### Supplementary Material

### Novel Mechanism Evolved for Mycobacteria RNA polymerase and Topoisomerase I Protein-Protein Interaction

#### Srikanth Banda, Nan Cao, Yuk-Ching Tse-Dinh\*

\* Correspondence: Yuk-Ching Tse-Dinh: ytsedinh@fiu.edu



Figure S1. Rabbit MtbTopoI polyclonal antibodies can cross-react with MsmTopoI. Rabbit Polyclonal antibodies that were generated against MtbTopoI can cross-react with MsmTopoI due to a high sequence homology between these proteins. Western blotting of the soluble lysates from *M. smegmatis* mc<sup>2</sup> 155 was carried out to verify the cross-reactivity of the antibody. Lane 1: Soluble lysate (10  $\mu$ g) from *M. tuberculosis* H37Rv. Lane 2-4: Purified MtbTopoI (25 ng, 50 ng, 75 ng). Lane 5: Purified MsmTopoI (25 ng). Lane 6-8: Soluble lysates (10  $\mu$ g) of *M. smegmatis* mc<sup>2</sup> 155 over the course of its growth (Lane 6: OD<sub>600</sub>- 0.8, Lane 7: OD<sub>600</sub>- 1.5, Lane 8: OD<sub>600</sub>- 3.0).



Figure S2. Lack of inter-species cross-interactions between purified topoisomerase I, and RNA polymerase  $\beta$ ,  $\beta$ ' subunits. An assay was carried out to verify the lack of cross-interaction of the purified RNA polymerase  $\beta$ ,  $\beta$ ' subunits of *M. smegmatis* with *E. coli* topoisomerase I. Recombinant (6xHis) RNA polymerase subunit of *M. smegmatis* was first incubated with the *E. coli* topoisomerase I, and later captured on the HisPur cobat resin. The recombinant protein bound resin was washed in pull-down wash buffer (10 mM HEPES, pH: 7.5, 10 mM Imidazole, 0.005% Tween -20), and finally elutions were made with pull-down elution buffer (10 mM HEPES, pH: 7.5, 350 mM Imidazole). The eluates were analyzed by SDS-PAGE and Western blot with a monoclonal antibody against *E. coli* topoisomerase I. Lane 1: Purified *E. coli* topoisomerase I was loaded directly. Lane 2: Eluate from pull-down reaction of *E. coli* topoisomerase I alone. Lanes 3, 4, 5 are loaded with eluates from the pull-down with recombinant His-tagged RNA polymerase  $\beta$ .



Figure S3. Effect of MsmTopoI-CTD overexpression on growth: The growth curves of the MsmTopoI-CTD overexpression strain and the control strain, induced with 25 ng/ml of tetracycline in 7H9 media, were monitored over a period of 48 hours by reading the absorbance (595 nm) at different time points. The overexpression of MsmTopoI-CTD did not influence the growth rate (Untreated curves). However, a slower growth rate of the MsmTopoI-CTD overexpression strain was observed in the presence of  $0.15\mu$ M Moxifloxacin (Treated curves). Error bars represent the standard deviation (n=3).

| Mycobacterium smegmatis MC2 155          | 910         | R           | GPV           | KK | [2]PA | KKAAKKAF   | AKKAAAK                | KA             | 936  |
|------------------------------------------|-------------|-------------|---------------|----|-------|------------|------------------------|----------------|------|
| Mycobacterium tuberculosis H37Rv         | 911         | R           | GPA           | KR | PA    | RKAARKVE   | AKKAAKR                | D-             | 934  |
| Mycobacterium leprae                     | <b>9</b> 15 | R           | GPV           | KR | PA    | KK-ARKVP   | AKKAARL                | AP[ 9]         | 947  |
| Mycobacterium avium complex              | 909         | R           | GPA           | KR | TA    | KKTSRKAP   | AKKAAK                 | G–             | 932  |
| Mycobacterium bovis                      | 972         | R           | GPA           | KR | PA    | RKAARKVE   | AKKAAKR                | <b>D</b> –     | 995  |
| Mycobacterium africanum                  | 911         | R           | GPA           | KR | PA    | RKAARKVE   | AKKAAKR                | D-             | 934  |
| Mycobacterium canettii                   | 911         | R           | GPA           | KR | PA    | RKAARKVI   | AKKAAKR                | D-             | 934  |
| Bifidobacterium bifidum PRL2010          | 917         | A           | GPS           | KR | [2    | ]RKTTG     | ATAKK <mark>T</mark> A | <b>A</b> K[34] | 972  |
| Bifidobacterium longum NCC2705           | 937         | Α           | GPS           | TR | [2    | ] RGAGRAGC | AKAVA <mark>G</mark> K | GK[69]         | 1030 |
| Streptomyces coelicolor                  | 885         | К           | GPA           | кк | [5]VK | KTAAKKAP   | AKKAAAT                | KK[38]         | 952  |
| Corynebacterium glutamicum ATCC<br>13032 | 943         | <b>K</b> [( | 5] <b>APA</b> | кк | TS[7  | ] KTTAKKTI | AKKTV <mark>R</mark> K | AP[16]         | 996  |

