SI GUIDE

File Name: Supplementary Information Description: Supplementary Figures and Supplementary Tables.

Supplementary Figures

Supplementary Fig. 1. Initial attempts for construction of bicyclo[4.1.0]heptanone having an all-*cis* cyclopropane. To construct an all-*cis* substituted cyclopropane, we initially attempted an intermolecular 1,4-addition of 2,4,4-trimethylcyclohex-2-en-1-one with dimethylsulfonium ylide **B**, but the reactions did not proceed at all (a). An intramolecular cyclopropanation of diazoester **D** was next attempted. A treatment of **D** with $Rh_2(cap)_2$ gave a complex mixture (b). On the other hand, use of Cu(TBS)₂ resulted in dimerization to give compound **F** in high yield. During these investigations, the desired products **C** and **E** were not detected at all.

Supplementary Fig. 2. Synthesis of α -diazoketones 6b-d. To prepare benzyl-protected methyl diazoketone 6b; α -diazo- β -ketoester 6c and ketonitrile 6d were also synthesized via 10b using pproximately the same sequence for synthesis of 6a.

Supplementary Fig. 3. Hydrogenation of alkylidenecyclopropane. Hydrogenation of alkylidenecyclopropane 5 with Pd/C under H_2 in MeOH gave an undesired trans isomer G as a major product (a). We also tried hydrogenation in EtOAc or with another substrate having nitrile group. These reactions gave a mixture in which a trans substituted silyl ether I and alcohol K were major products, respectively (b and 3).

Supplementary Fig. 4. Failed attempt of formation of all*-cis***-substituted cyclopropane.** Use of a substrate **12b** having nitrile and hydroxyl groups resulted in no reaction, and recovering a starting material in 58% yield.

Supplementary Fig. 5. Unexpected formation of cage structure. A diastereomeric mixture of ketolactone 29 and C8-epi-29 was converted to silyl enol ethers followed by dihydoxylation with OsO_4 . While the oxidant approached from α -face to give compound 30 having desired stereochemistry, it was minor because an intramolecular aldol cyclization proceeded to give product 31 from compound 29. These results indicated that 29 was readily to cyclize to form cage-structure under basic conditions, and while stereoselective C3 oxidation of C8-epi-29 occurred to give an undesired isomer C8-epi-30.

Supplementary Table

Supplementary Table 1. Formation of tertahydrofuran.

In the case of DDQ, the reaction gave various unidentified products, and the only isolated product was compound **18** (Supplementary Table 1, entry 1). Use of $Cu(OTf)_2$ was not effective, the reaction did not proceed, and almost all of the starting material was recovered (Supplementary Table 1, entry 2). In the case of $Zn(OTf)_2$, a significant amount of the starting material was recovered, while the reaction gave the desired product in 14% yield (Supplementary Table 1, entry 3). Through these examinations as shown in this table, a ring-opening product was not observed.

Supplementary Methods

General Information

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware. Analytical thin-layer chromatography was performed with Silica gel 60 (Merck). Silica gel column chromatography was performed with Kanto silica gel 60 (particle size, 63–210 μ m) and Fuji silysia Chromatorex BW-300. All melting points were determined on YAMAMOTO micro melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a JEOL JNM-ECA 500 at 500 MHz or a JEOL JNM-AL 400 at 400 MHz. Chemical shifts are reported relative to Me₄Si (δ 0.0) in CDCl₃, and residual solvents of C₆D₆ (δ 7.16). Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a JEOL JNM-ECA 500 at 126 MHz or a JEOL JNM-AL 400 at 100 MHz. Chemical shifts are reported relative to CDCl₃ (δ 77.0), C₆D₆ (δ 128.0). Infrared spectra were recorded on a FT/IR-4100 Fourier-transform infrared spectrometer ATR (attenuated total reflectance). Low and High resolution mass spectra were recorded on JEOL MS700 mass spectrometer for FAB-MS, and Shimadzu LCMS-IT-TOF for ESI-MS. Optical rotations were determined with a JASCO P-2200KDT polarimeter and are the average of five measurements.

Synthetic procedure for total synthesis of avenaol (1).

Compound 1': To a solution of 2,2-dimethyl-4-pentenal **7** (43.3 g, 386 mmol) in DMSO (193 mL) were added triton B (40% in MeOH, 14.7 ml, 41.9 mmol) and (2-propynyloxy)tetrahydropyran (49.2 g, 351 mmol). The mixture was stirred at room temperature for 24 h, and it became a dark red solution. The resulting mixture was diluted with water at 0 °C, extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and a residue was purified by silica gel column chromatography (5-30% EtOAc/hexane) to afford **1'** (96.8 g, 94%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.83 (m, 1H), 5.09 (d, 1H *J* = 5.5 Hz), 5.06 (s, 1H), 4.32 (dd, 2H, *J* = 15.8, 24.9 Hz), 4.13 (s, 1H), 3.84 (m, 1H), 3.55 (m, 1H), 2.21-2.07 (m, 2H), 1.87-1.71 (m, 3H), 1.65-1.52 (m, 4H), 0.98 (s, 3H), 0.97 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 134.8, 117.7, 96.6, 85.5, 82.0, 70.1, 62.0, 62.0, 60.3, 54.1, 42.7, 38.6, 30.2, 25.3, 22.6, 22.4, 19.0, 14.1; IR (ATR) v = 3438, 3073, 2942, 2871, 1638 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₂₄O₃Na [(M+Na)⁺] 275.1618, found 275.1611.

Compound 8: To a solution of compound 1' (26.4 g, 105 mmol) in THF/DMPU (v/v = 4:1, 350 ml) was added sodium hydride (60% in mineral oil, 6.48 g, 162 mmol) at -20 °C. The mixture was stirred for 30 min. Methyl iodide (9.80 mL, 157 mmol) was added to the reaction mixture. Then, the reaction mixture was stirred at room temperature for 1 h. The resulting mixture was quenched with satd. aq. NH₄Cl and extracted with ether three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give a crude propargyl methyl ether (34.8 g, crude).

To a solution of the above crude propargyl methyl ether (34.8 g, crude) in MeOH (290 mL) was added PPTS (18.8 g, 74.9 mmol) at room temperature. The solution was stirred overnight. The reaction was quenched with satd. aq. NaHCO₃ at 0 °C. The mixture was extracted with ether three times, and the combined organic layers were washed with brine. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5-25% EtOAt/hexane) to give **8** (17.5 g, 92% for 2 steps) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 5.80 (m, 1H), 5.07 (s, 1H), 5.04 (d, *J* = 6.0 Hz), 4.34 (dd, 2H, *J* = 1.5 Hz, *J* = 6.0 Hz), 3.62 (s, 1H), 3.40 (s, 3H), 0.60 (d, 1H, *J* = 8.0 Hz), 2.14 (d, 1H, *J* = 7.5 Hz), 2.11 (d, 1H, *J* = 7.5 Hz), 2.08 (d, 1H, *J* = 8.0 Hz), 0.97 (s, 3H), 0.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 134.7, 117.5, 85.0, 83.3, 79.1, 57.4, 51.2, 42.9, 38.2, 23.1, 22.7; IR (ATR) v = 3414, 3075, 2975, 2822, 2362 cm⁻¹; HRMS (ESI) m/z calcd for C₁₁H₁₉O₂ [(M+H)⁺] 183.1380, found *m/z* 183.1372.

Compound 9: To a solution of LiAlH₄ (3.99 g, 105 mmol) in Et₂O (331 mL) was added an Et₂O (19 mL) solution of **8** (6.39 g, 35.1 mmol) dropwise through cannula at -78 °C. After the reaction mixture was stirred at room temperature for 1 h, I₂ (23.9 g, 94.2 mmol) was added slowly at -78 °C, and then stirred at room temperature for 45 min. The reaction was quenched with a mixed solution of satd. aq. Rochelle salt and 10% aq. Na₂S₂O₃. The resulting mixture was extracted with ether three times, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10-20% EtOAc/hexane) to afford as **9** colorless oil

(4.44 g, 83%): ¹H NMR (500 MHz, CDCl₃) δ 5.82 (m, 1H), 5.43 (dd, 2H, J = 6.0, 11.7 Hz), 5.30 (m, 1H), 5.05 (m, 2H), 4.12 (m, 2H), 0.76 (d, 2H), 1.41 (t, 1H), 1.04 (s, 3H), 1.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 200.6, 135.1, 117.0, 104.1, 93.4, 60.5, 47.1, 27.6, 27.2; IR (ATR) ν = 3377, 3074, 2961, 2927, 2870, 1960 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₀H₁₇O [(M+H)⁺] 153.1274, found 153.1273.

Compound 2': To a solution of alcohol **9** (1.01 g, 6.64 mmol) in DMF (66 mL) were added imidazole (1.00 g, 14.7 mmol) and TIPSCl (1.6 mL, 7.55 mmol) at 0 °C. After the solution was stirred at room temperature for 1 h, the reaction was quenched with satd. aq. NaHCO₃. The mixture was extracted with ether three times, and the combined organic layers were washed with water, and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give **2'** (1.71 g, 84%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 5.81 (m, 1H), 5.32 (dd, 2H, *J* = 6.6, 12.5 Hz), 5.17 (m, 1H). 5.02 (m, 2H), 4.25 (m, 2H), 2.07 (d, 2H, *J* = 7.4 Hz), 1.14-1.05 (m, 21H), 1.01 (s, 6H); 13C NMR (125 MHz, CDCl₃) δ 201.4, 135.7, 117.1, 102.9, 93.9, 62.4, 47.7, 34.9, 27.8, 27.8, 18.2, 12.2; IR (ATR) v = 2959, 2952, 2892, 2865, 1463, 1091 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₃₇O Si[(M+H)⁺] 309.2608, found 309.2600.

Compound 3': To a solution of silyl ether **2'** (28.7 g, 93.1 mmol) in THF (465 mL) was added 9-BBN (0.5 M in THF, 186 mL, 93.1 mmol) at 0 °C dropwise. The reaction mixture was stirred at room temperature for 25 min. Additional 9-BBN (93 mL, 46.6 mmol) was added at 0 °C three times every 25 min. After confirming the starting material disappeared by TLC, 3 M aq. NaOH (186 mL) and 30% H₂O₂ (63 mL) were added at 0 °C, and the resultant solution was stirred at room temperature for 25 min. After addition of satd. aq. NH₄Cl, the reaction mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10-25% EtOAc/hexane) to afford **3'** as a colorless oil (21.5 g, 71%): ¹H NMR (500

MHz, CDCl₃) δ 5.31 (dd, 1H, J = 5.7, 10.7 Hz), 5.11 (m,1H), 4.17 (m,2H), 3.55 (m, 2H), 1.53-1.44 (m, 1H), 1.45-1.31 (m, 3H), 1.16-1.04 (m, 21H), 0.94 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 201.6, 102.8, 93.6, 63.7, 62.4, 39.0, 34.4, 28.4, 28.3, 18.2, 12.2; IR (ATR) ν = 3345, 2956, 2941, 2892, 2865, 1463 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₉H₃₈O₂SiNa [(M+Na)⁺] 349.2533, found 349.2524.

Compound 10a: To a solution of alcohol **3'** (99.3 mg, 0.304 mmol) in CH₂Cl₂-pH 7 phosphate buffer (1:1, 3.0 mL) were added nor-AZADO (10.0 mg, 0.0724 mmol) and PhI(OAc)₂ (211 mg, 0.655 mmol) at 0 °C. After the reaction mixture was stirred for 7 h at room temperature, additional PhI(OAc)₂ (40.6 mg, 0.126 mmol) was added. The solution was stirred for 2 h. The reaction was then quenched with 10% aq. Na₂S₂O₃. The mixture was extracted with CHCl₃ three times and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (10-35% EtOAc/hexane) to afford **10a** as a colorless oil (80.2 mg, 78%): ¹H NMR (500 MHz, CDCl₃) δ 5.34 (dd, 1H, *J* = 6.0, 12.2 Hz), 5.09 (m, 1H), 4.25 (m, 2H), 2.36 (t, 2H, *J* = 8.6 Hz), 1.68 (t, 2H, *J* = 8.3 Hz), 1.14-1.04 (m, 21H), 1.03 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 201.7, 180.8, 102.0, 94.2, 62,2, 37.4, 34.6, 30.2, 27.9, 27.7, 18.2, 12.2; IR (ATR) v = 2959, 2942, 2892, 2865, 1711 cm⁻¹; HRMS (ESI) *m*/z calcd for C₁₉H₃₆O₃SiNa [(M+Na)⁺] 363.2326, found 363.2325.

