The corresponding 

Brillouin zone of 1T’-WTe2. c, The electronic structure of 1T’-WTe2 (blue dashed line) 

displays a band crossing slightly below the Fermi level between Γ and Y, which is gapped 

out by the SOC (solid red line). The corresponding density of states is shown on the right. d, 

Same as c, but for the bulk 1T’-WTe2.  

The monolayer structure of 1T’-WTe2 shown in Supplementary Figure 1a was taken 

from its bulk crystal structure and was fully relaxed before the electronic structure was 

calculated. The bulk electronic structure of 1T’-WTe2 monolayer, shown as the blue dashed 

line in Supplementary Figure 1c, features the system a gapless semimetal when the SOC is 

absent. The top of valence bands and the bottom of conduction bands appear separately at Γ 

and a k-point between Γ-Y. The inclusion of the SOC gaps out the band crossing residing 
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between Γ and Y, giving rise to the metallic ground state of 1T’-WTe2 monolayer. While, a 

momentum-dependent Fermi energy can still be found to fully separate the valance from 

the conduction, which validates the definition of a Z2 topological invariant in this system 

that will be discussed in Supplementary Note 4. 

Supplementary Note 2.  Tunneling spectra of edge state along a direction at different 

locations 

 

Supplementary Figure 2: Spectra of edge state at different locations of a-edge. a, 

Topography of the single layer high step edge along a direction. The scale bar is 5 nm. b, 

Spectroscopic mapping of the step edge in a at 99 mV. The data in a and b are the same as 

in Fig 2 of main text. c, Tunneling spectra (red curves) at different locations of the step 

edge (red dots in b). The spectroscopy (black curve) of the inner terrace (black dot in b) is 

shown for comparison.  
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Supplementary Note 3.  Defect states and their comparison with the edge state 

 

Supplementary Figure 3: Spectra of defects and the comparison of their spectroscopic 

mapping with the edge state. a, Derivative topographic image of a single layer high step 

edge and 3 types of frequently observed defects. The step edge is about 380 relative to a 

direction. The scale bar is 10 nm. b, Enlarged view of the rectangle area in a shows the 

morphology of the defects. Measurement conditions: Vs = 180 mV, It = 200 pA. c, 

Tunneling spectroscopy of the defects. While defect 2 exhibits considerable difference 

compared to the substrate (black curve), defect 1 (green curve) and 3 (blue curve) show no 

obvious spectroscopic features. It is noted that defect 2 is of the same type as that of Fig. 1 

d and e in main text. d, Spectroscopic mapping of the step edge and the defects at different 

voltages. The conductance intensity of the defects show different dependence on voltage 

compared to the ES, ruling out the possibility of the ES from the defects. Measurement 

conditions of c and d: Vs = 180 mV, It = 600 pA, Vmod =  3.5 mVrms. 
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         To tackle the possibility that the spectroscopic features at the edges are defect induced, 

we have scrutinized the spectroscopic mapping data shown in Supplementary Figure 3, 

which show a step edge and three types of typical defects in the system (Supplementary 

Figure 3b).  It is seen from Supplementary Figure 3c that only defect 2 show clear defect 

state. However, its defect state is different from the edge state. This is evidenced by their 

difference in spectroscopic intensity with bias (Supplementary Figure 3d). For instance, 

defect 2 exhibits enhanced (depressed) conductance intensity than the substrate at 132mV 

(72 and 78mV), when the edge state shows depressed (enhanced) intensity. 

Supplementary Note 4. Z2 topological invariant from topological obstruction and 

hybrid Wannier charge center 

 

Supplementary Figure 4: Topological characterization of monolayer 1T’-WTe2. a, Z2 

topological invariant as an obstruction of smoothly defining the phase of wave function in 

half of the BZ. b, The evolution of the hybrid Wannier charge center <y> as a function of 

kx.  
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         The clear separation of the conduction and valence bands everywhere in the Brillouin 

zone (BZ) (Supplementary Figure 1c) allows us to define the Z2 topological invariant as 

usual for this time-reversal symmetric system. Here we apply two different numerical 

algorithms to characterize the topology of this system, i.e. topological obstruction of 

smoothly defining the phase of the wave function and the hybrid Wannier charge center 

(Wilson loop).  