**Figure S4. The C-terminal tail of the topoisomerase I from Actinobacteria is rich in basic amino acids**. Amino acid sequences of topoisomerase I from different Actinobacteria were aligned using Constraint-based multiple alignment tool, COBALT<sup>1</sup>. The regions of high conservation are highlighted. Mycobacterial topoisomerase I has a highly-conserved sequence (AKKAAAK) in the tail region.

#### Reference

1. Papadopoulos J. S., Agarwala R. (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073-1079. btm076 [pii].

Α

RPOC\_MYCS2 (100%), 146,515.9 Da DNA-directed RNA polymerase subunit beta' OS=Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155) GN=rpoC PE=1 SV=1 10 exclusive unique peptides, 10 exclusive unique spectra, 10 total spectra, 134/1317 amino acids (10% coverage) 

 Ides, IO exclusive unique

 R
 I G L A T A D D I

 K G I I C E R C G V

 F A A Y V I T S V D

 S D V R R K V R D S

 Y F T G A M G A E S

 G M V L D A V P V I

 K R M L Q E S V D A

 V Q G P Q L K L H Q

 I A E H P V L L N R

 A Q A E A R I L M L

 V Y S S P A E A I M

 M F N E L L P K S Y

 S M A D V V I V P P Q

 F Y P A D N P I I T

 N T H G A R K G L A

 R D A H V E T S A F

 T G V C A M C Y G R

 R V Q E L F E A R V

 H D K H I E V I V R

 I Q V Q P T E E A R

 M L D V N F F D E L

 Y C G K Y K R V R F

 A P K D L E K I I Y

 L A E L E A E G A K

 Y R E L Q D R Y G E

 A F Q Q S G N S P M

 G A P E I I V N N E

 P Q V W D V L E E V

 M A V H L P L S A E

 A T K D A P E Q G

 W T A E T T L G R V

 Y W A T R S G V T V

 Y E E V G K A L E E

 E G L T V L E Y F I

 A E R G P D G T L I

 V R S V L T C T S A

 G G A D I V G G L P

 L S K R Q R L R V I

 E V Y R A Q G V S I

 P A A G R P V L M G

 R
 N
 W
 S
 Y
 G
 E
 V
 K
 E
 V
 R
 K
 V
 R
 K
 E
 N
 K
 V
 R
 R
 E
 S
 T
 E
 S
 T
 E
 S
 T
 E
 S
 T
 E
 S
 T
 E
 S
 T
 I
 I
 N
 I
 I
 N
 I
 I
 N
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 $\begin{array}{c} \text{% coverage} \end{array} \\ \text{P coverage} \\ \text{P$  $\begin{array}{c} \mathsf{P} \ \mathsf{E} \ \mathsf{T} \ \mathsf{I} \ \mathsf{N} \ \mathsf{Y} \ \mathsf{R} \ \mathsf{T} \ \mathsf{L} \ \mathsf{K} \\ \mathsf{R} \ \mathsf{M} \ \mathsf{G} \ \mathsf{H} \ \mathsf{I} \ \mathsf{E} \ \mathsf{L} \ \mathsf{A} \ \mathsf{A} \\ \mathsf{R} \ \mathsf{L} \ \mathsf{E} \ \mathsf{A} \ \mathsf{E} \ \mathsf{M} \ \mathsf{A} \ \mathsf{V} \ \mathsf{E} \ \mathsf{K} \ \mathsf{K} \\ \mathsf{R} \ \mathsf{A} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{E} \ \mathsf{L} \ \mathsf{D} \ \mathsf{R} \ \mathsf{L} \\ \mathsf{L} \ \mathsf{R} \ \mathsf{A} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{E} \ \mathsf{L} \ \mathsf{D} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \\ \mathsf{D} \ \mathsf{A} \ \mathsf{E} \ \mathsf{A} \ \mathsf{E} \ \mathsf{L} \ \mathsf{D} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \\ \mathsf{D} \ \mathsf{G} \ \mathsf{R} \ \mathsf{G} \ \mathsf{R} \ \mathsf{F} \ \mathsf{A} \ \mathsf{T} \ \mathsf{S} \ \mathsf{D} \ \mathsf{L} \\ \mathsf{L} \ \mathsf{F} \ \mathsf{K} \ \mathsf{P} \ \mathsf{F} \ \mathsf{V} \ \mathsf{R} \ \mathsf{K} \ \mathsf{R} \\ \mathsf{L} \ \mathsf{F} \ \mathsf{K} \ \mathsf{P} \ \mathsf{F} \ \mathsf{V} \ \mathsf{R} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \\ \mathsf{A} \ \mathsf{F} \ \mathsf{E} \ \mathsf{P} \ \mathsf{Q} \ \mathsf{L} \ \mathsf{V} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \\ \mathsf{A} \ \mathsf{F} \ \mathsf{E} \ \mathsf{P} \ \mathsf{Q} \ \mathsf{L} \ \mathsf{V} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \\ \mathsf{A} \ \mathsf{K} \ \mathsf{I} \ \mathsf{K} \ \mathsf{V} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \\ \mathsf{A} \ \mathsf{K} \ \mathsf{I} \ \mathsf{K} \ \mathsf{V} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \\ \mathsf{A} \ \mathsf{L} \ \mathsf{Q} \ \mathsf{L} \ \mathsf{N} \ \mathsf{N} \ \mathsf{Q} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \\ \mathsf{Q} \ \mathsf{A} \ \mathsf{R} \ \mathsf{L} \ \mathsf{Q} \ \mathsf{A} \ \mathsf{R} \ \mathsf{L} \ \mathsf{A} \ \mathsf{Q} \ \mathsf{R} \\ \mathsf{Q} \ \mathsf{L} \ \mathsf{N} \ \mathsf{R} \ \mathsf{L} \ \mathsf{A} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{L} \ \mathsf{A} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{L} \ \mathsf{A} \ \mathsf{R} \ \mathsf{Q} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{R} \ \mathsf{Q} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf$ I F G P T R D P S R A Q K V L P K Q L I V K K L P K Q L I V K R L K R A L K R L K G R F R Q N V E A F R Q M K P J V E G M K P F E N G W K P T V J K L K I F E N G W K P T V J K L K I F E R G I T L L A G I T R D W E C Y L L D L K <mark>L E A D</mark> V D E V L A D V L V I L K R Q Q A I L R G E G A G F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A C F A S N T F T V R G A G F H L A T Т Т **M R I F H Q G D G G E E V V** V Q I H L V K N R R V V A E E N V I I G K Y G Y S D Y R DK E V Q G G E L I P

### B

RPOB\_MYCS2 (100%), 128,532.2 Da DNA-directed RNA polymerase subunit beta OS=Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155) GN=rpoB PE=1 SV=1 41 exclusive unique peptides, 54 exclusive unique spectra, 58 total spectra, 529/1169 amino acids (45% coverage)