Compound 4': To a mixed solution of carboxylic acid **10a** (80.2 mg, 0.236 mmol) and DIPEA (0.098 mL, 0.565 mmol) in CH₂Cl₂ (2.4 mL) was added PivCl (0.035 mL, 0.283 mmol) dropwise 0 °C for 5 min. After 5 min, MeOH (0.029 mL, 0.707 mmol) and DMAP (5.6 mg, 0.0458 mmol) were added. The solution was stirred at room temperature overnight. The reaction was then quenched with satd. aq. NaHCO₃ at 0 °C and extracted with CHCl₃ three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel column chromatography (3-7% EtOAc/hexane) to afford **4'** (74.0 mg, 89%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 5.25 (1H, dd, J = 6.6, 12.6 Hz), 5.01 (m, 1H), 4.16 (m, 2H),

3.59 (s, 3H), 2.24 (t, 2H, J = 8.3 Hz), 1.59 (t, 2H, J = 8.3 Hz), 1.06-0.96 (m, 21H), 0.94 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 201.4, 174.6, 101.8. 93.8, 61.9, 51.5, 37.5, 34.3, 29.9, 27.6, 27.4, 26.4, 17.9, 11.9; IR (ATR) $\nu = 3000$, 1770, 1757, 1749, 1245 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₃₈O₃SiNa [(M+Na)⁺] 377.2482, found 377.2500.

Compound 5': To a solution of LiHMDS (1.3 M in THF, 0.288 mL, 0.374 mmol) in THF (1.9 mL) was added MeCN (0.020 mL, 0.374 mmol) dropwise at -78 °C. After 30 min, methyl ester **4'** in THF (25 mL) was added dropwise via dropping funnel at -78 °C. The resultant solution was stirred for at -78 °C for 5 min. After the solution was diluted with Et₂O, 1 M aq. HCl and satd. aq. NH₄Cl were added. The mixture was extracted with Et₂O three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7%-20% EtOAc/hexane) to afford **5'** as a colorless oil (65.9 mg, 97%): ¹H NMR (500 MHz, CDCl₃) δ 5.33 (dd, 1H *J* = 6.3, 11.9 Hz), 5.05 (m, 1H), 4.23 (m, 2H), 3.47 (s, 2H), 2.59 (m, 2H), 1.64 (m, 2H), 1.15-1.03 (m, 21H), 1.02 (s, 3H), 1.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 201.4, 197.7. 113.7, 101.6, 94.1, 61.8, 38.1, 35.5, 34.2, 31.9, 28.1, 27.3, 17.9, 11.9; IR (ATR) v = 3734, 2989, 1770, 1758, 1733, 1245, 1053 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₃₇NO₂SiNa [(M+Na)⁺] 386.2486, found 386.2486.

Compound 6a: To a solution of **5**' (58.7 mg, 0.161 mmol) in MeCN (1.6 mL) were added pyridine (47 mL, 0.581 mmol) and imidazole-1-sulfonylazide (33.5 mg, 0.193 mmol) at room temperature. After stirring overnight, an additional pyridine (13 μ L, 0.161 mmol) and imidazole-1-sulfonylazide (28.6 mg, 0.164 mmol) were added to the reaction mixture. After stirring for 6 h, the reaction was quenched with satd. aq. NH₄Cl, and the resultant mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated and the residue was purified by silica gel column chromatography (3%-10%)

EtOAc/hexane) to afford **6a** as a yellowish oil (54.5 mg, 87%): ¹H NMR (500 MHz, CDCl₃) δ 5.35 (dd, 1H, J = 6.6, 12.5 Hz), 5.07 (m, 1H), 4.29-4.19 (m, 2H), 2.60 (t, 2H, J = 7.7 Hz), 1.69 (t, 2H, J = 7.7 Hz), 1.19-1.04 (m, 21H), 1.03 (s, 3H), 1.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 201.4, 190.5, 108.4, 101.5, 94.2, 61.9, 36.6, 35.6, 34.5, 27.9, 27.3, 17.9, 11.9; IR (ATR) v = 3734, 3000, 1758, 1244, 1055 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₁H₃₅N₃O₂SiNa [(M+Na)⁺] 412.2391, found 412.2403.

Compound 11a: To a solution of **6a** (51.3 mg, 0.132 mmol) in CH₂Cl₂ (2.6 mL) was added Rh₂(OAc)₄ (3.3 mg, 7.47 µmol) at 0 °C. The solution was stirred at room temperature for 30 min. The resulting solution was concentrated, and purified by silica gel column chromatography (7-15% EtOAc/hexane) to afford **11a** as a colorless oil (40.1 mg, 84%): ¹H NMR (500 MHz, CDCl₃) δ 6.42 (dt, 1H, *J* = 2.6, 6.0 Hz), 4.44 (m, 2H), 2.76 (s, 1H), 2.32 (dd, 2H *J* = 4.3, 9.2 Hz), 1.76-1.57 (m, 1H), 1.40-1.34 (m, 1H), 1.23 (s, 3H), 1.20 (s, 3H), 1.14-0.98 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 197.5, 126.0, 122.0, 116.7, 62.3, 42.8, 32.7, 30.8, 30.6, 29.1, 27.6, 25.1, 17.9, 11.8; IR (ATR) v = 3734, 2992, 1770, 1758, 1702, 1246 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₁H₃₆NO₂Si [(M+H)⁺] 362.2510, found 362.2520.

Compound 6': To a solution of **11a** (33.7 mg, 0.0932 mmol) in MeOH (1.9 mL) were added CeCl₃·7H₂O (41.1 mg, 0.110 mmol) and NaBH₄ (5.4 mg, 0.143 mmol) at 0 °C. After stirring for 5 min, the reaction was quenched with water, and the resultant solution was extracted with ether three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10%-15% EtOAc/hexane) to afford **6'** as a white solid (32.1 mg, 95%, dr =17:1): ¹H NMR (500 MHz, CDCl₃) δ 6.23 (s, 1H), 4.37 (d, 2H, *J* = 6.0 Hz), 4.11 (s, 1H), 2.26 (br, OH), 2.18 (s, 1H), 1.56-1.48 (m, 1H), 1.44 (t, 1H, *J* = 13.5 Hz), 1.24 (s, 3H), 1.06 (s, 18H), 1.16-1.03 (m, 5H), 1.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 124.3, 123.1, 64.3, 62.7, 35.1, 30.7, 30.0, 29.5,

29.4, 25.9, 18.3, 17.9, 17.9, 11.9; IR (ATR) v = 2994, 2950, 1770, 1758, 1375, 1245, 1057 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₃₇NO₂SiNa [(M+Na)⁺] 386.2486, found 386.2469.

Compound 12: To a solution of **S6** (6.19 g, , 17.0 mmol) in THF (170 mL) was added NaH (60% in mineral oil, 921 mg, 23.0 mmol) slowly at 0 °C. After the reaction mixture was stirred at 0 °C for 30 min, PMBCl (3.5 mL, 25.5 mmol) and NaI (777 mg, 5.18 mmol) were added. The mixture was then stirred at 50 °C for 12 h. The reaction was quenched with satd. aq. NH₄Cl at 0 °C, and the resultant mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography 3-15 % EtOAc/hexane) to afford **12** as a colorless oil (8.09 g, 97%): ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, 2H, *J* = 8.3Hz), 6.90 (d, 2H, *J* = 8.3 Hz), 6.21 (s, 1H), 4.67 (d, 1H, *J* = 11.5 Hz), 4.60 (d, 1H, *J* = 11.5 Hz), 4.36 (s, 2H), 3.81(s, 3H), 3.74 (s, 1H), 2.15 (s, 1H), 1.47-1.36 (m, 2H), 1.22 (s, 3H), 1.15-0.91 (m, 23H), 1.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.2, 129.9, 129.4, 124.7, 123.1, 120.7, 113.8, 71.4, 71.2, 62.7, 55.2, 35.2, 30.6, 30.4, 29.6, 29.5, 22.8, 17.9, 17.0, 11.9; IR (ATR) v = 2994, 2866, 1770, 1758, 1513, 1246 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₄₅NO₃Si [(M+Na)⁺] 506.3061, found 506.3051.

Compound 13: To a solution of **12** (27 mg, 56.2 µmol) in toluene-THF (3:1, 1 mL) was added slowly DIBAL-H (1.0 M solution in toluene, 112 µL, 112 µmol) at -78 °C. The solution was warmed up to room temperature gradually. After the starting material completely consumed, acetone (100 µL), EtOAc (100 µL), and pH 7 phosphate buffer (100 µL) were added to the solution. The resulting mixture was stirred for 20 min vigorously. Na₂SO₄ was then added and the mixture was stirred for 30 min. After filtration through Na₂SO₄ and silica gel, the filtrate was concentrated to afford aldehyde as a colorless oil (26 mg, crude), which was used for the next reaction without further purification: ¹H NMR (500 MHz, CDCl₃) δ 9.23 (s, 1H), 7.31 (d, 2H, *J* = 8.3 Hz), 6.88 (d, 2H, *J* = 8.0 Hz), 5.90 (s, 1H), 4.60 (d, 1H, *J* = 11.5 Hz), 4.53 (d, 1H, *J* = 11.2 Hz), 4.36 (d, 2H, *J*

=6.0 Hz), 4.22 (s, 1H), 3.81 (s, 3H), 2.22 (s, 1H), 1.69-1.60 (m, 1H), 1.55 (t, 1H, J = 14.3 Hz), 1.19 (s, 3H), 1.14-1.00 (m, 23H), 1.05 (s, 3H); IR (ATR) v = 2942, 2865, 2725, 1769, 1758, 1710, 1613, 1513 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₄₆O₄SiNa [(M+Na)⁺] 509.3058, found 509.3040. To a solution of the above aldehyde (26 mg, crude) in MeOH (1 mL) was added NaBH₄ (2.6 mg, 68.7 µmol) at 0 °C. The reaction mixture was stirred at 0 °C for 10 min. After addition of water, the mixture was extracted with Et₂O three times and washed with brine. The combined organic layers were dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (3-15 % EtOAc/hexane) to afford **13** as a colorless oil (21 mg, 76%, 2 steps): ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, 2H, J = 8.3 Hz), 6.90 (d, 2H, J = 8.3 Hz), 5.83 (s, 1H), 4.60 (d, 1H, J = 11.2 Hz), 4.38 (d, 1H, J = 11.2 Hz), 4.34-4.26 (m, 2H), 3.97 (d, 1H, J = 11.5 Hz), 3.92 (br, OH), 3.81 (s, 3H), 3.21 (d, 1H, J = 10.0 Hz), 3.00 (t, 1H, J = 10.9 Hz), 1.72-1.56 (m, 2H), 1.47-1.38 (m, 2H), 1.26 (s, 1H), 1.19 (s, 3H), 1.15-0.77 (m, 21H), 0.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.2, 131.3, 130.2, 129.3, 118.7, 113.9, 75.9, 75.8, 70.5, 68.3, 63.6, 55.2, 31.8, 31.1, 29.9, 29.2, 29.2, 22.6, 18.0, 12.0; IR (ATR) v = 3537, 2941, 2864, 1613, 1513, 1462, 1248 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₄₉O₄Si [(M+H)⁺] 511.3214, found 511.3196.

Compound 7': To a solution of imidazole (642 mg, 9.43 mmol) and PPh₃ (834 mg, 3.18 mmol) in CH₂Cl₂ (7.8 mL) was added I₂ (854 mg, 3.36 mmol) at 0 °C in dark. An alcohol **13** in CH₂Cl₂ (7.8 mL) was then added to the mixture through cannula after stirred for 5 min. The reaction mixture was stirred at 0 °C in dark for 20 min. the resulting mixture was quenched with satd. aq. Na₂S₂O₃ and extracted with CHCl₃ three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography (3-10% EtOAc/hexane) to afford alkyl iodide 7' as a yellowish oil (785 mg, 84%): ¹H NMR (500 MHz CDCl₃) δ 7.36 (d, 2H, *J* = 8.3 Hz), 6.90 (d, 2H, *J* = 8.3 Hz), 6.14 (s, 1H), 4.56 (d, 1H, *J* = 10.9 Hz), 4.46 (d, 2H, *J* = 10.6 Hz), 4.34 (d, 1H, *J* = 8.6 Hz), 3.91 (s, 1H), 3.81 (s, 3H), 2.82 (d, *J* = 8.9 Hz), 1.69-1.41 (m, 2H), 1.43 (s, 1H), 1.16-0.97 (m, 1H), 0.91-0.75 (m, 1H) 1.13 (s, 3H), 1.12-0.98 (m, 21H), 0.93 (s, 3H); 13C NMR (125 MHz, CDCl₃) δ 159.0, 133.0, 131.0, 129.5, 117.8, 113.7, 72.3, 71.3, 63.3, 55.2, 36.5, 32.7, 31.3, 30.5, 29.4, 28.2, 21.7, 18.0, 17.7, 12.0; IR (ATR) v = 2942, 2864, 1770, 1614, 1514, 1464, 1247, 1219 cm⁻¹; HRMS (ESI) *m*/z calcd for C₂₉H₄₇O₃SiINa [(M+Na)⁺] 621.2231, found 621.2220.