       The band topology of a nontrivial electronic system is defined by the berry curvature of 

the occupied bands that are separated by an energy gap from the high-energy sector.  For 

topological systems without time-reversal symmetry, the Chern invariant can be viewed as 

an obstruction to smoothly defining the wave function throughout the entire BZ, which is a 

torus in 2D.  With the time-reversal symmetry present, the time-reversal constraint confines 

the evaluation of the topological invariant to only half of the BZ, e.g. the grey area of the 

Supplementary Figure 4a.  It was shown that the topological invariant is given as  
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where ܣሺ݇ሻ and ࣠ሺ݇ሻ are the Berry connection and Berry curvature, respectively.  

ሺ݇ሻܣ ൌ ݅ ∑ ൏ ௞,௡ݑ|௞׏|௞,௡ݑ ൐	
௡   and 	࣠ሺ݇ሻ ൌ ௞׏ ൈ  ሺ݇ሻ.      (2)ܣ

 ߲߬ and ߬ are the corresponding boundary and the area of the grey-color shaded region in 

Supplementary Figure 4a. The above formula can be efficiently evaluated on a discrete 

lattice consisting of small plaquettes, see Supplementary Figure 4a. These plaquettes are 

obtained by discretizing the first BZ with ki = bi/Ni * i for i = 0, …, Ni-1, where bi is the 
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reciprocal vector and Ni is the number of slices along bi. As b1 and b2 are not necessarily 

orthogonal, the resulting plaquette does not have to be a square. Along the closed edges of 

each plaquette, we calculated the phase change of the wave functions. The total phase 

change in half of the BZ yields the Z2 topological invariant. If the total phase change is odd 

times of π, the system is topologically nontrivial. Otherwise, it is topologically trivial. In 

each plaquette, Equation (1) takes strictly integer value which is called n-filed value, they 

can be zero (empty), 1 (solid circle) or -1 (empty circle). The Z2 topological invariant is 

given by (# of solid circle + # of empty circle) modulo 2.  

         An equivalent way of charactering a Z2 topological insulator is to calculate the hybrid 

Wannier charge center, as shown in Supplementary Figure 4b. The nontrivial connectivity 

of the Wannier center (symbols), i.e. the nth curve connects upwards with the (n+1)th 

curve and downwards with the (n-1)th curve, characterizes the topology of the system. 

While the trivial band insulator is qualitatively different from the above picture, where 

every curve is separated from the others.  

Supplementary Note 5. Topological edge states of a ribbon along b-edge and along a-

edge with different edge termination 

           The detailed picture of the ES largely depends on the edge geometry in monolayer 

1T’-WTe2, which has a strong implication to the experimental detection of the topological 

density of states. The topological character, determined by the bulk band structure, is 

unaffected by the different choices of edge geometry. However, the different edge 

terminations may shift ES in energy, as shown in Supplementary Figure 5 (along the b-edge 
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the internal coordinates of every atom. From the converged structure, we extracted one 

layer of WTe2 as the monolayer and added sufficient vacuum in the c-direction. We kept 

the relative position of each atom to be the fully relaxed position of the bulk. Repeating the 

electronic structure calculation and the topological analysis explained before, we found that, 

at the two pressures studied, the topological character of the monolayer 1T’-WTe2 is 

unchanged, i.e. the systems remain as QSH semimetals. This conclusion is kept unchanged 

even after we further relaxed the internal coordinates of each atom in the monolayer.  This 

is expected, as the interlayer coupling of WTe2 is weak and the change of a and b is 

negligibly small. In Supplementary Table 1 and Supplementary Table 2, we give the 

coordinates of each atom in bulk and in monolayer geometry used in our calculations.  