| MLEGCILAVS                       | 5 Q 5 K <mark>5 N A I T N</mark> | NSVPGAPNR V                      | SFAKLREPLE                       | VPGLLDVQTD                       | SFEWLVGSDR          |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------|
| WRQAAIDRGE                       | ENPVGGLEEV                       | LAELSPIEDF                       | SGSMSLSFSD                       | P R F D E V K <mark>A S V</mark> | DECKDKDMTY          |
| AAPLFVTAEF                       | INNNTGEIKS                       | Q T V F M G D F P M              | MTEKGTFIIN                       | <b>GTER</b> VVVSQL               | V R S P G V Y F D E |
| TIDKSTEKTL                       | H S V K V I P G R <mark>G</mark> | AWLEFDVDKR                       | DTVGVRIDRK                       | RROPVTVLLK                       | ALGWTNEQIV          |
| ERFGFSEIMM                       | <b>GTLEKDTTSG</b>                | TDEALLDIYR                       | K L R P G E P P T K              | ESAQTLLENL                       | FFKEKRYDLA          |
| RVGRYKVNKK                       | LGLNAGKPIT                       | SSTLTEEDVV                       | A T I E Y L V R L H              | EGQTSMTVPG                       | GVEVPVEVDD          |
| I D H F G N R R L R              | TVGELIQNOI                       | R V G L S R M E R V              | V R E R <mark>M T T O D V</mark> | EAITPOTLIN                       | I R P V V A A I K E |
| FFGTSQLSQF                       | MDQNNPLSGL                       | THKRRLSALG                       | PGGLSRERAG                       | LEVRDVHPSH                       | YGRMCPIETP          |
| EGPNIGLIGS                       | L S V Y A R <mark>V N P F</mark> | <b>GFIETPYRK</b> V               | ENGVVTDQID                       | YLTADEEDRH                       | VVAQANSPTD          |
| ENGRFTEDRV                       | M V R <mark>K K G G E V E</mark> | F V S A D Q V D Y M              | DVSPRQMVSV                       | ATAMIPFLEH                       | <b>DDANR</b> ALMGA  |
| NMQRQAVPLV                       | R S E A P L V G T G              | MELRAAIDAG                       | <b>DVVVADK</b> TGV               | IEEVSADYIT                       | VMADDGTRQS          |
| YRLRKFARSN                       | HGTCANQRPI                       | V D A G Q R <mark>V E A G</mark> | QVIADGPCTQ                       | NGEMALGKNL                       | LVAIMPWEGH          |
| NYEDAIILSN                       | RLVEEDVLTS                       | IHIEEHEIDA                       | RDTKLGAEEI                       | T R D I P N V S D E              | V L A D L D E R G I |
| VRIGAEVRDG                       | DILVGKVTPK                       | GETELTPEER                       | LLRAIFGEKA                       | REVRDTSLKV                       | PHGESGKVIG          |
| I R <mark>V F S R E D D D</mark> | ELPAGVNELV                       | R V Y V A Q K R K I              | SDGDKLAGRH                       | G N K G V I G K <mark>I L</mark> | P V E D M P F L P D |
| GTPVDIILNT                       | HGVPRRMNIG                       | QILETHLGWV                       | AKAGWNIDVA                       | AGVPDWASKL                       | PEELYSAPAD          |
| STVATPVFDG                       | AQEGELAGLL                       | GSTLPNRDGE                       | VMVDADGKST                       | L F D G R <mark>S G E P F</mark> | P Y P V T V G Y M Y |
| I L K L H H L V D D              | KIHAR <mark>STGPY</mark>         | S M I T Q Q P L G G              | K A Q F G G Q R F G              | EMECWAMQAY                       | GAAYTLQELL          |
| TIKSDDTVGR                       | V Κ V Υ Ε Α Ι V Κ <mark>G</mark> | ENIPEPGIPE                       | <b>SFK</b> VLLKELQ               | SLCLNVEVLS                       | SDGAAIEMRD          |
| G D D E D L E R <mark>A A</mark> | A N L G I N L S R N              | ESASVEDLA                        |                                  |                                  |                     |

Figure S5. Unique peptides of *M. smegmatis* RNAP subunits identified by mass spectrometry of the eluates from the Co-IP assay (A) RNAP beta' subunit (B) RNAP beta subunit.