Compound 14: To a solution of alkyl iodide **7**[°] (17.7 mg, 29.6 μmol) in DMSO (100 μL) was added NaBH₄ (2.2 mg, 58.2 μmol). The solution was stirred at 80 °C for 1 h. The reaction was quenched with satd. aq. NH₄Cl at room temperature. After 30 min, the resultant mixture was extracted with Et₂O three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography (1-7% EtOAc/hexane) to afford **14** (11.5 mg, 76%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, 2H, *J* = 8.3 Hz), 6.88 (d, 2H, *J* = 8.3 Hz), 5.82 (s, 1H), 4.55 (d, 1H, *J* = 11.5 Hz), 4.37 (d, 1H, *J* = 11.7 Hz), 4.36-4.26 (m, 2H), 3.81 (s, 3H), 3.57 (s, 1H), 1.52-1.40 (m, 2H), 1.37-1.28 (m, 1H), 1.26 (s, 1H), 1.19 (s, 3H), 1.14 (s, 3H), 1.13-1.00 (m, 21H), 0.99-0.79 (m, 1H), 0.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 136.1, 131.4, 129.0, 117.2, 113.6, 74.7, 70.6, 63.9, 55.2, 33.6, 32.7, 31.3, 30.2, 29.7, 23.3, 22.5, 21.4, 18.0, 12.0; IR (ATR) v = 2993, 1770, 1373, 1245 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₄₈O₃SiNa [(M+Na)⁺] 495.3265, found 495.3249.

Compound 5: To a solution of **14** (486 mg, 1.03 mmol) in THF (10 mL) was added TBAF (1.0 M in THF) at room temperature. The solution was stirred for 1 h, and then diluted with EtOAc and satd. aq. NH₄Cl, extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography to afford **5** (313 mg, 97%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, 2H, *J* = 8.3 Hz), 6.89 (d, 2H, *J* = 8.3 Hz), 5.88 (t, 1H, *J* = 6.0 Hz), 4.56 (d, *J* = 11.5 Hz), 4.37 (d, *J* = 11.5 Hz), 4.24 (m, 2H), 3.58 (t, 1H, *J* = 3.3 Hz), 1.53-1.45 (m, 1H), 1.35-1.24 (m, 2H), 1.22 (s, 1H), 1.20 (s, 3H), 1.16 (s, 3H), 0.98 (m, 1H), 0.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 131.1, 128.9, 113.7, 74.9, 71.7, 63.3, 55.2, 36.5, 33.4, 33.0, 29.6, 29.0, 28.4, 26.7, 24.4, 23.8, 20.4; IR (ATR) v = 3407, 2992, 2953, 2861, 1768, 1756 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₈O₃Na [(M+Na)⁺] 339.1931, found 339.1927.

Compound 4: To a solution of 5 (41 mg, 0.132 mmol) in CH₂Cl₂ (2.6 mL) was added [Ir(cod)(pyr)(PCy₃)]BAr_F (2.4 mg, 1.58 µmol) at room temperature. After the reaction mixture was babbled with H₂ gas via needle for 3 min, the orange solution turned yellow. After 5 min, additional $[Ir(cod)(pyr)(PCy_3)]BAr_F$ (4.7 mg, 3.08 µmol) was added and H₂ gas was babbled for 1 min. After the starting material was completely consumed, Et₃N (two drops) was added, and the solution was concentrated. The residue was purified by silica gel column chromatography (7-20% EtOAc/hexane) to afford 4 (28 mg, 68%, dr = 10:1) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 9.77 (s, 1H), 7.28 (d, 2H, J = 8.3 Hz), 6.87 (d, 2H, J = 8.3 Hz), 4.54 (d, 1H, J = 11.7 Hz), 4.40 (d, 1H, J = 11.7 Hz), 3.79 (3H, s), 3.05 (dd, 1H, J = 11.7, 4.3 Hz), 2.65 (dd, 1H, J = 17.9, 6.2 Hz), 2.43 (dd, 1H, J = 17.9, 8.9 Hz), 1.66-1.59 (m, 1H), 1.48 (dd, 1H, J = 25.6, 13.6 Hz), 1.35 (d, 1H, J = 14.0 Hz), 1.24 (s, 3H), 1.11 (d, 1H, J = 7.7 Hz), 1.10 (s, 3H), 0.94-0.84 (m, 1H), 0.92 (s, 3H), 0.50 (d, 1H, J = 9.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 201.7, 128.8, 128.7, 114.0, 113.4, 73.9, 71.6, 55.3, 40.0, 36.4, 33.1, 32.6, 29.2, 28.6, 26.6, 23.3, 21.0, 20.5; IR (ATR) v = 3369, 2957, 2864, 2718, 1725, 1613, 1512 cm⁻¹; HRMS (ESI) m/z calcd for C₂₀H₂₈O₃Na [(M+Na)⁺] 339.1931, found 339.1937. The same procedure was applied to a gram-scale synthesis of compound 4 (1.07 g, 78%, dr 9.5:1).

Compound 8': To a solution of aldehyde **4** (57.9 mg, 0.183 mmol) in 2-propanol (1.8 mL) were added 37% aq. HCHO (16.3 μ L, 0.201 mmol), pyrrolidine (7.5 μ L, 0.0913 mmol) and propionic acid (7.8 μ L, 0.0913 mmol) at room temperature. The mixture was stirred at 45 °C for 24 h. MeOH (1.8 mL) and NaBH₄ (10.4 mg, 0.275 mmol) were added to the resulting solution at 0 °C, and the mixture was stirred at 0 °C for 20 min. The reaction was then quenched with satd. aq. NH₄Cl and extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. The filtrate was concentrated and the residue was purified by silica gel column chromatography (7-20% EtOAc/hexane) to afford **8'** (45.2 mg, 75%) as a colorless oil: ¹H NMR

(500 MHz, CDCl₃) δ 7.27 (d, 2H, *J* = 8.3 Hz), 6.87 (d, 2H, *J* = 8.3 Hz), 5.25 (s, 1H), 4.99 (s, 1H), 4.49 (d, 1H, *J* = 11.5 Hz), 4.44 (d, 1H, *J* = 11.5 Hz), 4.03 (d, 1H, *J* = 14.3 Hz), 3.92 (d, 1H, *J* = 14.3 Hz), 3.80 (s, 3H), 3.31 (dd, 1H, *J* = 9.7, 4.9 Hz), 1.65-1.62 (m, 2H), 1.58-1.50 (m, 1H), 1.29-1.24 (m, 1H), 1.18-1.13 (m, 1H), 1.26 (s, 3H), 1.14 (s, 3H), 1.11 (s, 3H), 0.71 (d, 1H, *J* = 9.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 145.6, 131.1, 129.0, 113.6, 111.8, 74.2, 71.2, 67.3, 60.3, 55.2, 37.5, 34.0, 33.0, 32.1, 30.2, 29.8, 25.3, 24.4, 22.8, 21.0, 14.1; IR (ATR) v = 3421, 2950, 2864, 1738, 1613, 1512, 1244 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₁H₃₀O₃Na [(M+Na)⁺] 353.2087, found 353.2072.

Compound 3: To a solution of alkene 8' (273 mg, 0.827 mmol) in THF (8.3 mL) was added BH₃·THF (1.0M in THF, 910 µL, 0.910 mmol) at 0 °C dropwise. The solution was stirred at room temperature for 20 min. Additional BH3 ·THF (750 µL, 0.750 mmol) was added to 0 °C, and the resultant solution was stirred for 50 min at room temperature. 3M aq. NaOH (1.7 mL) and 30% H_2O_2 (563 µL) were then added at 0 °C. The resultant mixture was stirred at room temperature for 15 min. The reaction was quenched with satd. aq. NH₄Cl at 0 °C, and the mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (35-55% EtOAc/hexane) to afford **3** as a colorless oil (255 mg, 88%): ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.31 \text{ (d, 2H, } J = 8.6 \text{ Hz}), 6.90 \text{ (d, 2H, } J = 8.6 \text{ Hz}), 4.55 \text{ (dd, 2H, } J = 25.5,$ 11.5 Hz), 4.06 (br, 1H), 3.87-3.73 (m, 4H), 3.72-3.64 (m, 1H), 3.60 (t, 1H, J = 8.9 Hz), 3.20 (dd, 1H, J = 11.5, 4.0 Hz), 2.43 (br, OH, 2.09 (br, OH), 1.77-1.64 (m, 2H), 1.53-1.35 (m, 2H), 1.15 (s, 3H), 1.11 (s, 3H), 1.05 (s, 3H), 1.02-0.82 (m, 1H), 0.40 (d, 1H, J = 9.2 Hz), 0.18 (t, 1H, 11.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 130.9, 129.0, 128.8, 113.7, 75.1, 71.2, 68.7, 67.3, 55.2, 38.5, 36.7, 33.7, 33.3, 30.1, 29.9, 26.5, 25.8, 24.1, 20.6; IR (ATR) v = 3369, 2953, 2864, 1737, 1613, 1512, 1244 cm⁻¹; HRMS (ESI) m/z calcd for C₂₁H₃₂O₄Na [(M+Na)⁺] 371.2193, found 371.2192.

Compound 18: To a solution of diol **3** (21 mg, 0.0606 mmol) in CH₂Cl₂ (1.2 mL) were added PhSH (62 μ L, 0.606 mmol) and TsOH·H₂O (0.0195 mmol) at room temperature. The solution was stirred for 6 h. The reaction was quenched with satd. aq. NaHCO₃, and the resultant mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15-60% EtOAc/hexane) to afford **18** as a colorless oil (11 mg, 88%): ¹H NMR (500 MHz, CDCl₃) δ 4.11 (s, 1H), 3.73 (dd, 1H, *J* = 3.7, 10.0 Hz), 3.67 (dd, 1H, *J* = 6.0, 10.9 Hz), 3.56 (t, 1H, *J* = 8.3 Hz), 2.99 (t, 1H, *J* = 10.6 Hz), 1.88-1.79 (m, 1H), 1.55-1.42 (m, 3H), 1.39-1.31 (m, 1H), 1.17 (s, 3H), 1.05 (s, 6H), 1.02-0.98 (m, 1H), 0.49 (dd, 1H, *J* = 6.3, 8.9 Hz), 0.36 (d, 1H, *J* = 9.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 71.8, 65.3, 64.0, 34.6, 32.5, 31.0, 29.4, 29.0, 28.5, 28.0, 27.0, 25.3; IR (ATR) v = 3423, 2994, 1770, 1463, 1381, 1245 cm⁻¹; HRMS (ESI) *m*/z calcd for C₁₃H₂₂O₂Na [(M+Na)⁺] 211.1693, found 211.1688.

Compound 20: To a solution of alcohol **18** (253 mg, 1.21 mmol) in CH₂Cl₂ (24 mL) were added Et₃N (676 µL, 4.86 mmol), DMAP (78.0 mg, 0.638 mmol) and BzCl (282 µL, 2.43 mmol) at room temperature. The solution was stirred for 1 h. The reaction was quenched with satd. aq. NaHCO₃, and the resultant mixture was extracted with CHCl₃ three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography (3-5% EtOAc/hexane) to afford **20** as a colorless oil (327 mg, 86%): ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, 2H, *J* = 8.3 Hz), 7.55 (t, 1H, *J* = 7.2 Hz), 7.43 (t, 2H, *J* = 7.6 Hz), 4.34 (dd, 1H, *J* = 6.3, 10.9 Hz), 4.18 (dd, 1H, *J* = 7.7, 10.7 Hz), 4.13 (s, 1H), 3.76 (dd, 1H, *J* = 3.4, 10.0 Hz), 3.07 (t, 1H, *J* = 10.5 Hz), 2.18-2.06 (m, 1H), 1.57-1.47 (m, 1H), 1.43-1.31 (m, 1H), 1.18 (s, 3H), 1.07 (s, 3H), 1.05 (s, 3H), 1.06-0.99 (m, 1H), 0.61 (dd, 1H, *J* = 6.4, 9.0 Hz), 0.39 (d, 1H, *J* = 9.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 133.0, 130.0, 129.5, 128.3, 71.8, 66.5, 63.8, 32.5, 31.8, 30.9, 29.3, 28.9, 28.4, 27.0, 25.5, 12.4; IR (ATR) v = 2953, 2864, 1719, 1602, 1451, 1267, 1096 cm⁻¹; HRMS (ESI) *m*/z calcd for C₂₀H₂₆O₃Na [(M+Na)⁺] 337.1774, found 337.1761.