bulk Monolayer from bulk Monolayer fully relaxed 

WTe2 5.36 GPa bulk 
1.00 
  6.157000 0.0000 0.0000 
  0.000000 3.4060 0.0000 
  0.000000 0.0000 13.2479 
   W    Te 
     4     8 
Direct 
  0.89891 0.5000 0.00068 
  0.10109 0.0000 0.50068 
  0.54122 0.0000 0.98457 
  0.45878 0.5000 0.48457 
  0.29240 0.5000 0.10273 
  0.70761 0.0000 0.60273 
  0.79987 0.0000 0.15205 
  0.20014 0.5000 0.65205 
  0.35473 0.0000 0.33315 
  0.64527 0.5000 0.83315 
  0.85268 0.5000 0.38267 
  0.14732 0.0000 0.88267 

WTe2 5.36 GPa mon. from bulk 
1.0 
  6.1570 0.0000 0.0000 
  0.0000 3.4060 0.0000 
  0.0000 0.0000 52.992 
    W   Te 
    2    4 
Direct 
  0.10109 0.0000 0.12517 
  0.45878 0.5000 0.12114 
  0.70761 0.0000 0.15068 
  0.20013 0.5000 0.16301 
  0.35473 0.0000 0.08329 
  0.85268 0.5000 0.09567 

 

WTe2 5.36 GPa mon. relaxed 
 1.0000 
  6.15700 0.00000 0.00000 
  0.00000 3.40600 0.00000 
  0.00000 0.00000 52.9920 
   W    Te 
   2    4 
Direct 
  0.10011 0.00000 0.12512 
  0.45816 0.50000 0.12121 
  0.70842 0.00000 0.15191 
  0.20137 0.50000 0.16339 
  0.35699 0.00000 0.08292 
  0.84997 0.50000 0.09441 

 

 

Supplementary Table 1: Crystal structure of bulk and monolayer 1T’-WTe2 at 5.36 

GPa.  
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bulk Monolayer from bulk Monolayer fully relaxed 

WTe2 10.934 GPa bulk 
  1.00000 
   6.12200 0.00000 0.00000 
   0.00000 3.33500 0.00000 
   0.00000 0.00000 12.78999 
   W    Te 
     4     8 
Direct 
  0.88343 0.50000 0.00067 
  0.11657 0.00000 0.50067 
  0.52217 0.00000 0.98459 
  0.47783 0.50000 0.48459 
  0.27288 0.50000 0.10609 
  0.72712 0.00000 0.60609 
  0.78244 0.00000 0.15708 
  0.21756 0.50000 0.65708 
  0.36706 0.00000 0.32819 
  0.63294 0.50000 0.82819 
  0.86865 0.50000 0.37923 
  0.13135 0.00000 0.87923 

WTe2 10.934 GPa mon. from bulk 
1.0 
   6.12200 0.00000 0.00000 
   0.00000 3.33500 0.00000 
   0.00000 0.00000 51.15998 
    W   Te 
    2    4 
Direct 
  0.11657 0.00000 0.12517 
  0.47783 0.50000 0.12115 
  0.72711 0.00000 0.15152 
  0.21756 0.50000 0.16427 
  0.36706 0.00000 0.08205 
  0.86865 0.50000 0.09481 

 

WTe2 10.934 GPa mon. relaxed 
1.0 
   6.12200 0.00000 0.00000 
   0.00000 3.33500 0.00000 
   0.00000 0.00000 51.15998 
    W   Te 
    2    4 
Direct 
  0.11571 0.00000 0.12507 
  0.47568 0.50000 0.12124 
  0.72704 0.00000 0.15358 
  0.21947 0.50000 0.16515 
  0.37245 0.00000 0.08117 
  0.86444 0.50000 0.09275 

 

 

Supplementary Table 2: Crystal structure of bulk and monolayer 1T’-WTe2 at 10.934 

GPa. 