K T

| Primer                         | Gene             | Sequence (5'-3')                                         |
|--------------------------------|------------------|----------------------------------------------------------|
| RNA Polymerase<br>beta_LIC_FP  | rpoB             | CTGTACTTCCAATCCAATGTGCT<br>GGAAGGATGCA                   |
| RNA Polymerase<br>beta_LIC_RP  | rpoB             | ATCCGTTATCCACTTCCAATCTAC<br>GCGAGATCCTCGAC               |
| RNA Polymerase<br>beta'_LIC_FP | rpoC             | CTGTACTTCCAATCCAATGTGCT<br>AGACGTCAACTTC                 |
| RNA Polymerase<br>beta'_LIC_RP | rpoC             | CGTTATCCACTTCCAATTTAGCGG<br>TAATCCGAGTAG                 |
| MsmTopoI_pKW08_FP              | MsmtopA          | TTCGCGGATCCTTGGCTGGCGG<br>CGACCGCGG                      |
| MsmTopoI_pKW08_RP              | MsmtopA          | TTCTCAAGCTTCTAGGCCTTC<br>TTGGCGGCGG                      |
| MsmTopoI_2OT_FP                | MsmtopA          | GGGATCGAGGAAAACCTGTACT<br>TCCAAATGGCTGGCGGCGACCG         |
| MsmTopoI_2OT_RP                | MsmtopA          | GCGGATCCGTTATCCACTTCCAATATT<br>GTTCGGCGGAAACCTAGGCCTTCTT |
| D1-D8_MsmTopoI_2OT_FP          | D1-D8<br>MsmtopA | GGGATCGAGGAAAACCTGTACTTCCA<br>AATGGCTGGCGGCGACCG         |
| D1-D8_MsmTopoI_2OT_RP          | D1-D8<br>MsmtopA | GCGGATCCGTTATCCACTTCCAATATT<br>GTTAGGCACGGCGGTCGG        |

# Table S1. PCR primers for Gibson cloning

| Primer                | Sequence (5'-3')                        | Description                                                                                                                     |  |
|-----------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| CTD-MsmTopoI_pKW08_FP | GGATCCTGTCAGGATTCC<br>ACGATGAGAG        | Deletion of the N-<br>terminal domains<br>from the full-length<br><i>topA</i> gene that was<br>previously cloned<br>into pKW08. |  |
| CTD-MsmTopoI_pKW08_RP | GGCGTCGAGGGTTCGATC<br>GCG               |                                                                                                                                 |  |
| NTD-MsmTopoI_2OT_FP   | TAGAACCTCGAAGGCATC<br>GACGC             | Insertion of a stop<br>codon in the <i>topA</i><br>gene for early                                                               |  |
| NTD-MsmTopoI_2OT_RP   | GCCGCCGACGAGCTGCTT                      | termination at the end<br>of the N-terminus<br>domains (D1-D4).                                                                 |  |
| D1-D5_MsmTopoI_2OT_FP | GCGTCCCTCTTGCTATGT<br>GGCGAAGAGCTTTTCGG | Pro702 of MsmTopoI<br>was substituted with<br>a stop codon. The<br>resulting protein (1-                                        |  |
| D1-D5_MsmTopoI_2OT_RP | CCGAAAAGCTCTTCGCCA<br>CATAGCAAGAGGGACGC | 701) is termed as<br>MsmTopoI-701t (D1-<br>D5).                                                                                 |  |
| D1-D6_MsmTopoI_2OT_FP | GCCCACGACGCGCTACAG<br>CGACAGCAGC        | Pro786 of MsmTopoI<br>was substituted with<br>a stop codon. The<br>resulting protein (1-                                        |  |
| D1-D6_MsmTopoI_2OT_RP | GCTGCTGTCGCTGTAGCG<br>CGTCGTGGGGC       | 785) is termed as<br>MsmTopoI-785t (D1-<br>D6).                                                                                 |  |
| D1-D7_MsmTopoI_2OT_FP | CGGCCACGGCGTTTCTAC<br>TCGGCGTAGATCTT    | Pro840 of MsmTopol<br>was substituted with<br>a stop codon. The<br>resulting protein (1-                                        |  |
| D1-D7_MsmTopoI_2OT_RP | AAGATCTACGCCGAGTAG<br>AAACGCCGTGGCCG    | 839) is termed as<br>MsmTopoI-839t (D1-<br>D7).                                                                                 |  |

## Table S2. Primers used for Site-Directed Mutagenesis