Compound 22: To a solution of ether **20** (17.0 mg, 0.0547 mmol) in CH₂Cl₂ (1 mL) was added TFDO (in trifluoroacetone, *ca.* 0.5 M, 20 drops) was added at -78 °C. After the solution was stirred for 5 min at -78 °C, the TFDO solution was added until ether **17** was completely completed. The reaction solution was concentrated, and the residue was purified by silica gel column chromatography (25-50% EtOAc/hexane) to afford **22** as a colorless oil (17.0 mg, 96%): ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, 2H, *J* = 7.4 Hz), 7.57 (t, 1H, *J* = 7.4 Hz), 7.44 (t. 2H, *J* = 7.6 Hz), 4.71 (dd, 1H, *J* = 11.0, 3.3 Hz), 4.42 (dd, 1H, *J* = 11.0, 7.6 Hz), 3.73-3.59 (m, 2H), 2.48-2.32 (m, 2H), 2.30-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.88-1.77 (m, 1H), 1.56 (dd, 1H, *J* = 14.3, 8.6 Hz), 1.37-1.11 (m, 2H), 1.29 (s, 3H), 1.28 (s, 3H), 1.15 (s, 3H), ¹³C NMR (125 MHz, CDCl₃) δ 211.7, 166.8, 133.2, 129.7, 128.4, 64.7, 62.6, 41.7, 38.7, 34.8, 33.2, 32.8, 31.9, 30.6, 30.5, 30.0, 22.5; IR (ATR) v = 3445, 2958, 2885, 1717, 1668, 1451, 1270 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₇O₄ [(M+H)⁺] 331.1904, found 331.1920.

Compound 9': To a solution of alcohol **22** (4.3 mg, 0.013 mmol) in CH_2Cl_2 (1 mL) were added Et_3N (3.6 μ L, 0.026 mmol) and MsCl (2.0 μ L, 0.026 mmol) at 0 °C. The solution was stirred at 0 °C for 10 min. The additional Et_3N (7.2 μ L, 0.052 mmol) and MsCl (4.0 μ L, 0.052 mmol) were added, and the solution was stirred for 25 min. The reaction was quenched with 1 M aq. HCl, and the resultant solution was extracted with CHCl₃ three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a crude mesylate (5.1 mg, crude)

To a solution of the above crude mesylate (5.1 mg) in DMSO (850 μ L) was added 15-crown-5 (12.9 μ L, 0.0651 mmol) and NaCN (3.8 mg, 0.0775 mmol) at room temperature. The reaction mixture was stirred at 50 °C for 4.5 h. After dilution with Et₂O and water at 0 °C, the mixture was extracted with Et₂O three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (25-40% EtOAc/hexane) to afford **9**' as a colorless oil (4.0 mg, 91%, 2

steps): ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, 2H, *J* = 7.7 Hz), 7.53 (t, 1H, *J* = 7.4 Hz), 7.40 (t, 2H, *J* = 7.7 Hz), 4.74 (dd, 1H, *J* = 11.6, 3.6 Hz), 4.19 (dd, 1H, *J* = 11.5, 9.2 Hz), 2.59 (dd, 1H, *J* = 16.9, 3.7 Hz), 2.46 (dd, 1H, *J* = 16.9, 5.7 Hz), 2.39-2.29 (m, 1H), 2.28-2.11 (m, 1H), 2.17 (dd, 1H, *J* = 19.0, 5.3 Hz), 1.69 (dt, 1H, *J* = 20.0, 6.8 Hz), 1.58 (dd, 1H, *J* = 14.0, 8.0 Hz), 1.29 (s, 3H), 1.25 (s, 3H), 1.24-1.09 (m, 2H), 1.14 (s, 3H), ¹³C NMR (125 MHz, CDCl₃) δ 210.6, 166.2, 133.5, 129.7, 129.2, 128.5, 117.1, 65.9, 41.2, 35.2, 33.4, 33.1, 31.4, 30.5, 30.2, 30.1, 22.2, 19.9; IR (ATR) v = 2962, 2923, 1721, 1681, 1271, 1236, 1091 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₅NO₃ [(M+Na)⁺] 362.1727, found 362.1723.

Compound 2: To a solution of nitrile **9'** (120 mg, 0.354 mmol) in THF (3.5 mL) was added DIBAL-H (1.0 M in THF, 1.1 mL) at -20 °C. The solution was stirred at -20 °C for 25 min. Additional DIBAL-H (1.0 M in THF, 400µL) was then added. After 20 min, the reaction was quenched with MeOH and satd. aq. Rochelle salt, and the mixture was diluted with Et₂O. After 1h, the resulting mixture was extracted with Et₂O three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a mixture of alcohol and diol (crude).

A solution of the above crude mixture in 2 M aq. NaOH (3.5 mL) was heated to 100 °C. After 5 h, the mixture was cooled to room temperature, and neutralized with 1 M aq. HCl. The mixture was extracted with CHCl₃ three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a crude lactone **25** (99 mg).

To a solution of the above crude lactone **25** (99 mg) in benzene (7 mL) was added TsOH·H₂O (13 mg, 0.0683 mmol) at room temperature. The solution was stirred at 100 °C with a Dean-Stark trap for 30 min. The reaction was quenched with satd. aq. NaHCO₃ at room temperature. The resultant mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5-40% EtOAc/hexane) to afford **2** as a colorless oil (38 mg, 49%, 3 steps): ¹H NMR (500 MHz, CDCl₃) δ 5.72 (dd, 1H, *J* = 10.0, 2.6 Hz), 5.57-5.51 (m, 1H), 4.46 (t, 1H, *J* = 8.0 Hz), 4.12 (t, 1H, *J* = 7.9 Hz), 2.55 (dd, 1H, *J* = 17.2, 8.0 Hz), 2.30-2.21 (m, 1H), 2.15 (dd, 1H, *J* = 17.3, 7.6 Hz), 1.85 (dd, 1H, *J* = 18.0, 5.4), 1.53 (d, 1H, *J* = 18.0 Hz), 1.27-1.21 (m, 1H), 1.23 (s, 3H), 1.05 (s, 3H), 0.96 (s, 3H), 0.82-0.73 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 129.3, 123.7, 73.2, 38.3, 37.7, 36.8, 36.1, 32.6, 31.5, 30.7, 27.6, 25.7, 19.5; IR (ATR) v = 2974, 2919, 1469, 1236, 1089, 890 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₄H₂₀O₂Na [(M+Na)⁺] 243.1356, found

243.1365.

Compound 10': To a solution of alkene **2** (38 mg, 0.174 mmol) in acetone-H₂O (20:1, 3.5 mL) was added NMO (24 mg, 0.205 mmol) and OsO₄ (*t*-BuOH solution, 0.0393 M, 443 µL). The reaction mixture was stirred at 50 °C for 8 h. Additional OsO₄ (*t*-BuOH solution, 0.0393 M, 222µL) was added, and the mixture was stirred for 2.5 h. After cooling to room temperature, the reaction was quenched with 10% aq. Na₂S₂O₃. The mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20-90% EtOAc/hexane) to afford **10'** as a colorless oil (27 mg, 63%, dr 14:1): ¹H NMR (500 MHz, CDCl₃) δ 4.49 (dd, 1H, *J* = 8.6, 6.9 Hz), 4.16 (dd, 1H, *J* = 9.0, 5.0 Hz), 3.86 (s, 1H), 3.47 (s, 1H), 2.76 (dd, 1H, *J* = 19.3, 10.2 Hz), 2.38 (d, 1H, *J* = 5.4 Hz), 2.36-2.48 (m, 2H), 2.09 (d, 1H, *J* = 4.9 Hz), 1.72 (dd, 1H, *J* = 14.7, 7.0 Hz), 1.29 (s, 3H), 1.22 (s, 3H), 1.10 (d, 1H, *J* = 16.0 Hz), 0.93 (s, 3H), 0.75 (d, 1H, *J* = 9.5 Hz), 0.68 (t, 1H, *J* = 10.7 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 74.2, 70.0, 68.5, 41.3, 36.1, 35.1, 34.0, 32.7, 32.2, 29.8, 28.6, 24.8, 20.3; IR (ATR) v = 3439, 2977, 2919, 1775, 1469, 1382, 1089, 891 cm⁻¹; HRMS (ESI) *m*/z calcd for C₁₄H₂₂O₄Na [(M+Na)⁺] 277.1410, found 277.1420.

Compound 26: To a solution of diol **10'** (16 mg, 0.0630 mmol) in DMF (1 mL) were added imidazole (11 mg, 0.162 mmol) and TESCl (14 μ L, 0.0995 mmol) at room temperature. The solution was stirred at room temperature for 40 min. The reaction was quenched with satd. aq. NaHCO₃, and the resultant mixture was extracted with ether three times. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15-90% EtOAc/hexane) to afford **26** as a colorless oil (17 mg, 76%) and **10'** (1.1 mg, 7%) was recovered (brsm 82%): ¹H NMR (500 MHz, CDCl₃) δ 4.48 (t, 1H, *J* = 7.9 Hz), 4.13 (dd, 1H, *J* = 8.9, 5.2 Hz), 3.82 (t, 1H, *J* = 3.6 Hz), 3.37 (dd, 1H, *J* = 7.0, 2.7 Hz), 2.72 (dd, 1H, *J* = 17.0, 7.9 Hz), 2.51 (d, 1H, *J* = 7.2 Hz), 2.35-2.28 (m, 2H), 1.65 (dd, 1H, *J* = 15.6, 8.4 Hz), 1.25 (s, 3H), 1.19 (s, 3H), 0.98 (t, 9H, *J* = 7.7 Hz),

1.04-0.93 (m, 1H), 0.89 (s, 3H), 0.70 (d, 1H, J = 9.2 Hz), 0.67-0.59 (m, 7H); ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 74.1, 70.8, 68.6, 41.8, 36.1, 35.0, 33.7, 33.0, 32.3, 29.5, 28.9, 24.8, 21.1; IR (ATR) $\nu = 3537, 2953, 2917, 1779, 1693, 1467, 1379, 1236, 1162, 1089$ cm⁻¹; HRMS (FAB) m/z calcd for C₂₀H₃₆O₄SiNa [(M+Na)⁺] 391.2281, found 391.2287.

Compound 11': To a solution of alcohol **26** (5.6 mg, 0.0152 mmol) in THF (1 mL) was added HCO_2Me (17 µL, 0.152 mmol) at room temperature. After cooling to -78 °C, KOtBu (1.0 M in THF, 17 µL, 0.017 mmol) was added. The solution was stirred at room temperature for 15 min. The reaction was quenched with satd. aq. NH₄Cl, and the mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford a crude formylated product (5.3 mg) as a colorless oil.

To a solution of the above crude product (5.3 mg) in NMP (500 μ L) were added K₂CO₃ (6.1 mg, 0.0499 mmol) and a solution of 5-Bromo-3-methyl-2(5H)-furanone (8.5 mg, 0.0480 mmol) in NMP (200 µL) at room temperature. The solution was stirred at room temperature for 15 h. The reaction was quenched with satd. aq. NH_4Cl , and the resultant mixture was extracted with ether six times. The combined organic layers were washed with water twice and brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15-35% EtOAc/hexane) to afford 11' as a colorless oil (4.3 mg, 57%, dr 1:1) and **26** (2.0 mg, 36%) was recovered: ¹H NMR (500 MHz, C_6D_6) δ 7.53 (s, 1H), 7.51 (s, 1H), 6.41 (s, 1H), 6.09 (s, 1H), 5.37 (s, 1H), 5.20 (s, 1H), 3.94 (t, 1H, J = 8.3 Hz), 3.88 (t, 1H, J = 8.3 Hz), 3.78 (dd, J = 8.6, 3.4 Hz), 3.75-3.71 (m, 2H), 3.67 (t, 1H, J = 2.6 Hz), 3.59 (dd, 1H, J = 8.3, 3.2 Hz),3.51 (dd, 1H, J = 9.2 Hz, 2.9 Hz), 2.35 (s, 2H), 2.20 (d, 1H, J = 8.6 Hz), 2.12 (d, 1H, J = 9.2 Hz), 1.58 (m, 2H), 1.52 (s, 5H), 1.48-1.41 (m, 3H), 1.19 (s, 6H), 1.24-1.17 (m, 1H), 1,14 (s, 3H), 1.10 (s, 3H), 1.01-0.92 (m, 18H), 0.63-0.43 (m, 17H), 0.35 (t, 1H, J = 10.6 Hz), 0.27 (d, 2H, J = 11.5 Hz), 0.22 (m, 2H); ¹³C NMR (125 MHz, C₆D₆) δ 171.3, 170.6, 170.0, 170.0, 150.8, 142.0, 141.3, 140.5, 135.5, 134.7, 133.9, 100.9, 100.7, 98.3, 98.3, 72.4, 72.2, 71.9, 71.8, 68.2, 42.8, 42.5, 36.2, 33.8, 33.8, 33.7, 33.3, 32.9, 32.9, 31.9, 30.8, 30.5, 28.6, 28.5, 27.8, 25.2, 24.9, 21.5, 21.1, 10.3, 10.3, 10.2, 7.1, 7.1, 5.3; IR (ATR) v = 3546, 3094, 2953, 2875, 1777, 1677 cm⁻¹; HRMS (FAB) m/z calcd for

 $C_{26}H_{40}O_7SiNa [(M+Na)^+] 515.2441$, found 515.2444.

