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Supplementary methods:
Patients

In this study, we included patients with idiopathic short stature defined by a height of 2 SD below
the population specific age- and sex-related average or 2 SD below the estimated target family
height. All patients have been evaluated by experts in pediatric endocrinology and medical
genetics to exclude identifiable known causes of short stature including growth hormone
deficiency.

Whole exome sequencing & variant evaluation

Whole exome sequencing was performed for 200 of the patients after enrichment accomplished
by SureSelect targeted capturing. Sequencing was conducted on a SOLID or HiSeq2500 device
and image analysis as well as base calling was performed using the corresponding software with
default parameters. We performed read alignment with BWA' version 0.7.8 to the human
genome assembly hg19 (GRCh37). Local re-alignment around potential InDel sites was
performed with the Genome Analysis Toolkit? version 3.1. Single-nucleotide variants and small
insertions and deletions (indels) were detected using five different callers: HaplotypeCaller and
UnifiedGenotyper?, SNVer?, freeBayes* and Platypus®. Variant annotation was performed using
ANNOVAR.® We achieved an average SureSelect target coverage of 160x and average
coverage of the ACAN gene of 137.4x (Supplementary Figure 1). We included only variants
called with GATKHap, GATKUG?7 or SNVer® which were covered by at least 10 % of the
average coverage of the patient’'s exome and for which at least 5 novel alleles were detected.
We then confirmed the selected variants (Combined Annotation Dependent Depletion (CADD)
score >10, frequency in Exome Aggregation Consortium (ExAC) database <102)%° and their
inheritance by Sanger Sequencing. 120 patients were analyzed by multigene panel sequencing
using an lllumina Nextera® Rapid Capture CustomKit for enrichment and an lllumina MiSeq
system for analysis. This multigene panel included a total of 329 genes related to short stature
and RAS-MAPK signaling (a complete list of genes is available on request). The obtained
sequence data covered all exons and the adjacent intronic nucleotides of ACAN with a minimal
coverage of >40x. Variants were filtered according to population frequency and predicted impact
on the gene product using the lllumina’s VariantStudio v2.2 and Alamut software suite
(Interactive Biosoftware, Rouen, France) software tools. Rare or novel variants of possible
pathogenic impact were confirmed by Sanger sequencing and their segregation in respective
families was further evaluated.



Supplementary Table 1: ACMG Scoring of identified disease-related variants in ACAN

Patient | cDNA level Protein level ACMG ACMG prediction
(NM_013227.3) Subcategories

P1 c.151T>G p.(Cys51Gly) PM2, PM7, PP1, PP2, | Likely pathogenic (V)
PP3, PP4

P2 c.515del p.(GIn172Argfs*59) | PVS1, PM2, PM7, Pathogenic (Ib)
PP1, PP4

P3 c.1180C>T p.(Arg394*) PVS1, PM2, PM7, Pathogenic (Ib)
PP1

P4 c.1702G>A p.(Asp568Asn) PM7, PP1, PP2, PP3, | Likely pathogenic (VI)
PP4

P5 c1774C>T p.(GIn592%) PVS1, PM2, PM7, Pathogenic (Ib)
PP1, PP4

P6 c.5597C>A p.(Ser1866*) PVS1, PS2, PM2, Pathogenic (la)

PM7, PP4




Supplementary Table 2: Overview of ACAN mutations (see also Figure 1c)

cDNA level (NM_013227.3)*  Protein level* ACMG Category Affected domain Inheritance Reference
c.6_13del p.(Thr3Leufs*21) na na paternal 10
c.61G>T p.(Glu21*) na G1 maternal i
c.151T>G p.(Cys51Gly) Likely pathogenic G1 paternal P1
€.223T>C p.(Trp75Arg) na G1 maternal "
c.272delA p.(Arg93Alafs*41) na G1 maternal 112
c.492C>G p.(Tyr164*) na G1 maternal "
c.515del p.(GIn172Argfs*59) Pathogenic G1 maternal P2
c.532A>T p.(Asn178Tyr) na G1 maternal "
c.661del p.(Tyr221Metfs*10) na G1 maternal 10
€.903G>C p.(Trp301Cys) na G1 paternal "
c.916A>T p.(Ser306Cys) na G1 maternal 1
c.1047_1048delinsAC p.(Tyr349%) na G1 maternal "
c.1120_1123del p.(Thr374%) na IGD paternal 10
c.1180C>T p.(Arg394*) Pathogenic IGD maternal P3
c.1443G>T p.(Glu415%) na IGD maternal "
c.1425delA p.(Vald78Serfs*14) na G2 paternal "
c.1526C>A p.(Ser509*%) na G2 paternal "
c.1608C>A p.(Tyr536%) na G2 maternal 13
c.1702G>A p.(Asp568Asn) Likely pathogenic G2 maternal P4
c.1744delT p.(Phe582Serfs*69) na G2 maternal 14
c.1774C>T p.(GIn592%) Pathogenic G2 maternal P5
c.2026+1G>A p.? na G2 maternal n.12
¢.3758dupC p.(Gly1254Trpfs*175) na GAG unknown 1517
c.4657G>T p.(Glu1553%) na GAG maternal "
c.4762_4765del p.(Gly1588Cysfs*26) na GAG paternal 3
c.5391delG p.(GIn1798Serfs*53) na GAG maternal 11,18
c.5597C>A p.(Ser1866*) Pathogenic GAG de novo P6
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* All variants have been updated to the actual recommendations of the “Human Genome Variation Society”?? using the Mutalyzer software?3.
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Supplementary Figure 1: Mean coverage of the coding regions of the ACAN gene from whole exome analysis. All coding exons and the
conserved splice-sites were included in the analysis (read depth at least 20x). A complex repetitive region within the coding region (exon
12) was excluded from the analysis.
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