Compound 28 and C2' epi-28: To a solution of alcohol 11' (4.2 mg, 8.53 µmol) in CH₂Cl₂-pyridine $(8:1, 900 \,\mu\text{L})$ was added DMP (4.5 mg, 0.0106 mmol) at room temperature. The solution was stirred for 1h. The reaction was quenched with satd. aq. NaHCO₃ and 10% aq. Na₂S₂O₃, and the resultant mixture was extracted with EtOAc three times. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20-30% EtOAc/hexane) to afford 28 (1.6 mg, 39%) and C2' epi-28 (1.5 mg, 36%) as a colorless oil: ¹H NMR (500 MHz, C_6D_6) δ 7.34 (s, 1H), 6.10 (s, 1H), 5.13 (s, 1H), 3.83 (t, 1H, J = 8.7 Hz), 3.66 (dd, 1H, J = 7.6, 2.4 Hz), 3.58 (dd, 1H, J = 8.6, 5.2 Hz), 2.59 (s,1H), 1.63 (s, 3H), 1.59-1.47 (m, 2H), 1.11 (t, 9H), 1.03 (s, 3H), 0.99-0.88 (m, 1H), 0.97 (s, 3H), 0.84-0.69 (m, 6H), 0.61 (s, 3H), 0.63-0.54 (m, 2H); ¹³C NMR (125 MHz, C₆D₆) δ 207.2, 170.3, 170.0, 151.6, 142.0, 140.6, 135.4, 110.8, 100.4, 98.3, 71.2, 71.0, 46.1, 43.4, 39.0, 34.8, 33.7, 31.5, 29.9, 29.6. 22.3, 10.4, 10.2, 7.3, 5.6; IR (ATR) v = 2956, 3873, 1779, 1688, 1456, 1373, 1186, 1011 cm⁻¹; HRMS (FAB) m/z calcd for C₂₆H₃₈O₇SiNa [(M+Na)⁺] 513.2285, found 513.2288; C2' epi-**28**: ¹H NMR (500 MHz, C_6D_6) δ 7.36 (s, 1H), 6.39 (s, 1H), 5.02 (s, 1H), 3.79 (t, 1H, J = 8.6Hz), 3.66 (dd, 1H, J = 8.7, 3.9 Hz), 3.60 (dd, 1H, J = 7.0, 2.1 Hz), 2.53 (s, 1H), 1.65 (s, 3H), 1.59-1.45 (m, 3H), 1.12-1.04 (m, 9H), 1.00 (s, 3H), 0.78-0.55 (m, 7H), 0.64 (s, 3H), 0.41 (s, 3H) ¹³C NMR (100 MHz, C₆D₆) δ 207.2, 170.1, 169.8, 151.9, 141.2, 134.7, 110.9, 100.5,71.3, 70.8, 46.0, 43.5, 39.8, 34.4, 33.7, 31.4, 29.9, 29.7, 22.8, 10.4, 7.2, 5.5; IR (ATR) v = 2974, 2919, 2022, 1782, 1747, 1688, 1236, 1089 cm⁻¹; HRMS (FAB) m/z calcd for C₂₆H₃₈O₇SiNa [(M+Na)⁺] 513.2285, found 513.2270.

Compound 1: To a solution of ketone **28** (1.9 mg, 3.88 µmol) in THF (400 µL) was added HF pyridine-pyridine-THF solution (1:3:16, 25 µL) at room temperature. The solution was stirred at 50 °C for 45 min. An additional HF pyridine-pyridine-THF (1:3:16, 50 µL) was then added. After 1 h, the mixture was cooled to 0 °C. The reaction was quenched with satd. aq. NaHCO₃, and the resultant mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (45-65% EtOAc/hexane) to afford avenaol (1) as a colorless oil (1.3 mg, 97%): ¹H NMR (500 MHz, C₆D₆) δ 7.30 (s, 1H), 5.77 (s, 1H), 4.90 (s, 1H), 3.89 (s, 1H), 3.78 (s, 1H), 3.78 (t, 1H, *J* = 8.6 Hz), 3.62 (t, 1H, *J* = 6.4 Hz), 3.53 (dd, 1H, *J* = 8.4, 3.9 Hz), 2.66 (t, 1H, *J* = 9.3 Hz), 1.66 (s, 3H), 1.60 (d. 2H, *J* = 6.6 Hz), 1.01 (s, 3H), 0.75 (s, 3H), 0.68-0.58 (m, 2H); ¹³C NMR (125 MHz, C₆D₆) δ 210.4, 169.9, 169.7, 151.9, 139.4, 135.5, 110.4, 100.3, 70.8, 69.9, 46.3, 46.2, 40.1, 33.8, 33.4, 31.7, 29.6, 28.6, 21.3, 10.2 ; IR (ATR) v = 3461, 2959, 2855, 1780, 1751, 1682, 1341, 1186 cm⁻¹; HRMS (FAB) *m*/*z* calcd for C₂₀H₂₄O₇Na [(M+Na)⁺] 399.1420, found 399.1423.

Compound C2' epi-1: To a solution of ketone **C2'-epi-28** (5.3 mg, 10.8 μ mol) in THF (500 μ L) was HF · pyridine-pyridine-THF solution (1:3:16, 76 μ L) at room temperature. The solution was stirred at 50 °C for 45 min. An additional HF · pyridine-pyridine-THF (1:3:16, 25 μ L) was then added.. After 1 h, the mixture was cooled to 0 °C. The reaction was quenched with satd. aq. NaHCO₃, and the resultant solution was extracted with EtOAc three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (45-65% EtOAc/hexane) to afford **C2' epi-1** as a

colorless oil (0.6 mg, 11%). For X-ray crystallography, C2' epi-1 was recrystallized from ethyl acetate: ¹H NMR (500 MHz, C₆D₆) δ 7.27 (d, J = 1.7 Hz), 6.17 (s, 1H), 4.89 (s, 1H), 3.75 (s, 1H), 3.71 (t, 1H, J = 8.6 Hz), 3.62 (t, 1H, J = 6.9 Hz), 3.56 (dd, 1H, J = 8.9, 3.2 Hz), 2.56 (t, 1H, J = 9.7 Hz), 1.55 (d, 2H, J = 6.9 Hz), 1.53 (s, 3H), 1.09 (s, 3H), 0.78 (s, 3H), 0.76-0.68 (m, 2H), 0.49 (s, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 211.4, 170.2, 170.0, 152.0, 140.9, 135.0, 110.4, 100.6, 71.4, 70.3, 46.8, 46.8, 41.1, 34.0, 33.6, 32.4, 30.3, 29.9, 28.8, 22.1, 10.4 ; IR (ATR) v = 3473, 2961, 2922, 2026, 1781, 1752, 1088, 890 cm⁻¹; HRMS (FAB) *m*/*z* calcd for C₂₀H₂₄O₇Na [(M+Na)⁺] 399.1420, found 399.1433.

Experimental details of X-ray crystallography of C2'-epi avenaol

A. Crystal Data

Empirical Formula C20H24O7

Formula Weight 376.41

Crystal Color, Habit colorless, nONE

Crystal Dimensionsnot described

Crystal System monoclinic

Lattice Type Primitive

No. of Reflections Used for Unit Cell Determination (2q range)

5633 (8.6 - 145.00)

Omega Scan Peak Width at Half-height 0.000

```
Lattice Parameters a = -7.8120(3) Å
b = 19.6845(5) \text{ Å}
c = 12.1028(3) \text{ Å}
b = 99.228(3) o
V = 1837.03(10) Å3
```

Space Group P21/c (#14)

Z value 4

1.361 g/cm3 Dcalc

F000 800.00

m(CuKa) 8.608 cm-1

B. Intensity Measurements

Diffractometer

Radiation CuKa (l = 1.54187 Å) graphite monochromated

Take-off Angle 2.80

Detector Aperture 2.0 - 2.5 mm horizontal 2.0 mm vertical

Crystal to Detector Distance 21 mm

Temperature 23.0oC

Scan Type w-2q

Scan Rate 0.00/min (in w) (up to 0 scans)

Scan Width $(0.00 + 0.00 \tan q)o$

2qmax 146.60

No. of Reflections Measured Total: 17343 Unique: 3478 (Rint = 0.0641)

Corrections Lorentz-polarization Absorption (trans. factors: 0.598 - 1.000)

C. Structure Solution and Refinement

Structure Solution Direct Methods (SIR2011)

- Refinement Full-matrix least-squares on F2
- Function Minimized S w (Fo2 Fc2)2
- Least Squares Weights $w = 1/[s2(Fo2) + (0.0596 \cdot P)2 + 1.1269 \cdot P]$ where P = (Max(Fo2,0) + 2Fc2)/3
- 2qmax cutoff 146.60
- Anomalous Dispersion All non-hydrogen atoms
- No. Observations (All reflections) 3478
- No. Variables 244
- Reflection/Parameter Ratio 14.25
- Residuals: R1 (I>2.00s(I)) 0.0507
- Residuals: R (All reflections) 0.0718
- Residuals: wR2 (All reflections) 0.1494
- Goodness of Fit Indicator 1.083
- Max Shift/Error in Final Cycle 0.000
- Maximum peak in Final Diff. Map 0.24 e-/Å3
- Minimum peak in Final Diff. Map -0.23 e-/Å3

Table 1. Atomic coordinates and Biso/Beq

atom	х у	z Beq		
01	0.7595(2)	0.07108(8)	0.70816(12)	2.71(3)
02	0.8045(2)	-0.02489(8)	0.81978(12)	2.72(3)
03	0.6906(3)	-0.07375(9)	0.95861(14)	3.37(4)
04	0.2222(2)	0.12131(9)	0.81549(14)	3.32(4)
05	0.5332(2)	0.17897(10)	0.85148(14)	3.33(4)
06	0.5744(3)	0.07304(9)	0.32591(13)	3.33(4)
07	0.8317(3)	0.02342(10)	0.37385(14)	3.84(4)
C1	0.6782(3)	0.07141(11)	0.51435(18)	2.49(4)
C2	0.7537(3)	-0.02432(12)	0.92304(18)	2.59(4)
C3	0.3115(3)	0.12711(13)	0.72281(19)	2.71(4)
C4	0.8622(4)	0.08039(13)	0.90263(19)	2.78(4)
C5	0.8712(3)	0.04072(12)	0.79916(18)	2.61(4)
C6	0.7896(4)	0.05303(12)	0.60421(18)	2.63(4)
C7	0.4703(3)	0.17257(12)	0.75281(19)	2.61(4)
C8	0.7099(4)	0.05289(12)	0.40210(19)	2.95(5)
C9	0.7914(3)	0.04331(12)	0.97463(18)	2.62(4)
C10	0.5351(3)	0.18227(12)	0.54564(19)	2.59(4)
C11	0.5405(3)	0.21045(12)	0.6641(2)	2.55(4)
C12	0.1821(4)	0.14986(13)	0.6212(2)	2.94(5)
C13	0.2124(3)	0.22044(13)	0.5746(2)	2.77(5)
C14	0.7499(4)	0.06013(14)	1.0873(2)	3.29(5)
C15	0.4020(3)	0.23351(12)	0.5669(2)	2.69(4)
C16	0.5102(3)	0.10935(12)	0.50556(18)	2.52(4)
C17	0.4459(4)	0.10740(14)	0.37896(19)	3.06(5)
C18	0.1019(4)	0.22780(15)	0.4597(2)	3.57(5)
C19	0.1599(4)	0.27491(14)	0.6536(2)	3.38(5)
C20	0.6882(4)	0.25732(14)	0.7077(2)	3.38(5)

 $Beq = \frac{8}{3} p2(U11(aa^*)2 + U22(bb^*)2 + U33(cc^*)2 + 2U12(aa^*bb^*)\cos g + 2U13(aa^*cc^*)\cos b + 2U23(bb^*cc^*)\cos a)$

Table 2. Atomic coordinates and Biso involving hydrogen atoms

atom	Х	У	Z	Biso
H4	0.29158	0.11260	0.87200	3.983
Н3	0.35254	0.08170	0.70669	3.252
H4A	0.90071	0.12487	0.91498	3.337
Н5	0.99050	0.03779	0.78400	3.127
H6	0.88769	0.02794	0.59620	3.156
H10	0.62431	0.20430	0.50969	3.112
H12A	0.06684	0.14898	0.64138	3.533
H12B	0.18390	0.11686	0.56189	3.533
H14A	0.76715	0.02067	1.13437	3.945
H14B	0.63126	0.07453	1.08022	3.945
H14C	0.82456	0.09603	1.11992	3.945
H15	0.42329	0.27902	0.53922	3.225
H16	0.42923	0.08548	0.54608	3.026
H17A	0.33616	0.08340	0.36353	3.669
H17B	0.42846	0.15325	0.34999	3.669
H18A	0.13346	0.19328	0.41070	4.284
H18B	0.12088	0.27179	0.42964	4.284
H18C	-0.01830	0.22299	0.46637	4.284
H19A	0.21889	0.26673	0.72833	4.058
H19B	0.03686	0.27308	0.65273	4.058
H19C	0.19109	0.31898	0.62931	4.058
H20A	0.71869	0.28370	0.64705	4.058
H20B	0.78656	0.23101	0.74103	4.058
H20C	0.65364	0.28714	0.76290	4.058

Table 3. Anisotropic displacement parameters

atom	U11	U22	U33	U12	U13	U23		
01	0.0405(11	1)	0.0397(9	0.0237(7)	0.0026(8))	0.0083(7))
	0.0012(6)						
02	0.0438(11	l)	0.0329(9)0.0278(8)	-0.0025(8)	0.0098(7))
	-0.0005(5)						
O3	0.0497(13	3)	0.0406(1	0)	0.0392(9)	-0.0082(8)	0.0115(8)
	0.0064(8)						
O4	0.0430(12	2)	0.0544(1	1)	0.0320(8)	-0.0051(9)	0.0161(8)
	0.0084(8)						
05	0.0408(12	2)	0.0547(1	1)	0.0312(8)	0.0007(9)	0.0066(8)
	-0.0069(8)						
O6	0.0525(13	3)	0.0476(1	1)	0.0272(8)	0.0107(9)	0.0091(8)
	-0.0001(7)						
07	0.0606(14	4)	0.0520(1	2)	0.0359(9)	0.0183(1	0)	0.0152(9)
	-0.0008(8	5)						
C1	0.0422(16	5)	0.0269(1	1)	0.0267(11)	-0.0009(1	10)
	0.0095(1	0)	0.0005(8)				
C2	0.0350(15	5)	0.0366(1	3)	0.0273(11)	-0.0009(1	1)
	0.0069(1	0)	0.0034(9)				
C3	0.0369(15	5)	0.0379(1	3)	0.0310(11)	-0.0060(1	1)
	0.0140(1	0)	0.0038(10)				
C4	0.0382(16	5)	0.0355(1	3)	0.0314(11)	-0.0039(1	1)
	0.0036(1	0)	-0.0016(9)				
C5	0.0321(15	5)	0.0360(1	3)	0.0312(11)	-0.0044(1	0)
	0.0057(1	0)	0.0051(9	9)				
C6	0.0455(16	5)	0.0295(1	2)	0.0270(11)	0.0004(1	1)
	0.0124(1	0)	0.0001(9	9)				
C7	0.0328(15	5)	0.0349(1	3)	0.0335(11)	0.0055(1	0)
	0.0109(1	0)	-0.0028(9)				
C8	0.0511(18	3)	0.0337(1	3)	0.0287(11)	0.0061(12	2)
	0.0104(1	1)	0.0015(9)				
C9	0.0343(15	5)	0.0361(1	3)	0.0291(11)	0.0028(1	0)
	0.0053(1	0)	-0.0006	(9)				

C10	0.0331(15)	0.0330(12)	0.0354(12)	-0.0030(10)
	0.0143(10)	0.0030(9)		
C11	0.0293(14)	0.0313(12)	0.0385(12)	-0.0041(10)
	0.0118(10)	-0.0040(10)		
C12	0.0352(16)	0.0433(14)	0.0353(12)	-0.0082(11)
	0.0117(11)	0.0042(10)		
C13	0.0319(15)	0.0385(14)	0.0367(12)	-0.0004(11)
	0.0115(11)	0.0048(10)		
C14	0.0501(18)	0.0455(15)	0.0306(12)	0.0068(13)
	0.0102(11)	-0.0010(10)		
C15	0.0340(15)	0.0322(12)	0.0391(12)	-0.0015(10)
	0.0153(11)	0.0039(10)		
C16	0.0388(15)	0.0310(12)	0.0280(11)	-0.0037(10)
	0.0114(10)	0.0012(9)		
C17	0.0430(17)	0.0425(14)	0.0323(12)	0.0018(12)
	0.0109(11)	-0.0006(10)		
C18	0.0406(17)	0.0560(17)	0.0404(14)	0.0016(13)
	0.0102(12)	0.0110(12)		
C19	0.0372(16)	0.0451(15)	0.0496(14)	0.0047(12)
	0.0174(12)	0.0027(12)		
C20	0.0354(16)	0.0401(14)	0.0561(16)	-0.0046(12)
	0.0167(13)	-0.0126(12)		

The general temperature factor expression: exp(-2p2(a*2U11h2 + b*2U22k2 + c*2U33l2 + 2a*b*U12hk + 2a*c*U13hl + 2b*c*U23kl))

Table 4. Bond lengths (Å)	

atom	atom	distance	atom	atom	distance
01	C5	1.423(3)	01	C6	1.363(3)
O2	C2	1.371(3)	02	C5	1.430(3)
03	C2	1.201(3)	O4	C3	1.417(3)
05	C7	1.223(3)	O6	C8	1.347(3)
O6	C17	1.444(3)	07	C8	1.210(4)
C1	C6	1.329(3)	C1	C8	1.465(3)
C1	C16	1.499(4)	C2	C9	1.480(3)
C3	C7	1.526(4)	C3	C12	1.528(3)
C4	C5	1.487(3)	C4	С9	1.324(4)
C7	C11	1.483(4)	C9	C14	1.489(4)
C10	C11	1.531(3)	C10	C15	1.500(4)
C10	C16	1.518(3)	C11	C15	1.533(3)
C11	C20	1.505(4)	C12	C13	1.532(4)
C13	C15	1.521(4)	C13	C18	1.521(3)
C13	C19	1.536(4)	C16	C17	1.534(3)

atom	atom	distance	atom	atom	distance
O4	H4	0.820	C3	H3	0.980
C4	H4A	0.930	C5	H5	0.980
C6	H6	0.930	C10	H10	0.980
C12	H12A	0.970	C12	H12B	0.970
C14	H14A	0.960	C14	H14B	0.960
C14	H14C	0.960	C15	H15	0.980
C16	H16	0.980	C17	H17A	0.970
C17	H17B	0.970	C18	H18A	0.960
C18	H18B	0.960	C18	H18C	0.960
C19	H19A	0.960	C19	H19B	0.960
C19	H19C	0.960	C20	H20A	0.960
C20	H20B	0.960	C20	H20C	0.960

Table 5. Bond lengths involving hydrogens (\AA)

Tab	le 6.	Bond	angle	es (0)	
-----	-------	------	-------	------	----	--

atom	atom	atom	angle	atom	atom	atom	angle	
C5	O1	C6	115.45(19)		C2	02	C5	
	108.59((17)						
C8	O6	C17	111.07(18)		C6	C1	C8 120).4(2)
C6	C1	C16	130.1(2)	C8	C1	C16	109.51(19)	
02	C2	O3	121.0(2)	02	C2	C9	109.0(2)	
03	C2	C9	130.0(2)	O4	C3	C7	110.10(19)	
O4	C3	C12	108.3(2)	C7	C3	C12	115.3(2)	
C5	C4	С9	110.2(2)	O1	C5	02	108.61(18)	
01	C5	C4	109.0(2)	O2	C5	C4	105.05(19)	
01	C6	C1	119.8(2)	05	C7	C3	118.5(2)	
05	C7	C11	121.2(2)	C3	C7	C11	120.24(19)	
O6	C8	07	121.0(2)	O6	C8	C1	109.3(2)	
O7	C8	C1	129.7(2)	C2	С9	C4	107.1(2)	
C2	C9	C14	121.9(2)	C4	С9	C14	131.0(2)	
C11	C10	C15	60.75(16)	C11	C10	C16	128.7(2)	
C15	C10	C16	129.3(2)	C7	C11	C10	122.5(2)	
C7	C11	C15	114.0(2)	C7	C11	C20	113.9(2)	
C10	C11	C15	58.61(16)	C10	C11	C20	117.1(2)	
C15	C11	C20	119.6(2)	C3	C12	C13	116.1(2)	
C12	C13	C15	112.7(2)	C12	C13	C18	108.9(2)	
C12	C13	C19	109.3(2)	C15	C13	C18	110.1(2)	
C15	C13	C19	106.3(2)	C18	C13	C19	109.5(2)	
C10	C15	C11	60.63(16)	C10	C15	C13	127.2(2)	
C11	C15	C13	118.5(2)	C1	C16	C10	112.5(2)	
C1	C16	C17	101.6(2)	C10	C16	C17	110.33(19)	
06	C17	C16	108.4(2)					

atom	atom	atom	angle	atom	atom	atom	angle
C3	O4	H4	109.5	O4	C3	Н3	107.6
C7	C3	Н3	107.6	C12	C3	Н3	107.6
C5	C4	H4A	124.9	C9	C4	H4A	124.9
01	C5	Н5	111.3	O2	C5	Н5	111.3
C4	C5	Н5	111.3	01	C6	H6	120.1
C1	C6	Н6	120.1	C11	C10	H10	109.9
C15	C10	H10	109.9	C16	C10	H10	109.9
C3	C12	H12A	108.2	C3	C12	H12B	108.2
C13	C12	H12A	108.3	C13	C12	H12B	108.3
H12A	C12	H12B	107.4	C9	C14	H14A	109.5
C9	C14	H14B	109.5	C9	C14	H14C	109.5
H14A	C14	H14B	109.5	H14A	C14	H14C	109.5
H14B	C14	H14C	109.5	C10	C15	H15	113.3
C11	C15	H15	113.3	C13	C15	H15	113.3
C1	C16	H16	110.7	C10	C16	H16	110.7
C17	C16	H16	110.7	06	C17	H17A	110.0
O6	C17	H17B	110.0	C16	C17	H17A	110.0
C16	C17	H17B	110.0	H17A	C17	H17B	108.4
C13	C18	H18A	109.5	C13	C18	H18B	109.5
C13	C18	H18C	109.5	H18A	C18	H18B	109.5
H18A	C18	H18C	109.5	H18B	C18	H18C	109.5
C13	C19	H19A	109.5	C13	C19	H19B	109.5
C13	C19	H19C	109.5	H19A	C19	H19B	109.5
H19A	C19	H19C	109.5	H19B	C19	H19C	109.5
C11	C20	H20A	109.5	C11	C20	H20B	109.5
C11	C20	H20C	109.5	H20A	C20	H20B	109.5
H20A	C20	H20C	109.5	H20B	C20	H20C	109.5

Table 7. Bond angles involving hydrogens (o)

Table 8. Torsion Angles(o)

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4
	angle							
C5	01	C6	C1	171.04(19)		C6	01	C5
	O2	-84.0(2))					
C6	O1	C5	C4	162.10(18)		C2	O2	C5
	01	-114.28	(18)					
C2	02	C5	C4	2.2(2)	C5	02	C2	O3
	178.9(2))						
C5	O2	C2	C9	-1.4(2)	C8	O6	C17	C16
	0.4(3)							
C17	O6	C8	07	-179.6(2)		C17	O6	C8
	C1	1.4(3)						
C6	C1	C8	O6	175.9(2)	C6	C1	C8	O7
	-2.9(4)							
C8	C1	C6	01	179.4(2)	C6	C1	C16	C10
	66.3(3)							
C6	C1	C16	C17	-175.7(2)		C16	C1	C6
	01	-2.3(4)						
C8	C1	C16	C10	-115.27(19)		C8	C1	C16
	C17	2.7(2)						
C16	C1	C8	O6	-2.7(3)	C16	C1	C8	07
	178.5(2))						
02	C2	C9	C4	-0.1(3)	O2	C2	C9	C14
	179.61(18)						
03	C2	C9	C4	179.6(2)	O3	C2	C9	C14
	-0.8(4)							
04	C3	C7	O5	23.5(3)	O4	C3	C7	C11
	-153.59	(18)						
04	C3	C12	C13	114.3(2)	C7	C3	C12	C13
	-9.6(3)							
C12	C3	C7	05	146.4(2)	C12	C3	C7	C11
	-30.7(3)	1						
C5	C4	С9	C2	1.5(3)	C5	C4	С9	C14
------	-----------	-----------------	-------------	-----------	-----------	------------	-------------	-------------
	-178.2(2)							
C9	C4	C5	01	113.9(2)	С9	C4	C5	O2
	-2.3(3)							
05	C7	C11	C10	149.2(2)	05	C7	C11	C15
	-143.9(2)							
05	C7	C11	C20	-1.7(3)	C3	C7	C11	C10
	-33.8(3)	G11	C1		G2	~	G11	
C3	C/	CII	C15	33.1(3)	C3	C/	СП	C20
C11	1/5.34(1)	9) C15	C11	0.00(11)	C11	C10	C15	C12
CII	105 1(2)	CIS	CII	0.00(11)	CII	C10	C15	C13
C15	-105.1(2)	C11	C7	100.2(2)	C15	C10	C11	C15
015	-0.00(11)		07	100.2(2)	015	010	CII	015
C15	C10	C11	C20	-109.8(2)		C11	C10	C16
	C1	-88.6(3)						
C11	C10	C16	C17	158.7(2)	C16	C10	C11	C7
	-18.7(4)							
C16	C10	C11	C15	-118.8(3)		C16	C10	C11
	C20	131.4(2)						
C15	C10	C16	C1	-169.8(2)		C15	C10	C16
	C17	77.5(3)						
C16	C10	C15	C11	117.8(3)	C16	C10	C15	C13
	12.7(4)							
C7	C11	C15	C10	-114.7(2)		C7	C11	C15
G1.0	C13	4.3(3)	C1 0	0.00(11)		G10	C 11	a 1.
C10	CII	CI5	C10	-0.00(11)		C10	CII	C15
C20	C13	119.0(2) C15	C10	105 4(2)	C20	C11	C15	C12
C20	-135 6(2)	015	CIU	103.4(2)	C20	CII	CIS	CIS
C3	C12	C13	C15	44 0(3)	C3	C12	C13	C18
	166.4(2)	010	010	(2)		012	010	010
C3	C12	C13	C19	-73.9(3)	C12	C13	C15	C10
	31.3(3)							
C12	C13	C15	C11	-41.9(3)	C18	C13	C15	C10
	-90.5(3)							

C18	C13	C15	C11	-163.74(19)		C19	C13	C15
	C10	151.0(2)						
C19	C13	C15	C11	77.8(2)	C1	C16	C17	06
	-1.9(2)							
C10	C16	C17	06	117.6(2)				

Table 9. Possible hydrogen bonds

Donor	Н	Acceptor DA	D-H	HA	D-HA	
O4	H4	$O3^1$	2.867(2)	0.82	2.17	142.65
O4	H4	O5	2.654(3)	0.82	2.34	103.38 intramol.

Symmetry Operators:

(1) -X+1,-Y,-Z+2

atom	atom	distance	atom	atom	distance
01	05	3.410(3)	01	C2	3.214(3)
01	C7	3.127(3)	01	C9	3.241(3)
01	C10	3.260(3)	01	C11	3.232(3)
01	C16	2.973(3)	02	C6	3.013(3)
03	C4	3.428(3)	03	C5	3.416(3)
03	C14	3.058(3)	O4	05	2.654(3)
O4	C13	3.499(3)	O4	C19	3.593(3)
05	C4	3.201(3)	05	C9	3.530(3)
05	C15	3.596(3)	05	C20	2.747(3)
O6	C6	3.537(3)	O6	C10	3.472(3)
07	C6	2.918(3)	07	C17	3.447(4)
C1	C5	3.585(3)	C1	C11	3.544(3)
C3	C10	3.167(4)	C3	C15	2.979(4)
C3	C16	3.279(4)	C3	C19	3.201(4)
C6	C10	3.236(3)	C7	C13	2.865(3)
C7	C16	3.301(3)	C7	C19	3.232(4)
C8	C10	3.483(4)	C10	C12	3.108(4)
C10	C18	3.494(4)	C11	C12	3.011(4)
C11	C19	3.217(4)	C12	C16	3.212(4)
C13	C16	3.393(4)	C15	C17	3.421(4)

Table 10. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance
O1	H3	3.183	O1	H4A	2.778
O1	H10	3.598	O1	H16	2.993
01	H20B	3.176	02	H4A	3.210
02	H6	3.064	O3	H14A	2.816
03	H14B	3.335	O4	H12A	2.321
O4	H12B	3.037	O4	H19A	3.049
05	H4	2.341	05	H3	2.817
05	H4A	3.043	05	H14B	3.435
05	H19A	3.172	05	H20B	2.757
05	H20C	2.625	O6	H10	3.391
06	H16	3.069	07	H6	2.658
C1	H10	2.649	C1	H17A	2.994
C1	H17B	3.019	C2	H4A	3.161
C2	H5	2.958	C2	H14A	2.693
C2	H14B	2.984	C2	H14C	3.343
C3	H16	2.593	C3	H19A	2.845
C4	H14A	3.235	C4	H14B	3.022
C4	H14C	2.710	C4	H20B	3.549
C5	H6	2.493	C6	Н5	2.489
C6	H10	3.372	C6	H16	2.862
C7	H4	2.464	C7	H10	3.410
C7	H12A	3.257	C7	H12B	3.145
C7	H15	3.302	C7	H16	3.007
C7	H19A	2.682	C7	H20A	3.314
C7	H20B	2.749	C7	H20C	2.664
C8	H6	2.577	C8	H10	3.362
C8	H16	3.079	C8	H17A	2.943
C8	H17B	2.948	C9	Н5	2.984
C10	H3	3.262	C10	H12B	3.065
C10	H17A	3.156	C10	H17B	2.448
C10	H18A	3.304	C10	H20A	2.643
C10	H20B	2.980	C10	H20C	3.354

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens

C11	H3	3.015	C11	H12B	3.403
C11	H16	2.907	C11	H19A	2.962
C11	H19C	3.439	C12	H4	3.106
C12	H15	3.406	C12	H16	2.593
C12	H18A	2.656	C12	H18B	3.318

atom	atom	distance	atom	atom	distance
C12	H18C	2.663	C12	H19A	2.634
C12	H19B	2.730	C12	H19C	3.331
C13	H3	3.264	C13	H10	3.447
C13	H16	3.199	C14	H4A	2.855
C15	H3	3.486	C15	H12A	3.346
C15	H12B	2.854	C15	H16	2.935
C15	H17B	3.099	C15	H18A	2.708
C15	H18B	2.642	C15	H18C	3.320
C15	H19A	2.681	C15	H19B	3.282
C15	H19C	2.552	C15	H20A	2.696
C15	H20B	3.382	C15	H20C	3.018
C16	Н3	2.949	C16	H6	3.381
C16	H12B	2.746	C16	H15	3.445
C16	H18A	3.409	C17	H10	2.716
C17	H12B	3.252	C17	H18A	3.043
C18	H12A	2.740	C18	H12B	2.540
C18	H15	2.733	C18	H17B	3.393
C18	H19A	3.322	C18	H19B	2.625
C18	H19C	2.731	C19	H12A	2.581
C19	H12B	3.319	C19	H15	2.659
C19	H18A	3.328	C19	H18B	2.680
C19	H18C	2.666	C20	H10	2.588
C20	H15	2.697	H4	H3	2.215
H4	H12A	3.133	H4	H14B	3.436
H4	H19A	3.498	H3	H12A	2.607
H3	H12B	2.132	H3	H16	2.125
H4A	H5	2.510	H4A	H14B	3.281
H4A	H14C	2.702	H4A	H20B	2.998
Н5	H6	2.294	H10	H15	2.222
H10	H16	2.864	H10	H17A	3.547
H10	H17B	2.477	H10	H20A	2.315
H10	H20B	2.930	H10	H20C	3.446

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

H12A	H16	3.458	H12A	H18A	3.048
H12A	H18B	3.597	H12A	H18C	2.569
H12A	H19A	2.737	H12A	H19B	2.460
H12A	H19C	3.494	H12B	H16	2.052
H12B	H17A	2.920	H12B	H17B	3.509

atom	atom	distance	atom	atom	distance
H12B	H18A	2.353	H12B	H18B	3.443
H12B	H18C	2.759	H12B	H19A	3.558
H12B	H19B	3.520	H15	H17B	3.377
H15	H18A	3.044	H15	H18B	2.521
H15	H18C	3.594	H15	H19A	3.003
H15	H19B	3.513	H15	H19C	2.394
H15	H20A	2.464	H15	H20B	3.562
H15	H20C	3.005	H16	H17A	2.213
H16	H17B	2.722	H16	H18A	3.363
H17A	H18A	2.793	H17B	H18A	2.649
H17B	H18B	3.590	H18A	H19B	3.511
H18A	H19C	3.598	H18B	H19A	3.574
H18B	H19B	2.879	H18B	H19C	2.565
H18C	H19A	3.513	H18C	H19B	2.436
H18C	H19C	3.017	H19A	H20C	3.379

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
02	O6 ¹	3.331(2)	02	C14 ²	3.551(3)
O2	C17 ¹	3.277(3)	O3	O4 ³	2.867(2)
03	C14 ³	3.407(4)	O3	C19 ⁴	3.549(3)
O4	O3 ³	2.867(2)	O4	C4 ⁵	3.259(3)
O4	C5 ⁵	3.146(3)	05	C15 ⁶	3.417(3)
O6	$O2^1$	3.331(2)	06	C14 ⁷	3.399(3)
07	C3 ¹	3.313(3)	07	C5 ⁸	3.595(3)
07	C6 ⁸	3.292(3)	07	C12 ¹	3.413(3)
07	C14 ⁷	3.500(3)	C2	$C4^2$	3.556(3)
C2	C9 ²	3.590(4)	C3	$O7^1$	3.313(3)
C4	O4 ⁹	3.259(3)	C4	$C2^2$	3.556(3)
C5	O4 ⁹	3.146(3)	C5	O7 ⁸	3.595(3)
C6	O7 ⁸	3.292(3)	C6	C12 ⁹	3.588(4)
C9	$C2^2$	3.590(4)	C12	$O7^1$	3.413(3)
C12	C6 ⁵	3.588(4)	C14	$O2^2$	3.551(3)
C14	O3 ³	3.407(4)	C14	O6 ¹⁰	3.399(3)
C14	O7 ¹⁰	3.500(3)	C15	O5 ¹¹	3.417(3)
C17	$O2^1$	3.277(3)	C19	O3 ¹²	3.549(3)

Table 12. Intermolecular contacts less than 3.60 Å

Symmetry Operators:

(1)	-X+1,-Y,-Z+1	(2)	-X+2,-Y,-Z+2
(3)	-X+1,-Y,-Z+2	(4)	-X+1,Y+1/2-1,-Z+1/2+1
(5)	X-1,Y,Z	(6)	X,-Y+1,Z+1
(7)	X,Y,Z-1	(8)	-X+2,-Y,-Z+1
(9)	X+1,Y,Z	(10)	X,Y,Z+1
(11)	X,-Y+1,Z	(12)	-X+1,Y+1/2,-Z+1/2+1

atom	atom	distance	atom	atom	distance
01	$H12A^1$	3.065	01	H17A ²	3.217
02	H14A ³	3.304	02	H14C ³	3.196
02	H17A ²	2.583	02	$H17B^2$	3.566
02	H19C ⁴	3.134	03	H4 ⁵	2.172
O3	H4A ³	3.461	03	$H14B^5$	2.482
O3	H15 ⁴	3.033	03	$H18B^4$	3.550
O3	H19C ⁴	2.600	O4	H4A ⁶	2.955
O4	H5 ⁶	2.429	O4	$H14A^5$	2.858
O4	H15 ⁷	3.505	O4	$H18B^7$	2.704
05	H10 ⁷	3.003	05	H15 ⁷	2.685
05	$H17B^7$	3.402	O6	H3 ²	3.136
06	$H14A^8$	3.134	O6	$H14B^8$	3.076
06	$H14C^8$	3.435	O6	H16 ²	3.486
06	H20C ⁹	2.948	07	H3 ²	2.618
07	H5 ¹⁰	2.808	07	H6 ¹⁰	2.389
07	H12A ²	3.497	07	$H12B^2$	2.877
07	$H14A^8$	2.862	07	$H14C^8$	3.382
07	H16 ²	3.213	C1	$H12A^1$	3.523
C1	H16 ²	3.253	C1	H17A ²	3.397
C2	H4 ⁵	3.095	C2	$H14B^5$	3.160
C2	H19C ⁴	3.192	C3	H5 ⁶	3.244
C3	$H14A^5$	3.488	C4	$H4^1$	3.491
C4	H14A ³	3.600	C4	H18B ¹¹	3.528
C5	$H4^1$	3.555	C5	$H12A^1$	3.385
C5	H14A ³	3.059	C5	H17A ²	3.383
C6	$H12A^1$	2.855	C6	$H12B^1$	3.441
C6	H16 ²	3.559	C6	H17A ²	2.907
C8	H3 ²	2.964	C8	H6 ¹⁰	3.521
C8	$H12B^2$	3.454	C8	H14A ⁸	3.401
C8	H16 ²	3.035	C8	H20C ⁹	3.565
C9	H5 ³	3.520	C12	H5 ⁶	3.455
C12	H6 ⁶	3.304	C14	H4 ⁵	3.458

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens

C14	H5 ³	3.040	C14	$H20A^7$	3.176
C17	H19A ⁹	3.401	C17	H20C ⁹	3.106
C18	$H4A^{12}$	3.302	C18	H19A ⁹	3.084
C18	H20B ¹²	3.412	C19	$H17B^7$	3.233
C19	H18A ⁷	3.212	C19	$H18B^7$	3.524

atom	atom	distance	atom	atom	distance
C19	H20A ⁶	3.439	C19	$H20B^6$	3.370
C20	H14C ⁹	3.311	C20	$H17B^7$	3.362
C20	H18C ¹¹	3.592	C20	$H19B^1$	2.922
H4	O3 ⁵	2.172	H4	C2 ⁵	3.095
H4	C4 ⁶	3.491	H4	C5 ⁶	3.555
H4	C14 ⁵	3.458	H4	H4A ⁶	3.188
H4	H5 ⁶	2.834	H4	$H14A^5$	2.662
H4	H15 ⁷	3.006	H4	$H18B^7$	2.782
H4	H19C ⁷	3.593	H3	O6 ²	3.136
H3	O7 ²	2.618	H3	C8 ²	2.964
H3	H5 ⁶	3.236	H3	$H14A^5$	3.035
H4A	O3 ³	3.461	H4A	$O4^1$	2.955
H4A	C18 ¹¹	3.302	H4A	$H4^1$	3.188
H4A	$H18B^{11}$	2.651	H4A	H18C ¹¹	3.103
H4A	$H19B^{11}$	3.531	H4A	H19C ¹¹	3.348
Н5	O4 ¹	2.429	Н5	O7 ¹⁰	2.808
Н5	C3 ¹	3.244	Н5	C9 ³	3.520
Н5	C12 ¹	3.455	Н5	C14 ³	3.040
H5	$H4^1$	2.834	Н5	$H3^1$	3.236
Н5	$H12A^1$	2.908	Н5	H14A ³	2.299
H5	H14C ³	3.137	H6	O7 ¹⁰	2.389
H6	C8 ¹⁰	3.521	H6	C12 ¹	3.304
Н6	H6 ¹⁰	3.320	H6	$H12A^1$	2.773
H6	$H12B^1$	2.983	H6	$H12B^2$	3.429
H6	H16 ²	3.565	H6	H17A ²	2.893
H10	O5 ⁹	3.003	H10	H18C ¹	2.945
H10	H20C ⁹	3.037	H12A	O1 ⁶	3.065
H12A	O7 ²	3.497	H12A	C1 ⁶	3.523
H12A	C5 ⁶	3.385	H12A	C6 ⁶	2.855
H12A	H5 ⁶	2.908	H12A	H6 ⁶	2.773
H12A	$H20B^6$	3.115	H12B	O7 ²	2.877
H12B	C6 ⁶	3.441	H12B	C8 ²	3.454

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

H12B	H6 ⁶	2.983	H12B	H6 ²	3.429
H14A	$O2^3$	3.304	H14A	O4 ⁵	2.858
H14A	O6 ¹³	3.134	H14A	O7 ¹³	2.862
H14A	C3 ⁵	3.488	H14A	$C4^3$	3.600
H14A	$C5^3$	3.059	H14A	C8 ¹³	3.401

atom	atom	distance	atom	atom	distance
H14A	H4 ⁵	2.662	H14A	H3 ⁵	3.035
H14A	H5 ³	2.299	H14B	O3 ⁵	2.482
H14B	O6 ¹³	3.076	H14B	C2 ⁵	3.160
H14B	H15 ⁷	3.307	H14B	$H20A^7$	2.955
H14B	$H20C^7$	3.494	H14C	$O2^3$	3.196
H14C	O6 ¹³	3.435	H14C	O7 ¹³	3.382
H14C	C20 ⁷	3.311	H14C	H5 ³	3.137
H14C	H19B ¹¹	3.055	H14C	H19C ¹¹	3.302
H14C	$H20A^7$	2.546	H14C	$H20C^7$	3.287
H15	O3 ¹⁴	3.033	H15	O4 ⁹	3.505
H15	O5 ⁹	2.685	H15	H4 ⁹	3.006
H15	H14B ⁹	3.307	H16	$O6^2$	3.486
H16	O7 ²	3.213	H16	C1 ²	3.253
H16	C6 ²	3.559	H16	C8 ²	3.035
H16	H6 ²	3.565	H17A	O1 ²	3.217
H17A	$O2^2$	2.583	H17A	$C1^2$	3.397
H17A	C5 ²	3.383	H17A	C6 ²	2.907
H17A	H6 ²	2.893	H17A	H19A ⁹	3.426
H17A	H19C ⁹	3.462	H17B	$O2^2$	3.566
H17B	O5 ⁹	3.402	H17B	C19 ⁹	3.233
H17B	C20 ⁹	3.362	H17B	H19A ⁹	2.561
H17B	H19C ⁹	3.047	H17B	H20C ⁹	2.485
H18A	C19 ⁹	3.212	H18A	H19A ⁹	2.532
H18A	H19B ⁹	3.162	H18A	H19C ⁹	3.514
H18A	H20B ¹²	3.464	H18B	O3 ¹⁴	3.550
H18B	O4 ⁹	2.704	H18B	C4 ¹²	3.528
H18B	C19 ⁹	3.524	H18B	H4 ⁹	2.782
H18B	$H4A^{12}$	2.651	H18B	H19A ⁹	2.774
H18B	H19B ⁹	3.426	H18B	H20B ¹²	3.182
H18C	C20 ¹²	3.592	H18C	H4A ¹²	3.103
H18C	H10 ⁶	2.945	H18C	H20A ⁶	3.446
H18C	H20B ¹²	3.041	H18C	H20C ¹²	3.263

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

H19A	C17 ⁷	3.401	H19A	C18 ⁷	3.084
H19A	$H17A^7$	3.426	H19A	$H17B^7$	2.561
H19A	$H18A^7$	2.532	H19A	$H18B^7$	2.774
H19A	$H20B^{6}$	3.477	H19B	$C20^{6}$	2.922
H19B	$H4A^{12}$	3.531	H19B	$H14C^{12}$	3.055

atom	atom	distance	atom	atom	distance
H19B	H18A ⁷	3.162	H19B	$H18B^7$	3.426
H19B	H20A ⁶	2.484	H19B	$H20B^6$	2.514
H19B	H20C ⁶	3.478	H19C	O2 ¹⁴	3.134
H19C	O3 ¹⁴	2.600	H19C	C2 ¹⁴	3.192
H19C	H4 ⁹	3.593	H19C	$H4A^{12}$	3.348
H19C	$H14C^{12}$	3.302	H19C	$H17A^7$	3.462
H19C	$H17B^7$	3.047	H19C	$H18A^7$	3.514
H20A	C14 ⁹	3.176	H20A	C19 ¹	3.439
H20A	H14B ⁹	2.955	H20A	H14C ⁹	2.546
H20A	H18C ¹	3.446	H20A	$H19B^1$	2.484
H20B	C18 ¹¹	3.412	H20B	C19 ¹	3.370
H20B	$H12A^1$	3.115	H20B	$H18A^{11}$	3.464
H20B	$H18B^{11}$	3.182	H20B	H18C ¹¹	3.041
H20B	H19A ¹	3.477	H20B	$H19B^1$	2.514
H20C	O6 ⁷	2.948	H20C	C8 ⁷	3.565
H20C	C17 ⁷	3.106	H20C	H10 ⁷	3.037
H20C	H14B ⁹	3.494	H20C	H14C ⁹	3.287
H20C	$H17B^7$	2.485	H20C	H18C ¹¹	3.263
H20C	$H19B^1$	3.478			

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

Symmetry Operators:

(1)	X+1,Y,Z	(2)	-X+1,-Y,-Z+1
(3)	-X+2,-Y,-Z+2	(4)	-X+1,Y+1/2-1,-Z+1/2+1
(5)	-X+1,-Y,-Z+2	(6)	X-1,Y,Z
(7)	X,-Y+1,Z+1	(8)	X,Y,Z-1
(9)	X,-Y+1,Z	(10)	-X+2,-Y,-Z+1
(11)	X+1,-Y+1,Z+1		(12) X-1,-Y+1,Z
(13)	X,Y,Z+1	(14)	-X+1,Y+1/2,-Z+1/2+1

Supplementary Fig. 6. ORTEP of C2'-epi avenaol with probability ellipsoids.

Supplementary Fig. 7. ¹H (a) and ¹³C NMR (b) spectra of 1'

Supplementary Fig. 8. 1 H (a) and 13 C NMR (b) spectra of 8

Supplementary Fig. 9. ¹H (a) and ¹³C NMR (b) spectra of 9

Supplementary Fig. 10. 1 H (a) and 13 C NMR (b) spectra of 2'

Supplementary Fig. 11. 1 H (a) and 13 C NMR (b) spectra of 3'

Supplementary Fig. 12. ¹H (a) and ¹³C NMR (b) spectra of 10a

Supplementary Fig. 13. ¹H (a) and ¹³C NMR (b) spectra of 4'

Supplementary Fig. 14. ¹H (a) and ¹³C NMR (b) spectra of 5'

Supplementary Fig. 15. 1 H (a) and 13 C NMR (b) spectra of 6a

Supplementary Fig. 16. ¹H (a) and ¹³C NMR (b) spectra of 11a

Supplementary Fig. 17. 1 H (a) and 13 C NMR (b) spectra of 6'

Supplementary Fig. 18. 1 H (a) and 13 C NMR (b) spectra of 12

Supplementary Fig. 19. 1 H (a) and 13 C NMR (b) spectra of 13

Supplementary Fig. 20. 1 H (a) and 13 C NMR (b) spectra of 7'

Supplementary Fig. 21. ¹H (a) and ¹³C NMR (b) spectra of 14'

Supplementary Fig. 22. $^1\mathrm{H}$ (a) and $^{13}\mathrm{C}$ NMR (b) spectra of 5

Supplementary Fig. 23. $^1\mathrm{H}$ (a) and $^{13}\mathrm{C}$ NMR (b) spectra of 4

Supplementary Fig. 24. ¹H (a) and ¹³C NMR (b) spectra of 8'

Supplementary Fig. 25. $^1\mathrm{H}$ (a) and $^{13}\mathrm{C}$ NMR (b) spectra of 3

Supplementary Fig. 26. ¹H (a) and ¹³C NMR (b) spectra of 18

Supplementary Fig. 27. ¹H (a) and ¹³C NMR (b) spectra of 20

Supplementary Fig. 28. $^1\mathrm{H}$ (a) and $^{13}\mathrm{C}$ NMR (b) spectra of 22

Supplementary Fig. 29. ¹H (a) and ¹³C NMR (b) spectra of 9'

Supplementary Fig. 30. ¹H (a) and ¹³C NMR (b) spectra of 2

Supplementary Fig. 31. ¹H (a) and ¹³C NMR (b) spectra of 10'

Supplementary Fig. 32. ¹H (a) and ¹³C NMR (b) spectra of 26

Supplementary Fig. 33. ¹H (a) and ¹³C NMR (b) spectra of 11'

Supplementary Fig. 34. 1 H (a) and 13 C NMR (b) spectra of 28

Supplementary Fig. 35. ¹H (a) and ¹³C NMR (b) spectra of C2'-epi-28

Supplementary Fig. 36. ¹H (a) and ¹³C NMR (b) spectra of 1

Supplementary Fig. 37. ¹H (a) and ¹³C NMR (b) spectra of C2'-epi-1

Supplementary Fig. 38. Comparison of ¹H NMR spectra of the natural (a) and synthetic avenaol (b).

Supplementary Fig. 39. Comparison of ¹³C NMR spectra of the natural (a) and synthetic avenaol (b).